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Wavelet Transforms and Orthonormal Wavelet
Bases

INGRID DAUBECHIES

ApsTiacT. We introduce the waveled transiorm and discuss its motivation
as a time-frequency localization tool. We reveew the diffecent Eypes of
wavelet transform, with a special empbasis on orthonormal wavelet bases
and their properilea. We Andsh by a short dscassion of their shortoosmings.

Wavelats™ or “wawvelet transforms™ are a tool for decomposing functions in
varions applications, several of which are presented in this short course. The
functions to be analyzed can be solutions of a differential equation with shocks,
or integral kernels of singular integral operators, or 1 or 2-dimensional signals, as
in sound (spesch or music), time series or images. The wavelet transform can be
viewed a8 a synthesis over the last fifteen years of ideas from many different fields,
ranging from pure mathematics to guantum physics and electrical engineering.
I will give here a description of several types of wevelet transform, with = special
emphasisa on (orthonormal ) wavelet bases.

1. Time-frequency localization: what and why?

Let f(t) be a lunction depending on time. If we are interested in its “frequency
content™ or “spectrum”, our first reflex is to compute its Fourier transform,
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Just as the different harmonic components were present in f{t}, but impossible
to read off at a glance, so the time information is present in f{£) but hard to
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read off (it is all hidden in the phase of f{£)]. Often we would like to have & fre.
quency decomposition of § locally in time, similar to music notation, which tells
the musician which note (= frequency information) to play when (= time infor-
mation}. This is what is achieved by so-called time frequency representations.
The wavelet transform of [ ean be viewed as such a time frequency represen-
tation. There exist other, older and very useful time frequency representations,
The most widely used is the windowed Fourier transform. Here the function f
Is firat, “windowed" by multiplying it by a fxed glt} (the window function); this
effectively restricts f to an interval {with smoothed edges) (see Figure 1}. Then

ait)

Ficure 1.

the Fourier coefficients of this product are computed. This process iz repeated
with shifted versions of g, Le. gft — ntp), 1t € E, leading to a family of windowed
Fourier coefliciants, .

(L.1)  Smelh) = [ 1) gls - ntg) e g

with m,n € E. These can also be viewsd as the inner products (in £2(R)) of
with the

_M”_,u”__ ) ) Fonn (] = ml._“.n.__i._unm.-._"”u. - -.Hn__“__."_

{wre assume g is real). Bach g, consists of an envelope function, shifted by nt,,
and then “filled in™ with oseillations (see Flgure 2); the index n gives 18 Lhe time
localization of guy,,.the index m its requency. o o

The wavelet transform is similar to the windowed Fourier transform in that
it also computes inner products of f with & sequence of functions ¥, ., with m

ndicating frequency localization, and n time bocalization,

s Wi ( f] = .\ F8) B (0] it
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FiguRe 2.

but the 4, ., are generated in different way, The basic wawvelet 4 is typically
well concentrated in time and in frequency, and has integral zero

(1.4) Hﬁinu di =10,

which means it has at least some oscillations. The gy, are then generated by
dilations and translations:

(1.5) Wi () = ap ™ Pi{ag ™t — nbg) ,

where ag = | and by = 0 are fixed parameters {similar to the wy, fnp 0 (1.1), and
e, e range over all of ). Changing m in (1.5} amounts to packing the oscillations
of 4 into a smaller (e = 0) or Targer {m < 0) width, i.e. to wavelets with higher
or lower frequency ranges; for fixed m, the o, , are then translates of ¥, 5 by
ntaf by, i.e. the wavelets are translated by amounts proportional to their width.
A Tew typical wavelets are illustrated in Fig. 3. It is clear that high frequency

: D=0
B il
e \/_1...,!-..:._
|-

- qd_cw : {J/\\\Iu.

FicurE 3.

wavelets are narrow, low freguency wavelets wide, Thiz is the main difference
between the wavelet transform and the short term Fourier transform: the 9o, .
of the short time Fourier transform all have the same width. It is therefore to
e expected (and borne out in reality} that the wavelet transform is particularly
well adapted to functions, signals or operators with highly ecneentrated high
frequency components superposed on longer lived low frequency components.
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2. Different types of wavelet transform.

2.1. The continuous wavelet transform. Here the dilation and transla-
tion parameters a, b vary continuously over B, That i3, we define {in 1 dimension;
higher dimensional versions are straightforward)

(2.1) ety =iy (220
with a, b & B a = . Then
(2.2) (WHiab) = (f, ™" = & flz) a—H? i J
- % FIE) &'® f(at) ™,
and
oo e b ob &
\g \mz (1.9} (2, 9) db 22
- o + da
A R CEGI G =
(23) — mCy (g},
provided that

(2.4) L\W .m-,_%ﬂ_mkux.s 17" WHE d = Oy <o

Condition (2.4} implies that [ |£]|7}|4(£)[* df < oo, which (for ressonable
W) amounts to the same as our earlier requirement [44(x) de = 0. Another
ingredient in {2.4) is a symmetry of concentration in __m__p._n.mu__u, with respect to
the measure |£|~" df, on positive and negative frequency axes. This require-
ment i automatically satisfed if 1 is real. On the other hand, if (2.3) iz only
required for real f,g, where, since f{—£) = [f(£)]", the positive frequency be-
havior completely determines the negative frequency anslog, then one can find
formulations in which the symmetry for £ « —£ in {2.4) is no longer neces-
mﬂQ m...EFH._E i one allows negative a in (2.1) and (2.2) then (2.4] collapses to
= [ €% [#{£)]* = oo (see Danbechies (1992)).
H“E.E...F {2.3) can also be rewritten as

e | [ e

with weak convergence in L?-sense. In fact, for reasonable 4, (2.5} converges in
many more topologies; in particular, it converges pointwise in any point © where
§ is continuons (see Holschneider and Tehamitchian {1990)).

(2.5} fx) =
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Mote that (2.5) can be read in two different ways: it tells us, once we know
the {f,4™*}, how to reconstruct f from these wavelet coeflicients; it also gives a
recipe for writing any arbitrary f as a superposition of ™.

Formoela {2.5) has in fact been known for quite a while: it is already implicit
in Calderdn (1964) as a useful mathematical tool {with completely different no-
tations), and it appeared as the “reproducing identity for the ex + b-group” in
Aslaksen and Klauder (1968]. A similar and even older reproducing identity ex-
ists for the continuous windowed Fourier transform. {For an extensive discussion
of these and other reproducing identities, see Klauder and Skagerstam (1985). )

It may seemn puzszling that, according to (2.5}, we can write any f, even if
[ flzpde = 0, as n superposition of ¥ each of which has zero integral. The
solution to this paradox is that (2.5) converges in L%, or pointwise, but not in
EY. Im fact, for any finite a;, B, and any nonzers aq, the lanctions

1 L e el
faoainl®) = 5o [ [t T

2y

will have zero integral; for ap close (o 0 and aq, i very large, their graph will
be vary close to that of f, excepl that they will have large, shallow, ﬁx.m.mﬂ.t.qm
“mocks” in regiona where [ i small, leading to small polntwise or L7 differences,
but sufficient to ensure [ o, . glz) do =0 (Ses Figure 4.)

