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ABSTRACT. Working within the framework of the propositional system formalism, we use a 

previous study [1 ] of  the description of  two independent physical systems as one big physical 

system to derive a characterization of  a (non-interacting) physical subsystem. We discuss the 

classical case and the quantum case. 

1. INTRODUCTION 

We shall follow Piron [2] and describe any physical system by means of  the collection of  its 

properties, or, equivalently, of  the y e s - n o  experiments which can be carried out on this system. 

In [2], it is shown that this collection is a propositional system, that is a complete, orthocomple- 

mented, weakly modular, atomic lattice satisfying the covering law. The states of  the physical 

system are represented by the atoms of the lattice. For the definitions of  these concepts and the 

physical justification of this approach, see [2] or also [1]. In what follows we shall use the 

abbreviation PROP for these propositional systems. 

In [1 ],  we studied the description of  two non-interacting physical systems as one joint 

physical system. We denote these two independent systems by S~, $2, and the big physical 

system containing them both by S. The corresponding PROP's are s s s From a few simple 

arguments resulting from physical considerations, we arrived at the following structure (see 

[1], w 

(1.1) There exist c-morphisms t h i ,  h2 from s s to s with hi ( I i )  -- I, h2(I2) = I. (I1,12 

are the maximal elements in s s s respectively.) This is the mathematical translation of  the 

fact that the structures of  $1 and of $2 are conserved. 

(1.2) For al in s a2 in s we have hi (at) ~" h2(a2), (hi (al) and h2(a2) are compatible). 

This is the mathematical formulation of  the fact that $1, $2 are supposed to be independent. 

(1.3) For Pl atom in 21, P2 atom in s we have that h i (P l)  ^ h2 (p~) is an atom in s This 

means that maximal information on $1, $2 separately yields maximal information on S: $1, $2 

are the only constituents of  S. 

*Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in bet kader van 
navorsingsprogramma 21 EN). 

~A c-morphism is a map conserving the complete, orthocomplemented, weakly modular lattice structure. When 
a c-morphism maps the maximal element onto the maximal element it is said to be unitary (see [2] ). 
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With these three requirements we were able in [1] to prove some results about the PROP of 

the joint physical system, and this in both quantum and classical cases. Indeed, both classical and 

quantal systems can be described in the framework of the propositional approach. For the classical 

systems, one introduces one more property, namely distributivity, representing the well-known 

physical fact that in this case all possible experiments can be carried out independently of each 

other [2]. Such a distributive PROP can be shown to be isomorphic to ~(~2), i.e. to the lattice 

(with respect to set-theoretic inclusion) of all the subsets of the set f2 of its atoms [2]. This set 

~2 is then called the phase space of the classical system. Using the three conditions mentioned 

above (in fact only the first and the third ones: the second one becomes redundant in this case) 

we proved that when a classical physical system S is constituted by two classical systems S~, $2 

with respective phase spaces ~21, f22, its phase space is given by ~2x • g22 [1]. 

When the PROP is not distributive, we make a distinction between pure quantum systems and 

more general systems. A pure quantum system has no classical features, i.e. no superselection 

rules: there does not exist any yes-no  experiment compatible with all the others. When this is 

the case, we say the PROP is irreducible. It is proven in [3] that any such irreducible PROP 

(granted that it contains at least four orthogonal atoms) is isomorphic to the lattice of all 

biorthogonal subspaces of some vectorspace V, IK, where the orthogonality is defined with respect 

to some sesquilinear form on V, N, and where F • + F •177 = V for any subspace F of V. This struc- 

ture looks quite formidable, but it is not really so terrifying. If one takes the field g( to be r one 

can prove [3], [4] that the structure is exactly the one encountered in the usual quantum forma- 

lism: the lattice described above becomes now the lattice of all closed subspaces of a complex 

Hilbert space ~ ,  or, equivalently, the lattice of all projection operators in this Hilbert space. The 

atoms (= states) are then given by the one-dimensional subspaces of 3s 

When there exist superselection rules, the PROP can be considered as a combination of pure 

quantal propositional systems [2]. We will not consider such composite systems here. 

Applying our three conditions stated above to this setting, we proved in [1 ] that when a 

physical quantum system S is made up of two pure quantum systems S~, $2 with respective Hilbert 

spaces ~1 ,  ~ ,  it is described by the Hilbert space ~ ~ ~C2 or JC~* o JC2. Since our three condi- 

tions proved to be sufficient to derive the usual coupling procedures for the simultaneous descrip- 

tion of two independent physical systems, it is a natural question to ask whether they can also be 

used to characterize physical subsystems of a big physical system. How this is done will be 

explained in the next section. 

