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A closed subspace V of L2 := L2(Rd) is called PSI (prin-
cipal shift-invariant) if it is the smallest space that con-
tains all the shifts (i.e., integer translates) of some function
φ ∈ L2. Ideally, each function f in such PSI V can be
written uniquely as a convergent series

f =
∑
α∈Zd

c(α)φ(· − α)

with ‖c‖l2 ∼ ‖f‖L2 . In this case one says that the shifts
of φ form a Riesz basis or that they are L2-stable; this
is, in particular, the case when these shifts form an ortho-
normal set.

We are interested here in PSI spaces which are refinable
in the sense that, for some integer N > 1, the space

V−1 := V(·/N) := {f(·/N) : f ∈ V}
is a subspace of V. The role of refinable PSI spaces in
the construction of wavelets from multiresolution analysis,
as well as in the study of subdivision algorithms is well-
known, well-understood, and well-documented (cf. e.g., [6,
4]). The two properties of a refinable PSI space that we
compare here are:

(s) the smoothness of the "smoothest" nonzero function
g ∈ V.

(ao) the approximation orders provided by V.
This latter notion refers to the decay of the error when ap-

proximating smooth functions from dilations of V; roughly
speaking, V provides approximation order k if

dist(f, Vj) = O(N−jk)
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for every sufficiently smooth function f. Here, Vj :=
V(Nj·).

One of the early discoveries in this area was the nontrivial
observation that for a refinable PSI space V, (s) and (ao)
are connected. For example, a result in [7] shows that if φ
decays rapidly and its shifts are L2-stable, then V provides
approximation order k as soon as φ lies in the Sobolev space
Wk−1

2 . A closely related result appears in [4]. More recently,
the following is proved in [8]:

Result 1. Let V be an N-refinable PSI space. Then the
following conditions are equivalent:

(a) V provides approximation order k.
(b) There exists g ∈ Vr, r > 0, such that |ĝ| á const >

0 on some neighborhood of the origin, and such that

ess sup
ξ∈C

 ∑
α∈Zd\{0}

|ĝ(ξ + 2πNjα)|2

 = O(N−2jk),

with C the cube [−π, π]d.

The second (and more essential) requirement in property
(b) of the above result is satisfied by functions g that are suf-
ficiently smooth. It is then correct to say that, with the ex-
clusion of truly pathological examples, refinable PSI spaces
that contain smooth functions must provide good approxi-
mation orders. But what about the converse?

Reference [8] considers the converse for PSI spaces that
are totally refinable. For univariate spaces, this simply
means that V is N-refinable for every integer N. For such
spaces, the following is valid:

Result 2. Assume in Result 1 that V is totally refinable.
If V provides approximation order k, then there exists non-
zero g ∈ V such that

|ĝ(ω)| = O(|ω|−k), as|ω| → ∞.

Thus, for totally refinable spaces, smoothness and ap-
proximation orders go hand-in-hand. Indeed, the best
known cases of such spaces are the univariate splines and
the multivariate box splines (cf. [2]), and for these spline
spaces the rigid connection between the smoothness of the
spline and the underlying approximation order of the spline
space is classically known.
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However, most refinable spaces are not totally refinable.
For example, the spaces generated by the compactly sup-
ported scaling functions in [5] are not. This leads natu-
rally to the following question: "Must refinable spaces con-
tain sufficiently smooth functions the moment they provide
"good" approximation order"? One may observe that condi-
tion (b) of Result 1 (which characterizes the approximation
orders of V) falls short of implying any smoothness for gen-
eral L2-functions g. However, the functions that comprise
a refinable space are anything but "general"!

We therefore decided to look into the question of find-
ing the smoothest function in a refinable space, and to see
whether its smoothness matches the approximation order.

Our conclusion in this note is that the implication (ao) ⇒
(s) does not hold for general refinable spaces. In fact, the
proposition we prove below implies that, if V is a space
generated by any of the scaling functions φ considered in
[5], then the decay rate of φ̂ is no slower than the decay rate
of f̂ for any other f ∈ V \ {0}, even though this decay rate
may be significantly smaller than the approximation order
of V.