The continuous wavelet transform is useful when one wants to recognize or
extract features. Scaling or translatiog f leads to a shift of the (W f){a,b} in
i and b, so that the whole analysis can be made to be scale and Lranslation
invariant, a desirable property in some applications. Of course, it can be cum-
bersome to have to deal with the very redundant (W /) {a, &): after all, we have
changed a l-dimensional function § into the 2-dimensional W[ pictures of Wwr
may give ingight into the different components of f, but this is only a first stage.
Several groups, mostly in Marseille (France) have developed mathematical tools
for extracting the “bare bones™ from W f(a, &) and use these to describe f; an
extensive review article is Delprat et al (1992).

2.2, The discrete but redundant wavelet transform: frames. The
wraovelet Family (1.5} and the wavelet transform (1.3} can be viewed as discretized
versions of the contimuous wavelet transform, with o, b restricted to a = ag';
b = shgal®.

In the discrete case, there does not exist, in general, a “resolution of the
identity” formula analogous to (2.5) for the continuous case. Heconstruction of
f from the W .(f}, if st all possible, must therefore be done by some other
means. The following guestions naturally arise: -

(1) Is it possible to characterize [ completely by knowing the Wi ()7
(2} Is it possible to reconstruct f in & nomerically stable way from the
Wil f)?
These guestions concern the recovery of f from its wavelet transform. We can
alsn econstder the dual problem, the possibility of expanding f into wavelets,
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Froure 4. A Gaussian (doited line) and its reconstruction
(sclid line} with cutaffs in 2 and b (see text). Only the right
half is plotted; to make the effect more visible, two blowups are
provided as well. The reconsiruction has wide shallow “pools”
cn the side so that its integral is zaro, even though it is close to
the Gagssian at every point. MNote that the horizontal scale is
ginth & rather than =, giving a linear scale near 0 but an expo-
nential acale further on.

which then leads to the dual questions: . .

(17) Can any function be written as a superpogition of . .7

(2} Is there & numerically stable algorithm to compute the coefficients for

such an expansion?

Az in the continuons case, these discrete wavelet transforms often provide a
wvery redundant description of the coriginal funectlon. This redundancy can be
exploited (it is, for instance, possible to compute the wavelet transform only
approximately, while still obtaining reconatruction of f with good precision), ar
E..EFEE to reduce the transform to its bare essentials (such &5 in the image
campressicn work of 5. Mallat and S, Zhong {19927}, Tt is in this discrete form
that the wavelet transform is closest to the “g-transform” of Frazier and Jawerth
(1988).

The choice of the wavelet ¥ used in the contineous wavelet transform or in
frames of discretely labelled families of wavelets 15 essentially only restricted by
the requirement that 7, as defined by {2.4), is finite. For practical reasons,
one usually chooses 4 so that it is well concentrated in both the time and the
frequency domain. For any such +f, ome can then find threshold values such
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that if og. by are chosen below these thresholds, then all the gquestions above can
be answered by “ves”, and one can construct explicit algorithms. (For a much
more extensive discussion, see Daubechies (1952).) All this still leaves a lot of
freedom. Giving up = lot of this freedom allows one to build {orthonormal) bases
of wavelets.

2 3. Orthonormal wavelet bases: the Haar basis as an example. For
some very special choices of 4 and ap, by, the ¥, » constitubte an orthomormal
besis for LE(R). In particular, if we choose ag = 2, bg = 1, then there exist o,
with good time-frequency localization properties, such that the

(2.6) Ymniz) = 27 (27 —n)

constibute an orthonormal basizs for h.n.”_.ﬁ.,.- (Other choiess [or ag are possible,
but we shall restrict ourselves to ag = 2 here.) The oldest example of & function
¥ for which the 1, ,, defined by (2.6) constitute an orthonormal basis for LA(R)

is the Haar function,
1 O0<z<1/2
gz) =4 =1 12 <r<]
0 otherwise .

The Haar basis has been known since Haar (1910). MNote that the Haar fune-
tion does not have good time-frequency localization: its Fourier transform (€]
decavs like €]~ for £ — oo, Nevertheless we shali use it here for illustration
purposes. What follows is a proof that the Haar family does Indeed constitute
an orthonormal basis. This proof ia different from the one in most texthooks: in
fact it will use multiresolution analysis as a tool

In arder to prove that the ., {z] constitute an orthonormal basis, we nead
to establish Chat

{1} the %, . &re orthonormal
(2} any L*-function f can be approximated, up to arbitrarily small precision,
by a finite linear combination of the ¥, .

Orthonormality is easy to establish. Since support{fim ) = EE: 2™ (n+ 1],
it follows that two Haar weoelets of the same scale (same value of m) never
overlap, 50 that {m o, Yma ) = &y . Overlapping supperis are possible if the
two wavelets have different sizes, as in Figure 5. It is casy to check, however,
that if m < 77, then support{th. .} lies wholly within a region where tiye pe is
constant [as on the figure). It follows that the inner product of iy n and ey o
is then proportional to the integral of ¢ itself, which is zero. -~

We econcentrate now an how well an arkitrary function f ean be approximated
by linear combinations of Haar wavelets, Any f in L*(R) can be arbitrarily well
approximated by a function with compact support which is piecewise constant
on the [£2=7 (§ + 1)27] (it suffices to take the support and j large enough).
We can therefore restrict ourselves to such piecewise constant functions only:
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Ficure 5. Two Haar wavelets; the support of the “narrower”
wavelet i3 completely contained in an interval where the “wider”
wavelet is constant.

assume f to be supported on [—271, 2], and to be piecewise constant on the
[e2=7, (€ -+ 1)2~*[, where J; and Jo can both be arbitrarily large {see Figure
f). Let us denote the constant value of f = f on [#27% (# 4+ 1)27%] by 7.
We now represent fU as a sum of two pieces, Y = ' + &, where fU s an
approximation to f% which is piecewise constant over intervals twice as large
as originally, ie. flge-s+ prja-dors) = comstant = fl. The values f] are
given by the averages of the two corresponding constant values for f°, fi =
LS + fie 1) (see Figure 6). The function &' is piecewise constant with the
same stepwidth as % one immediately has

Bl = fle— i = 5SS~ Besn)
and .
mmh._._ H.__“%nt - ._ﬂ = W_.,.__.mht - .___.wn.r..u_ = I.w.._r ‘

It follows that &' is a linear combination of scaled and translated Haar functions:

adyhdg=1

' = D7 i T

d=—-2Ni+lo—1.4]