2. CHARACTERIZATION OF A PHYSICAL SUBSYSTEM 

Our aim is here to investigate the conditions under which a sublattice s of the PROP s of a 

physical system S can be considered as the PROP of a physical subsystem ~ of S. In other words, 

given ~ C  s we want to be able to ascertain whether s s ha, h2 exist, satisfying conditions 

(1.1), (1.2), (1.3) and for which 

ha(s = 2. (1.4) 

This motivates the following definition: 
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2.1. DEFINITION. A sublattice s o f  the PROP f~ o f  a physical system S is said to represent a 

physical subsystem orS iff there exist PROP's s , s and maps hi, h2 satisfying (1.1), (1.2), 

(1.3) and (1.4). 

To carry out our investigation, we make a preliminary study of the situation discussed in [1 ]. Let 

the physical systems $1, $2 be constituents of a big physical system S, then we have unitary 

c-morphisms hi, h2 mapping s s to s (s s s are the PROP's of  $1, $2, S). One can easily 

check that s s are isomorphic to their images hl (s h2 (s condition (1.3) insures that f or 

anyp, q atoms in s s hi (p) and h2(q) are non-void, from which we infer that ker hi = (O1 }, 

ker h2 = {O2 } or, equivalently, that both h l and h2 are injective (O1, O2 are the minimal 

elements in s s We focus our attention on hi (s Since it is isomorphic to s hi (s is a 

PROP, embedded in s The operations ^, v (see [2] ) on the PROP hi (s are the restrictions to 

h i (s of ^, v defined on s the orthocomplementation on h 1 (s is the relative orthocomplemen- 

tation induced by s 

h 1 (a) r = h 1 (a') = h 101 ) ^ hi (a)'. 

Whenever a PROP ~ C  • has this structure, we call it a sub-PROP o f s  (see also [6], where it is 

called a propositional subsystem). Since hi is unitary, we have hi (I1) = I. So if s C s is the 

P R O P representing a physical subsystem ~ of S, s has to be a PRO P of s containing the identity I. 

These conditions are however not necessarily sufficient: it may happen that although/~ has 

this nice structure, no two maps hi,  h2 can be found satisfying (1.1) - (1.4) for some s s 

In this case, s is a sub-PROP of s but this fact has no direct physical consequences in this con- 

text: s is not the PROP, embedded in s of a physical subsystem S of S. From this point onwards, 

we will examine the classical case and the pure quantum case separately. 

2A. The Classical Case 

In this case, s can be taken to be ~(fZ). From the construction given in [1], we easily see that if 

/~ is the representation of a physical subsystem of S, the sub-PRO P's ~(p) ,  where the p's are the 

atoms of s are isomorphic as sublattices of ~(9.) .  Indeed, 

hence 

h i :  ,.~(~'~1) .-+ ~.~(~21 X ~'22) 

a l  '-> ( (XI ,X2);X1 EGI ,x2  ~ 2 2 } ,  

(u} • G2 ~ (v} X G2, 
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is a c-morphism from the sub-P R O P ~(hl({u}))  of ~ (~2) to ~ (hi({v})). So if s represents a 

subsystem S of S, the sub-PROP's ~(p)  of s where the p's are the atoms ofs  have to be isomor- 

phic. (One can check that these sub-PRO P's ~ (p)  are isomorphic iff the atoms p, considered as 

subsets of ~(fZ), have the same cardinality.) The following theorem states that this condition is 

sufficient. 

2.2. THEOREM. Let s be a PROP of  a ~(~~) containing the identity ~2. Then s is the representa- 
tion of  a physical subsystem iff Vp, q atoms in s 34)p,q c-isomorphisms from ~(p) to ~(q). 
Proof. The "only if"  part is already proven. Take now one atom p in s Define ~21 = {q; q atom 

in s ~ :  = p 

GI~ U q 
qEG1 

h2: ~(~2)  ~ ~ (~ )  

qEA (,s ) 

(we have denoted by A(/~) the set of atoms in s 

It is trivial to check that these maps are e-morphisms. 

Moreover 

h i ( a 1 )  = U q =  U q = a ,  
qE~ 1 q~A(~) 

h2(a:)= U r U q = a ,  
qEA (,~) qEA (~.) 

and 

hl(p l )nh2(p2)  = p i n (  U (gqp(P2)) 
\qEA (s 

= p, n ep, gp2)  

= ep, p(p2) eA(Z). 

Hence ~(~21 ), ~ ( ~ 2 ) ,  hi,  h2 satisfy conditions (1.1), (1.3). ((1.2) is trivially verified: ~ ( ~ )  

is distributive.) Moreover it is obvious that h l ( ~  (~2)) = ~, which completes the proof of the 

" i f"  part. [] 
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2.B. The Quantum Case 

I f  the physical system S is a pure quantum system, its PROP s can be taken to be a ~(7f) .  

Suppose that the PROP ~ o f  d~ represents a physical subsystem S of  S. Since one can show that 

the coupling of  a reducible PROP with another PROP yields again a reducible PROP "~ , ffis again 

a pure quantum system. Hence its PROP is isomorphic to a ~ ( ~ ) .  So a sub-PRO P ~ of d~ 

represents a physical subsystem S of  S only if it is isomorphic to a ~ ( ~ ) .  This condition is how- 

ever not sufficient, as is shown in the next theorem: 

2.3. T H E 0 R E M. Let ~ (,7s be the PROP of  the pure quan turn system S, let s be a sub-PR OP o f  

~(JO such that." 