We have therefore writien f as

f=r"=i+ M C ot i d Wedodl d
- :

where f1 is of the same type as %, but with stepwidth twice as large. We can
apply the same trick to f1, go that

f'=F 43 comiae Yodoras
;
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Fraure 6. (a) A function f with support [ 27 2], piecewise
constant on the k2, (k+1)2 . (b} A blowup of & portion
of F. On every pair of intervals, f is replaced by its average (—
F1; the difference between f and f' is &', a linsar combination
of Haar wavelets.

with f? still supported on [—27, 2 |, but piecewise constant on the even larger
intervals [k2~ % +2 (k4 1)2- %+ We can keep going like this, until we have

fa

=g 8T S ot

m=—Jdn+1

Here §9ott  popmists of two constant pieces (sse Figure 7), with
FRtR gy = f*P equal to the average of F over [0,2], and
SRt an g = iia the average of f over [—29 0f. -

Even thongh we have “filled out™ the whele support of f, we can still keep
going with our averaging trick: nothing stops us from widening our horizon from

2N g 211+ and writing f PR = phbdtl gl phare

1 L
.__?u....;._.ﬂ._.u.—tw.._wuu.-;_. _ m,____._“.'.q.p +.wuu_ .___.r..m_..-..__..u +u.__“l....r.u.+-.i = m.-..H__.._u.._.w
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.nu._.._#u._...-ﬂ._ ._“...uﬁ..-..L._
o
=i - oy
P%...-_H.-...-.-
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+ H..-__.-..-
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FlGure 7. The averages of { on [0, 2] and [-29 (] can be
“smeared” out cver the bigger intervals [0, 2=1), [—2/+1, of;
the difference is a linear combination of very stretehed out Haar
functions. )

and
_._.q_...m-.-..._"u — W..u..n_.,uu.-.:_.udm.n“M|L..lu_..Hu_ . W-‘.W““_..-...—u.a_.._.._“..m.l..:l-ﬁ.nnn “-”_

{see Figure T). This can again be Tepeated, leading to

..uuu.u.h_....

.w."t_m...ﬂnn_....,_.._;...._._..n_l M . M Erm_2 ._um_...”___._m. .

m=—Jatl £
where support( f ol Y = ol s B g+ K] ang

— o - o O |
._un...au.-.l: .T.R.”___u_u.whnn_.h_ =9 .-nn..‘u.ﬁ.._nn..f _.q.u?._._u_.._...u.__.-..!...—_ul.w....+_:.|._u_ =g ¥ l_“+ [

It follows immediately that

..__- + 1 2

:.__.I S.00% emt e

m=—Jdatl ¥

— __..___..m._”_+hu+mn.__w.u
LY ’

S e L T T H_.ﬂ__w_.ﬁ_f: 1+ _.__H__nma..._.p_m_r__u .

which can be made arbitrarily small by taking sufficiently large K. As claimied,
[ can therefore be approximated. to arbitrary precision by a finite inear eombi-
nation of Haar wavelets! . .
The argument we just saw has implicitly used a “multiresolution® approach:
we have written successive coarser and coarser approximations to f (the f7,
averaging { over larger and larger intervals), and at every step we have written
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the difference between the approximation with resclution =1 and the mext
cnarser leval, with resolution 27, as a linear combination of the ;..

The Haar basis is a “gpood” basis for LP(R), 1 < p < oo (Le. it is an uncon-
ditional basis; see §7). It is howewver not a auitahle basis for smoother function
spaces, such as the Sobolev spaces. "In the next section, we shall see how the
multiresolution approach can be made to work for other, smoother wavelet bases,
which then are unconditional bases for a much wider range of functional spaces.

3. Multiresolution Eﬂuu.m—m

A multiresclution analysis consists of a sequence of successive approximation
spaces V. More precisely, the closed subspaces ¥; satisfy

(3.1 WMo Viowo Vo o Ve oL
with
{3.2) vy = L7m),
FEE
(3.3 v = {o}.
=4

If we denote by P the orthogonal projection operator onto ¥, then {3.2) en-
sures thatb ._.Eul.lﬂ_ Pif = f for all f € L*{E). There exist many ladders of
spaces satisfying (3.1)-(3.3} which have nothing to do with “multiresclution”;
the multiresclution aspect, is a consequence of the additional requiremant

(3.4) FeEV == F2)el.

That is, all the spaces are scaled versions of the central space V). An example
of spaces ¥ satisfying (3.1)—(3.4) is

Vy={f e L3R Yk €Z: Flipsg, poasry = cOnStant}

We shall call thiz example the Haar multiresolution analysis. It corresponds
with our argument in §2.3; see also below. Figure § shows what the projection of
some [ on the Haar spaces Vg, V., might lock like, This example alse exhibits
another feature that we require from a multiresolution analysis: invariance of ¥y
under integer translations,

[3.5] fFevy = ji-—n)c W, forallneX.

Becanse of {2.4) this implies that if f € 1, thea fi(- — Fm) € V; _.qn__H.ﬁ: n = .
Finally, ﬂmﬂmnE.ﬁ.meuﬁwia:mEﬂHimﬁm Va 50 that

{3.8) Iy nE £} ig an orthonormal basis in Vo

where, for all j,n € &, ¢ (x) = 279 ¢{27x = n). Together, (3.6) and {3.4)
imply that {é; .; n € E} is an orthonormal basis for Vi, for all 3 € . This last
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flx}

Prao| Vo f

...WIHJ.r_.rFIr

Praj 1

Ll.llLJI_l.l_\

Firoure 8. A function [ and its projections onto Vo, and V.

X

requirement. (3.6} seems a bit more “contrived™ than the other ones; we shall
gee below that it can be relased considerably. In the Haar example, a possible
choice for ¢ is the indicator function for [0,1], plz) =10 < =< 1 @iz} =0
ctherwise. We shall often call ¢ the “scaling function™ of the multiresolution

The basic tenet of multiresolution analysis is that whenever a collection of
closed subapaces satisfies (3.1)}-(3.6), then there exists an orthoncrmal wavelet
basis {45 5,k € 2} of LA(R), wialx) = 279/25(2 T — k), such that, for all
in L¥(T),

(3.7} Pioof = Pif + D (F, wsa) dhn -
kET .

[# is the orthogonal projection onto ¥;.) The wavelet 1 can moreover be con-
structed explicitly. Let us see how.

For every j € B, define W to be the orthogosal complement of V; in Vo,
We have

(3.8) Vioi =V Wy,
and

(3.9] W LW AT
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(If § = §', e, then W; C Vi, L W) It follows that, for j < J

J—3=1
(3.10) - Vi=Via & Wi,
) =D
where all these subspaces are orthogonal. By virtue of (3.2) and (3.3) this implies
(3.11}) . ARy =D Wy,
JEL

a decomposition of L2(R) into mutually orthogonal subspaces. Furthermare, the
Wy spaces inherit the scaling property {3.4} from the V5.

{3512} feW; = f2f)e w,.