I e o c  ) ~ s  
3 fC, complex Hilbert space with dim f f  >~ 3, 

34~: ~ ( ~ )  -+ s c-isomorphism. 

Let i be the canonical infection from s to ~(Js Then s is the representation o f  a physical sub- 

system o f  ~(Js i f f  i o ~ is a pure m-morphism. 

Remark. We will use here some results about a special kind of  c-morphisms, named m-morphisms 

(see [1, 5, 7] ). If JC', Js are two Hilbert spaces, a c-morphism f from ~ ( ~ ' )  to ~(N?") is called 

an m-morphism ifff(x----~y) c f(ff) +f05) for any x, y in JC' (the symbol~ denotes the one- 

dimensional subspace Cx). Such an m-morphism can be shown to be generated by a family of  

linear or antilinear isometric maps q~j. from ~ '  to Js such that the different ~bi(Js are orthogonal 

and Js = �9 q~i (~')" If  all these maps are linear, resp. antilinear,fis called a linear, resp. antilinear, 

m-morphism. If  both linear and antilinear maps occur in the decomposition, the m-morphism is 

mixed. A non-mixed m-morphism will be called a pure m-morphism. 

Proof o f  the Theorem. We prove first the "only if" part. Since s is the representation of  a 

physical subsystem, we have a unitary e-morphism hi mapping a ~,(JCl ) to ~(Js  such that 

h l ( :~(JCl))  = s It was proven in [1] (w Lemma 4) that this hi is a pure m-morphism. More- 

over f =  h~ 1 o i o q~: ~(Js -+ ~(J (1  ) is a subjective e-morphism mapping atoms to atoms, hence 

(see [5],  Theorem 4.1) an m-morphism generated by a unitary or anti-unitary map qs: 

~ : fC --" JC, 

f (A )  = ,~(A) VA �9 ~(Yc). 

Let (t~j)j~.z be a family isometric maps generating hi .  Then, VG E ~(Js  

(i o q~) (G) = (hi o f )  (G) = hi (qb(G)) = �9 (if] o cb) (G). 

t l f  s is reducible, one can write it as a direct union or irreducible PROP's (s ,i)i~I" The coupling procedure with 
s can then be applied for each of these s ,i to obtain a s The joint PROP s is taken to be the direct union of 
these s and is thus again reducible (for the definition of reducibility and the here mentioned decomposition, 
see [21 ). 
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The maps ffj o q) are isometric; so i o ~ is generated by a family isometric maps (ff] o ~)1~],  

which implies i o ~ is an m-morphism (see [7] ). Moreover, since hi is a pure m-morphism, these 

isometries are either all linear or all anti linear, which implies that i o (b is a pure m-morphism (see 

[51). 

Let us now prove the " i f "  part. To do this, we will use some results obtained in the proof of 

Theorem 3.3 (more specifically Lemma 3.5) in [6]. There we proved, from the same suppositions 

concerning ~ ,  2, Js ~ as made here, that, for some arbitrary atom P in s a Hilbert space ~ ,  and an 

isomorphism f :  ~C ~ Jf | P~C exist such that the isomorphism 

A ~ f o A  o f  -1 

satisfies q~(s = ~ ( ~ )  | llpsc. (We consider here ~ ( ~ ) ,  ~(~7) as sets of projection operators in 

instead of closed subspaces.) If we take now ~s = ~ ,  ~s = P'Js 

~bl : ~ ( ~ 1  ) ~ ~(Jf ) :  Q v--. q5 -1 (Q .o l lp~) ,  

02: ~(JC2) -+ ~ ( ~ ) :  R ~ q5-1(1]~ | R), 

then it is obvious that ~bl, ~b2 satisfy the three conditions (1.1) - (1.3). Moreover 

r (~(~c~)) = ~-1 ( ~ ( ~ )  ~ lle~c) 

hence condition (1.4) is fulfilled, which implies 2 represents a physical subsystem of S. [] 

Remarks. (1) As a consequence of  this proof, we see that if 2 represents a physical subsystem, 

then the representation of the other constituent is given by: 

h2 ( ~(J{2 ))= ~-l (]l ~ | #(P'Js = (p- i (p( (#( ,~)  | Ilp~c)')) 

= P((q,-~ ( ~ ( ~ )  | I l l , c ) ) ' )  = e(s~'). 

(For any yon Neumann algebra ffl, we denote by P(6~) the set of the projection operators in ~). 

(2) Since the conditions in Theorem 4.2 are exactly the same as in [6], Theorem 3.3, the 

following corollary holds: 

COROLLARY. Let ~(~s be the PROP of the pure quantum system S, let s be a sub.PROP of ~(Js 

containing the identity, such that 2 is isomorphic to a ~(fs with dim ~ I> 3. Then 2 represents 

a physical subsystem o f~  o r s  iffP(s = ~. 
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