Formmla (3.7) iz equivalent to saving that, for fixed j, {af; p; k € £} constitutes
an orthonormal basis for W, Because of (3.11) and (3.2}, (3.3} this then auto-
matically implies that the whole collection {4y 7,k € £} is an orthonormal
basis for L2{R). On the other haned, (3.12) ensures that if {abne; k& £} is an
orthonormal basis for Wy, then {4 k & £} will likewise be an orthonormal
bagis for W5, for any 7 € & Our task thus reduces to Anding o € Wy such that
the (- — k) constitute an orthonormal basis for W,

To construct this w0, let us write out some interesting properties of ¢ and .

1. Since ¢ & Vy © Yoy, and the ¢y . are an orthonormal basis in V.1, wa have

(3.13) =9 haPotn .

with

(3.14) By o= (i, @ogn), and 3 Jha®=1.
e

We can rewrite (3.13) as either

(3.15) $lz) = V2 P hn (25— n)
ar
(3.16) 3E) = 5 3 dm e e /2)

where convergenee in either sum holds in L*-sense. Formula {316} can be rewrit-
ten as

(3.17) HE) = ma(£/2) HE/2),
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where
(5-18) malf) = q|wwf B ke

Equality in (3.17) holds pointwise almost everywhere. As (3.18) shows, wg s &
2r-periodic function in L*({0, 2a]).

3 The orthonormality of the $(- — k) leads to special properties for mg. We have
b =[x o(@) $T B = JEEG

5
= [Taser S jae ol
L1} IeZ

implying
(3.19) ST+ wnlt =27 ae
. £ . .
Substituting (3.17) leads to (= £/2)
S tmofC 4w 1S(C 4w = (20) 77
¥

splitting the sum into even and odd £, using the periodicity of mg and applying
(3.19) once more gives .

(3.20) Ime(C)? + |mal{ +m*=1 ae

9. Let us now characterize W f © Wy is equivalent to f € Vo, and i
Since f = V., we have

F=3 Fudoin.
with f = {f, $-1.n). This implies
(2 f@=g5 T fe e BErn = my(e/2) $(e/2)
where

1 _

(3.22) mll) = 5 M foe

is & 2r-periodic function in L?([0, 27]); convergence in (3.22) holds pointwise a.e.
The constraint { L Vi implies fLgg e for all k, ie.

JEF O




WAVELET TRANSFORMS AND ORTHOMNORMAL WAVELET BASES L5

or

.\M "de N fe + 2m8) BE + 2ub) =
f
hence

(3.23) ST fler2wf) plE+ 2w = 0,
r

where the series in (3.23) converges absolutely in LY{([-#, x]). Substituting (3.17)
and {3.21}, regrouping the sums for odd and even £ (which we are allowed to do,
because of the absolute convergence), and using (3.19) leads to

(3.24) mp(C) moll) + my(g +w) mpld +7) = 0 ae

Since mg(¢) and mg({ + 7) cannot vanish together on a set of nonzero measure

(because of (3.20)), this implies the existence of a 2w-perfodic function A{(} so
Llsat

(3.25) mel) = A) mol + 7))  se

ard

(3.26) | MEP Y AMC+7) = 0. ae

This last eqguation can be recast as

(3.27) MEY = & (20},

whaora 1 i Zar-periodic. Substituting (3.27) and (3.25) Into (3.21) gives
(3.28) FE) = /2 mo[€/2 + ) vi€) $(£/2) ,

where 1 158 2r-periodic.

4. The general form (3.28) for the Fourier iransform of f € Wy m.;ﬁmmih that we
take

(3.29) P{£) = 4% ma(£72 + ) B(E/2)

as a candidate for our wavelet, Disregarding convergence questions, {3.28) can

indesd be written as
fe) = AH i m-iv (£}

M_Euﬂ__“ — k),

a0 that the ¥{- — n) ﬂﬁﬂﬂ&ﬁ&nﬂﬂﬁﬁswﬂawgﬁ.miﬁ; We need to verify
that the 4ip . are indeed an orthonormal basis for Wy. First of all, the properties
of my and ¢ ensure that (3.29}) defines indeed an L*-function € V_; and L ¥y
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{by the analysis above), BO that ¢ € Wy, Orthonormality of the ofip i is easy to

.n__ﬂmn.__n

.\ dr wiz) Wiz —kt = ‘\ de e [i(e)1®

= ﬁa i X 3yt + 20
Tcwar
SO+ 2m 0 = 3 mol€/2 + w + m)I* 1(8/2 + w O
o imeles2 + i_u S id(e/2 + 2] [*
+ Imolg/2) M,. |BIES2 + 7 + 2]
= {2m)! :EEM;H + imelgf2+m)7]  ae (by (3.19)

= (2x)7' s (by {3.20)}.

Hence [ dr iz} @iz —k} = Sig. In order to check that the o are indesd a
basis for all of Wy, it then suffices to check that any § € Wy can be wrikten as

H"M ..“_......_uw_u.u._._

with 3 |yal® < oo, or

(3.30) Fle) = ~(€) #(£)

with « Zm-periodic and € L¥([0, 2=]). But this is nothing but {3.28), whera it
is ensy to check that ¥ is indeed square integrable. We have therefore prowed
the nssertion at the start of this section: there is an orthonormal wavelet basis
{4045 3,k € B} associated with any mnltiresolution analysis, and we even have
a recipe for the construction of ¥

{3.31) Pz} = MT:: Bontl #-1n
= V2 (-1 Anpr $(27 — 1)

where ¢ is the sealing function of the multiresolution analysis. (Note that (3.31)

correspomds to (3.29); except for a change of slgn, and @ shift by 1 in x, neither
of which affect the result.)

Mot every orthonormal wavelet basis derives from a multiresclution analysis.
There exist “pathological” counterexamples in which 2 has very bad decay. (See
Mallat (1989) or Daubechies {1992)). Recently, it was proved in P. Auscher
(1992) and in Lemarié-Rieuset (1992} that if ¢ has & modicum of decay and
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emoothness, then it necessarily stema from a multiresolution analysis. Lemaric-
Rieusset (1901) containg an earlier proof for compactly supported o, More details
on these results can also be found in the chapter by P. G, Lemarké-Rieusset in
this wvolume,

To conclude this section, let us see what the recipe (3.31) gives for the Haar
multiresolution analysis. In that case @(x) = 1 for 0 < = < 1, 0 otherwise, hence

ﬁ /2 ifn=0,1

0 olherwise.

fu.._,m.\%ii&munuuu

Consequently o = ma @10 — num @y, or

1 i<z 1/2
h{xz) = —1 Hlf2=<=z<1
{1 othorwico,

and we recover indeed the Haar basis.

OF course, the real interest of this formaelism lies in the other examples that
can be built with it. The whole framework was developed by 5. Mallat {1989)
and Y, Meyer. The first construction of srnooth wavelet bases (Stromberg [1982),
which unfortunately went largely unnoticed at the time, Meyer (1985), Lemaria
{1988} and Battle (1287}}) did not use multirescletion analysis, and seemed much
more ad hoo and miraculous. Interestingly encugh, Ballat’s background in vi-
sion analysis played a role in the development of multlresolution analysis (see
Dauhechies [1988) for a discussion of the connection): an interesting example of
feadback from a very applied Geld to theory.

4. Spline wavelats.

Let us try the constructions in §3 for other multiresolution analysis ladders,
Ome can choose a.g. a ladder of spline spaces, very popular in approximation
theory.

V= {fim L3®);,  Feand f g aigen 8
a polynomial of order ¢, for all k€ Z} .

These are splines of order £, with eguispaced knots. The requirements {3.1)—
{3.5) are obviously satisfied. but (3.6} is a bit more tricky. The usual B-spline
function, i.e. the f-th convalution of dp.., with itself, has the property that it
and its integer translates generate all of Vg, but they are not orthonormal. For
£ = 1, for instance, we get the tent function ¢(z) = 1 — |=| for =] < 1, $(z) =0
otherwise, and obvicusly ¢{x) is not orthogonal to ¢z — 1). This can be fixed
easily however; we can relax (3.6) and replace it by the requirement that the
@z — n) constitute a Riessz basis for Vg, Le. that they span ¥y and that for
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=% cofhim € Vo, the norms 3, jeu!® and ||f||* are equivalent, in the sense
that .

(4.1) Aleal® =

|
| <BX el

.__.__._..,_p.h = 0, B < co and independent of f.
Because

2
lEN*

Sewf A e

= _M .._..n._._.ﬂu.._nn.

3 1d(E + 200

FeE
(4.1} is equivalent with

(4.2) __“__ﬁ|ﬂ.M _im+m=$_uﬁmﬁ3

ek
a requirement. that ks satisfied by the tent function (as well as the higher order
B-splinas). We can therefore define ¢ by

12 ¢

(4.3) 36y = #s)
| T.. ST ldte + 2
3

becansa of the stability conditions _H_m.m...__ ene easily checks that ¢ & Vg, and that

the ¢y, span Vo again, as the do. did. Moreover SopE(E+ 2m) | = (2=)7), 80
that the dg, are orthopormal. One can then repeat the recipe of §2:

B, (Bt )
Wiz} V2 MU_T:H hemir $2E — 7}

and the resulting ;4 will constitute an orthonormal basis wm@uﬂﬁﬂn with the
given multiresolution analysis. Figures & and 10 show the fimetions __.v and 3 for
respectively lincar and guadratic splines. These orthonormal spline bases were
first constructed, independently and by completely different ad hoc methods by
P. G. Lemarié (1989) and G. Battle {1988), before the advent of multiresolution
analysis. Note that even though the original S-splines have compact support. (of
width £+ 1 for splines of order £), the orthogonalization trick (4.3} destroys this
property: the resalting ¢ and « are mﬁEuE.En om the whole line (with exponential
decay ).

“T'he very first orthonormal basis D_.wE_un_nF wavelets, constrocted by Stromberg
{1982}, also consists of spline functions; in terms of multiresclution analysis, the
difference with the Battle-Lemarié wavelets is that another choice than (3.29)
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1.8

1.9 F

05

o

0.5

- o 5

Froure 9. Scaling function and wawvelet for the linear Battle-
Lemarié spline basis,

is made: mmltiplying (3.29) by any 2x-periodic function of modulus 1 leads to
another acceptable candidate for 1. )

Instead of wanting to reduce the spline multiresolution ladder with their very
natural but nonorthogonal B2-spline basis in every V; to the case in §3, with
orthonormal goa, one can also try to stick to the D-gplines, and characterize W,
and find 4, directly.

In thi= case, one still has

plx) =3 en(22 —m)

T

briak

x&a&?auﬁu?m?n-.

Mote that <y, can alzo bhe written as
- » u.:- [
(44) Y = ;\ |B(£)17ei™E dg = .\ et AM _EEE“& d .
0 r

Let us daefine off) = 3 n..,,._ml..i.m_ FEY = . Tt ™, Because of (4.4),

-
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10} &
a5 -
- _=.|I||lll...\|// \\u/.rlll.l.l
& -2 a 2 & [

5 o 5
Figure 10. Scaling function and wavelet for the guadratic
Battle-Lemarié spline beasis,

7€) =g 32, 16(€ + 2w€)|*. Saying now that ¢ & Vo, 1 (V)" amounts to
(4.5) Wz} =% dog{2z—n),
and

(4.6) gn.\.ih__ianﬂnmP?ﬁ?aﬁ.?.&;mm.

With the notation d(£) — 3", d,e~ %, (4.6) can be rewritten as
dlg) el€) Vg + g +m) el +w) HE+m) =0,
leading to the candidate solution

d{€) = —e* o[ +7) 7€+ 7).

(]

__“._u..__.u_. ) dn = H..,.IHH__?__..—,I..: T—nitldam -
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 Since only finitely many oy, g, are nonzgero, the same is true for the d,..

Substituting (4.7) into {4.5) leads to a compactly supported function 1 such
that the 3z — k) constitute a Riesz basis for 1; it then easily follows that the
t; & constitute a Riesz basis for all of hu_”m_.w The dual Riess basls In. Wy of the

vz — k) is given by ¢{z — k), with

= o PlE)
v 2w 57, [WHE + 2ém)J2

# is not-compactly supported, Jbut-has exponential decay. H?mﬁumnwﬂmﬁﬂ._%
be checked to be the dual Riess basis for the sy g

T'his alternative construction was proposed independently by Unser, Aldronbi

i

and Eden {19%0] and Chui and Wang (1991); there exist explicit formulas for o
in terms of spline functions {(Chui _Em-m.ﬂ_,__ Mote that if one chooses to orthonor-
malize the oz ~ k), the result is the Battle-Lemarié wavelet again.

It is possible to choose for of & compactly supportad spline function, .E.._m Lo
find another compactly supported function 4 such that the g, ¥y . constitute
dual Riesz bases, In this case however, one loses the orthonormality betwesn the
differant 5 levels {unlike the construction above], and o is not & spline function.
For details, see Cohen, Danbechies and Feauveau [1992) or Deaubechies {1992).

- B. Fast algorithms.

Multiresolution analysis leads naturally to a hierarchical and fast schemie for
the computation of the wavelet coefficients of a given function. Suppose that
we have computad, or are given, the inner products of [ with the &/ at some
given, fine scale. By rescaling our “units” (or rescaling f) we can assume that
the label of this fine scale is 7 = 0. It iz then easy Lo compute ﬂ_.._._m .ﬂ.ﬂ ﬂ_m_mu. for
7 2 1. First of all, we have {see {3.31)] .

¥ =Y gndorms

where g, = (¥, d-ia} = (—1)" h_niq. Consequently,

Piale) = 2792 2 iz k) |
: 2742 3" g, 2Y2 §279 g Dk — )

. M.ﬂ: E..Truhi..#nﬂ..“
S fne Bimralz)

=~

(5.1)

(To simplify matters, we assume we are in the arthonormal case. All this can

be generalized to the nonorthonormal but dual bases am_u k. ¥, presented at the
end of §4.)



p INGRID» DAUBECHIES

It follows that

_“..___..“. ..__r.__..__n.“_. = M WJIME _H.__—. _m_m._”...a.““_ 1

e, the (f, ) are obtained by convolving the sequence ({f, dontlnez with
(T Inez, and then retaining only the even samples. Similarly, we have

(5.2) U i) = 3 Tomzm (f) dioim) »

- T
whirh ran be used to compute the (e o ut by means of Lhie same opeTRiion

[convalution with 7, decimation by factor 2) from the {f, i1k}, If these are
known. But, by (3.15),

Bialz) = 27907 gla-ix k)
(5.3) = 3 ha_ge $icialz),
wheriee
(5.4} (f, dsn} = M L PR

The procedure to follow s now clear: starting from the {f, dp ., we compute the
Cfy tn ek by (5.2), and the (f, ¢.2) by (5.4). We can then apply (5.2}, (5.4) agrin
to compute the {f, thaal, {f, @) from the {f, ¢}, etc. At every step we
compute not only the wavelet coefficients (f, 4.} of the corresponding §-lewvel,
but also the {F, k) for the same j-lovel, which are usaful for the computation
of the next level wavelet coefficients.

The whole process can also be viewed as the computation of successively
coarser approximations of f, together with the difference in “information” be-
tween every two successive levels. In this view we start out with a fine-scale
spproximation to f, f% = Bf (recall that P is the orthogonal projection
onte Vi we shall denote the orthogonsl projection onto W by ), and we
decompose f* € Vo = Vi @ Wy imto f° = f1 + &', where f! = P =P
15 the mext coarser approximation of f in the multiresolution analysis, and
Bl = 91— 1 = @, = @, f ts what is “lost® in the transition f% — 1. In
each of these V5, W; spaces we have the orthonormal bases (ke dnezy (U kncz,
respectively, so that

.m_q_u_"MU.n_w et .ﬁthﬁu..ﬂ._..ﬂ'nm_."Mnﬁ._h_u.a.

L T

Formulas {5.2), (5.4} give the effect on the coefficients of Lhe orthogonal basis
._“.-._mh_m_..n:.ﬂm.h..mﬁ_.ﬁ __._u.__.un_.:u_._....mw —* ._”.._m_v”_._..ua___“___'.au_ﬂmm_ in Wy

{5H.5) & = M [ — D dl = M s - nn .

L
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With the ...Emﬂ__uﬂmﬁl.\.__w;..__nmm 8 = (05 hnez and _Mhh.ur = H A3k Py, WE
eafy rewrite this as
et=H, =G,

Egﬂﬂgﬁgghpmﬁlﬁﬁ_ﬂﬂunﬁbﬁﬁ:wmgﬁig
FU= 11482, 12 €V, 6% € Wy, with
12230 e =3tz
' ™ ) =
We have again
eE=H £=0Gc.
Schematically, all this can be repressnted as in Figure 11. In practice, we will
r " i . 2 "

o o

o d® -
FIGURE 11. Schematic representation of {5.5)
stop after a finite number of levels, which means we have rewritten the informa-
tion in ({f, ¢on}lnce = as d*, d%, 4%, ... ,d' and a final coarse approximation.
e e {({f, Witz jou, g and ({f, $rellecz. Since all we have done is a
succassion of orthogonal basis transtormations, the inverse operation is given by
the adjoint matrices. Explicitly,
Al = s

= Mﬁwﬂ.&.r +M.1Mﬂ.._u..__".
[ e

hence
._u.H-I- = ._".h..u ! .ﬂ',u __.aw_
= 3 & bk iornd +M AR LU T
E
(5.6) - 3 Tn-;m + ?ﬁi  {use (5.1), (5.3) -

ke

An important aspeet of the whole decomposition is that 1t iz a fast algorithm.
Let us go back to the Haar basis for a moment. If we start with & data points
o, then we have to compute N/2 averages oL, and N/2 differences db; from
the /2 different ¢], we compute N/4 averages ¢2 and N4 differences d2, etc.
The total number of computations is therefore 2 (5 + 5 +...) = 2N, For
more sophisticated wavelet bases, the “averages” and “differences” involve more
than just two numbers, but the same argument holds. If every “generalized
average or difference” involves K coefficients of the previous level {rather than
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2 as in the Haar case), then the total number of computations is 2RV (with
KN multiplications, &N additions; this can be reduced further if the h, hase
additional structure).

The orthonormal spline bases we spw in §4 have infinitely supported .m.. and 3,
resulting in infinitely many nonvanishing h,. In practice, one needs to trancate
to a finite number {otherwise we will hardly have a fast algorithm!). Since mr
and therefore the h,, bave exponential decay, this truncating can in principhe
be done very easily; In practice one finds that K is rather large. This is one
motivation b look at other multiresolution analysis ladders, where the emphasis
ia on the construction of ¢ sassociated with a finite number of kb, rather than on
the choice of natural spaces V.

It should be noted that the fast slgorithms associated ﬂ;_u an orthonormal
wavelet basis are also known, in electrical engimeering, as a subband filtering
scheme with exact reconstruction.  Such schemes wore constructad in BE by
Smith and Barnwell {1986}, Mintzner (1985} and Vetzerli (1986), independently
of, and in fact before, wavelets,

6. Orthonormal bases of ﬂ.wunﬁmﬁ:u, supported wavelet bases.

The easiest way to ensure compact uﬂﬂﬂaﬁ for the wawelat 90 is to choose the

sraling function ¢ with compact sapport {in its n,_._“___.u_w_nﬁ.m_ﬁ.ﬂ_ version). Tt w—._m_ﬂ
follows from the definition of the h,,

= VE [ gle) Bz

that anly Anitely many by, are nonzers, so that ¢ reduces to a Anite linear combi-
nation of compactly supported funciions (see {3.31)), and therefore automaticaltly
has compact support itself,

For compactly supported @ the 2r-periodic function my,

Hﬁn__”m.“_ = lw M Fro g g .

rﬂﬂﬂﬂwﬂamnﬁaﬂmﬂﬂwﬂwﬂ—uﬂﬁ..ﬁrbmh&&ﬂﬁpnmn_ﬂﬂgqﬂwﬂﬁﬁu.u
implies . .

(6.1) - Nrreo (€)% + gl 4+ m) P =1,

where we have dropped the “almost everywhere” because myp s necessarily con-
tinuous, o that {6.1) has to hold for 211 £ If it holds a.e.

We are also interested in making ancd & reasonably regular. When we were
working with spline spaces, we antomatically controlled the regularity of ¢ and
v, In this different setting; .&:ﬁm are not as antomatic,. First of F._— we have a-
necessary condition: |
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THEOREM 6.1. Suppose f = L*(R) satisfes
__..._n._...". .._nu_.._m”_. = ___m.,._;m.m.mL P

with f; g{x) = 273/% f{2-7p — k). Suppose that f has compact support and
that [ & ™, with 'Y bounded for £ < m. Then

{6.2) - [z at fim) = 0 gore = 0,1, m.

The idea of the proof is very simple. Choose i, k, 7", k" so that f;, Is rather
spread out, and fj- e very muoch concentrated, On the tiny support of fir e the
slice of fi “seen" by. fi o can be replaced by its Taylor series, with a3z many
terms as are well-defined. Since, however, [d=x f; w(x) fire{x) = (0, this implies
that the integral of the product of f and & polymomial of order m is zero. We can
then vary the locations of f &, as given by E'. For each location the argument,
can be repoabod, lesdiog to o whole family of different polysomials of ocder
which all give z2ero integral when multiplied with f. This leads to the desired
moment condition. For a true proof, see Danbechies (1992).

Since (see, §4) §{£) = 2 mo(E/2 + 7) $(£/2), with &(0) = 1, and since

q -

E 2} is equivalent with im.._.f [gosy = 0 For £ =10, 1,... ,m, it _m.n____uid that o = O™

. +“_
HEﬂH_Eﬂgﬁcrﬂ#ﬂmgﬂqﬂE—maﬁu+_E,._n.“;. Ec___ﬂ I _”..I_|.u_3 h_.uﬂ_
with £ again a trigonometrie polynomial. .

In addition to (6.1}, we therefore also impose

i
(6.3) mo() = min u £,

for some W > L.

A first question is whether such myg exist. Taking the modulus square of (6.3}
Eivis :

W
_q:_i.m”__u = h.ﬁ.__mu Mv tn_”_m“__.h '

where [£{£)|? is a polynomial in cos£, which can therefore also be written &8 a
ﬁ.nLHH_".__H..m,H in sin® .m... i.e.

mo(€)F = T&.U{ p(sin? ) .

with P a polymomial. Substituting this into {6.1) leads to an eguation for P,
(6.4) e Pl=z)+ (1 =-2)"P{r)=1.

Becauze ™ and (1 — )™ are two polynomials of degree W which are relatively
prime, Besout's theorem tells us that there exists a unigque polynomial F of
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degres N — 1 which solves {6.4). An explioit expression for I iz given by

N—1
N-1+k
F == .
@)= 3 (M) e
which fortunately is positive for 0 < o < 1, 0 that mu__ME...m mu is at least a
possible candidate for |C(£)*. There also exist higher degree solutions P to
(6.4); they can be wrilten as

N=1

Plz)=Y_ Aanhiui + 2V R Tn wu

k=0
where i s an odd Eﬁnﬁ.”nmw_- We shall restrict ourselves to the lowest degres
solution here,

MNow that we have a candidate for |[C(£))%, the next question is to find £[£)
itsalf. This can be achieved by the H.._..._:_ui_...ﬁ [emma of Riesz, also known as
“spectral Actorization™,

LEMMA 6.2, Let A be a positive trigonometric polynomial invariant under
the substitution £ — - £; A is necessarily of the form

-
Alg) = M fy, CcO8mE, with o, & R .

FrL==ill

Then there exists a trigonometric polynomial B of order M, e,

AT

B{E) =% by ™, withb, €],

=}

such that |B(£)[* = A(g).

The proof (which we skip here; details for this derivation can be found in
many textbooks; they are also given in Daubechies (1088) or Daubechies (1992])
is constructive, 2o that we have a recipe for £{£) fraom Plz).

All this lerds us to o family of candidates myg p, with WV the a-..u.m_.ﬂ_mﬂrmﬂm-ﬁ
at , a5 in (6.2}, Next we need to see how this determines ¢ and . This is easy:
since we expect ¢ € L', with [ @(x)dr = 1, ¢ is continuous, with $(0} = —L=

B . w3
so that §(£) = ma(£/2) $(£/2) can be iterated, leading to

o = Jul

of
@{g) = lim Tm E_H__EJEH* H2™'e)

(6.5)

(2m)~ V2 [ [ mel27g)

F=1"
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where the infinite product converges because myg is a trigonometric polynomial
with mg{l) = 1, so that

Ima(£) — 1} = O] for [£] <

It is rather stéalghtforward to show {for detalls see Danbechies (1992]) that the
infinite product {6.5) is-an entire function of exponential type; more precisely, if

mplf) = .M” e e

TETSTRR

then
BN < Cr{L + |g))Me oMullM &l if [ £ > 0

IBE)] = Call + Je))™e eMeillm gl jrrm e <0,

implying thab o s o disteibotion will sepepoet o [y, M),
{Om the other hand, ¢ is also in L2, We have indeed

[idera ~  jim & ()2 de

el P
| e
(6.6) < Jim {2m)" ) 11 imat27e) dg
[El=2"n el

(because fimg| < 1 by (6.1},
O
.\. J
LT Imot2=7€)® de

[gl=2'=  jmil
giftig

il
e

o
HIH a2~ 7E)|? de {becanse of pericdicity}

I
t-"""\-

EE TEN? :Eﬁ TEN + |rmg{2” ,Hm + m)[*] dE
ad o dm |
E mo(2e)? = .= [ jma

A NG

so that (6.6) implies [ |B(E}|2E = 1. Tt follows that g, 1) are compactly supported
L?-functions, and things are looking good. There is one tricky step still, however:

I
‘5"-1

H df = 2w,
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#:E.__..m.E:u&ﬁummnmmﬁn.?umumﬁ&rﬁiﬁﬂﬁhlnumﬂmnﬂ#ﬂﬂuﬂuﬁﬁ.&uﬂﬁiﬂ
independent. A counterexample is .

—3i . .
ma(e) = (L)t
. - IF Ml.u-..m = mlum_mh__ubunmwlmm, .
This satisfies [6.1), as well as mp{0) = 1. Substituting it into (6.5) leads to

sin J3&£,/2
3E/2

Hz) = _h /3 D=z<3

(] otherwise .

HE) = (2m) 1P g HES

This is not a “good”™ scaling ?H.,n._.E: the ¢y pfz) = ¢{x—n) are not orthonormal
even though g satisfies .___m H_ Another way __u—.Hn_.._u_.:#h mﬁn&.m is to see that (3.19)
i= not satisfied:

32 18+ 200 = @m ™ ﬁ Fgeos £+ w_ﬁi
Note that this means that 5, |36 + 2x8)|* = 0 for £ = A7, 5o that even (4.2} is
not satisfied: the ¢ip » are not even a Hiesz basis foc the space they span.

In order to avoid this kind of mishap, we have to impose extra conditions

on g to make sare that o ﬂﬁﬂﬁmﬁm a true multiresolution analysis. These
comditions ensure that

(6.7) > 1diE + 2w = (27)

I3 .
for all £. It turns cut that this is the crucial condition: once (6.7) is satisfied,
everything else follows automatically, and the o, constitute an orthonormal
wavelet hagis.

There are sevaral ,,._,m“__a of formulating necessary and’ mﬁﬁﬂ@ﬁﬂ eonditions on
g ensuring that (6.7) holds, mostly due to Cohen {1980} and Lawton (1990]; a
detailed discussion is given in Daubechices {1992; sections 6.2, 6.3). A suffcient
{but not necessary) condition implying {6.7) is {(Mallat (1080

:ﬁﬁ_ i prnl£)]l =0

Since this is satisfied for the mg n we constrocted above, everyvthing is safe: for
cach &N we have [unctions &, vy, of sopportwidth 28 — 1, and the
DI G (279w - kY, 5,k € 2, constifute an orthonormal basis for L*{R). Fig-
ure 12 shows a few examples for N = 2,3, 5.

How smooth are these functions? Clearly they are not as smooth as we might
have hoped: -even thoagh we have zeros for g at w of order respe 2,3, 5,
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the resulting ¢ are obviously not €1, % or €9, Nevertheless they have higher
regularity than the Haar basis (which was after all our goal), and their regularity
increases with V. In fact, asymptotically, ¢y & C*V (for large N}, with p ~
2019 (see Daubechies (1992; chapter 71} iy has the same regularity as du.

"F1ourRe 12,

7. Characterization of other function spaces than L*{R).

One of the interesting features of smooth wavelet basis is that they provide
not only orthonormal hases for L*R) but alse unconditions] bases for many
other function spaces.

Let us first review the concept of “unconditional basis®. A sequence of vectors
E1p0. . By ... 0 A (complex] separable Banach space £ s a Schauder basis if,
given any x £ &, we can find unique u, € T so thai

i~
T— ¥ eyl =0

m=l

e
[

(7.1) : lim

N —pao

The basis is called “unconditional® if in addition, given any sequence (ji, Jnes in
T, ..,_u_mdm s a criterium, using only the absolute values |u,|, to decide whether or
ok Hﬂlp fin €n COTMVETEES to some T in K, as N — oo, Another equivalent way
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of stating this is the following: whenever T o0, iy €x is in B (in the sense that
there exists = € E so that (7.1} holds), then 307, eniinen € & as well, for any
arbitrary choice of the ¢, = +1.

The Fourier basis e (x) = "= 5 c &, for instance, is an unconditional
basis for L5(0, 1]} (sinee it is an orthonormal basis for L3{[0, 1]), but it is not an
uneonditional basis for any LP([0,1]) for any p ¥ 1. One can check for instance
_"_u_h.._.a__&_m twio series .

fra)

M ” __wl__.__..n. nMH...l.ﬂ azcl
o] ™

a4 .nm.._.ﬂ pRwin

[“e

both have their worst singularity at = = 0 the first one behaves like |z)~% for
|| —+ 0, the second like |log x| for £ > 0, x — 0 and like |z|2 for z <0, z — 0
{see Typmund [1968)). The first is therefore in L79([0, 1]). while the second
ism't. Yet the absoluta values of their coefficients are the same! No such problem
in LP-spaces exists if one uses the Haar basis. Hestricking the Haar basis to only
[0, 1], i taking {YHaarge 7= 0, 0 < & < 26} and adding to this the constant
function 1 on [0, 1] gives an uncoonditional basis for all LP([0, 1]) spaces with
1< p<col(forp=10rp=co, LP([0,1]) does not have an nnconditional basis).
For amoother function spaces, the discontineows Haar functions are useless.

This is where smooth wavelet bases are useful. Becavse of thelr *logarith-
mic” treatment of the frequency components, similar to what happens in the
Littlewood-Paley approach, they are “good” (Le. anconditional} bases for L¥-
spaces. Because they have goad decay and smoothness properties, they are slso
“rood” for function spaces with smoothness requirements, such as the Holder,
Sobelev or Besov spaces. 'There is no time in this lecture to discuss any of this
in detail: let me just give a list of how one can characterize f € E by means of
a criterinm on only the |[{3; e, f}], for several function spaces E.

1. LP-spaces

- 172
Fe LF(R) = M Wi el _ﬁ.,,.r_”i___w~ e LP(I)
2.k .

2
= M |05y g} m1..,H.EFE“?+:_._“HL e LP(R) .
ik

2. Sobholev spaces

‘_.m?ﬁ”_u T.,w ﬁ_imﬁ._mﬁ_u&ﬁ Ew
— NS el (29 < oo
dake .
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3. Holder spaces.
Fors=n+o, withn e Mand 0 < o < 1, we define

Co(m) = ,Tmba_”E:naEr o LI LB ST Ew .

If 4 itself is in C7(R), with r > s {hence the importance of the smooth-
mess of ¢, 1), then

W doxll <C for all ke &
fef(R) — and
[, wyal] < C2ENE forall ke oall §<0.

Similar characterizations exist for all the Desov spaces (except those corre-
sponding to L' or L7 conditions), for the Wiener “bump algebra™, for the
Hardy apacce H1 of Stein and Weisa, for BMO, for the Zygmund class, ete. See
Weyer (19907 for a thorongh discussion,

Another important aspect of wavelet decompositions is that they are local
This can be exploited to charactenze local smoothness proparties of a onotion,
Again, this can be done by looking at enly the absolute values |{f) ty x}- For nu-
merically stable computations of local Halder expomnents, it is however often more
wseful to consider redundant wavelet transforms (see Figure 9.2 in Daobechics
(1992}, and Mallat and Hwang (1952)).

H. Beyond wavelets.

Wavalets and wavelet transtorms have proved useful in a varioty of applications
which exploit their smoothness, their good concentration in space, their scaling
properties, and especially the fact that there exist fast algorithms. Some of these
applications will be explained in more detail in this short course. In several of
these applications, refinements of the conatructions above are needed, such as
multidimensional wavelet bases (a first construction of multidimensional wavelets
is in Lemarié and Meyer {1956]; see also Meyer (1992)) or wavelet bases adapted
to an interval {Cohen, Daubechies and Vial (1992)).

There are of courss also many applications where wavelets are not the best
tirpe frequency tool. Among Chese we find situations where the Fourier transform
is the ideal tool, bat also many cases where something intermediary is needed,
with ideally a time-frequency analysis adapted to the signal, zooming in on tran-
sients (i.e. short-lived high frequency phenomena) with a wavelet-like approach
whenever transients are present, but settling for a more Fourier-transform type
decomporsition for steadily oscillating components. Such more varied approaches
can be achieved by means of a generalization of wavelets, called wavelet pack-
ets, or by the localized sine transform, an elapant and adaptive variant on the
windowed Fourier transform. Both will ba discussed in the following chapters.
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