The refinable functions considered in the previous para-
graph are compactly supported, and their shifts are or-
thonormal. Our discussion, though, can be carried out un-
der much weaker conditions on the refinable φ. In what
follows, we assume that φ is univariate, that its mask m0 (de-
fined by φ̂ = m0(·/2)φ̂(·/2)) is continuous, that m0(0) = 1,
and that m0 vanishes only on a set of measure zero. While
we do not assume the shifts of φ to be L2-stable, we may still
invoke Theorem 2.14 of [1] to conclude that any non-zero
f ∈ V can be written as f̂ = αφ̂, for some 2π-periodic
measurable α. Since f ≠ 0, we can then find a subset
E ⊂ [−π, π] of positive measure so that |α| á δ > 0 on
E. This implies that |f̂| á δ|φ̂| on E + 2πZ, hence re-
ducing the problem to studying the decay of σEφ̂, with
σE =

∑
k∈Z χE+2kπ the support function of E + 2πZ. The

hope for a rigid connection between (s) and (ao) was based
on the idea that there might exist a set E such that the decay
of σEφ̂ is faster than of φ̂. Here, we define the decay rate
of φ̂ as the largest λ that satisfies |φ̂(ξ)| à C(1 + |ξ|)−λ.

Lower bounds on the above parameter λ can be obtained
by inspecting the values of m0 at non-trivial invariant cycles
{ξ, τξ, . . . , τn−1ξ} (n integer > 1) of the "doubling operator"

τ : ξ , 2ξ mod 2π, (1)

as shown in [3, 9]; see also Sect 7.1.2 of [6]. More precisely,
if τnξ = ξ for some ξ ∈ R, and if we define γ by

n−1∏
j=0

|m0(τ
jξ)| =: 2−nγ > 0,

then |φ̂(2kn+1ξ)| á C′(2kn+1|ξ|+1)−γ, for some C′ > 0. For
the family of scaling functions constructed in [5], one can

moreover show that the parameter γ associated with the
cycle {2π/3, 4π/3} not only provides a lower bound on λ,
but actually equals λ.

These same invariant cycles turn out to be crucial for our
question here. We have

Proposition 3. Let V be a univariate 2-refinable space
generated by a function φ with mask m0 : φ̂ = m0

(·/2)φ̂(·/2). Assume that m0 is continuous, and vanishes
almost nowhere. Let τ be the doubling operator from (1),
and, for some integer n, let 0 < ξ0 < 2π be an invariant
point of τn : τnξ0 = ξ0, for which m0(τjξ0) ≠ 0, ∀j. Define γ
by 2−nγ =

∏n−1

j=0 |m0(τjξ0)|. Suppose also that |φ̂| á c > 0
around ξ0. Then, there exists an increasing sequence of in-
tegers (nk)k, so that, for all ε > 0, we can find an integer K,
a constant C and a set S of arbitrarily small measure, such
that, for all k > K and all ξ ∈ [−π, π] \ S,

|φ̂(ξ + 2πnk)| á Cn
−(γ+ε)
k . (2)

Proof. 1. By the assumption made on ξ0, ξ0 = 2πl/(2n −
1), for some integer l ∈ {1, . . . , 2n − 1}. Define then the
sequence of integers n0 = 0, nk = 2nnk−1 + l = l(2nk −
1)/(2n − 1).

2. Define M0(ξ) :=
∏n−1

j=0 m0(2
jξ). Then M0 is 2π-

periodic, and φ̂ = M0(·/2n)φ̂(·/2n). In particular,

φ̂(· + 2πnk) = M0

( · + 2πl

2n

)
φ̂

( · + 2πl

2n
+ 2πnk−1

)
.

Iterating this k times, and writing the result in terms of the
affine transformation σ : ξ , 2−n(ξ + 2πl), we have

φ̂(ξ + 2πnk) =
k∏

j=1

M0(σ
jξ)φ̂(σkξ).

3. We are assuming that 2−nγ = |M0(ξ0)| ≠ 0. Now,
since σ is a contraction with fixed point ξ0, and since M0

is continuous at ξ0, we can find, for ε > 0, an integer K,
such that |M0(σkξ)| á 2−n(γ+ε), for every k > K, and ev-
ery ξ ∈ [−π, π]. Fixing ε and K, we can then invoke that
M0 is continuous and vanishes only on a null-set, to find a
subset S ⊂ [−π, π], of arbitrarily small measure, such that∏K−1

j=1 M0(σjξ) á C > 0, for every ξ ∈ S′ := [−π, π] \ S.
4. Combining the observations from 2 and 3, we con-

clude that, on S′ and for some constant C′ > 0,

|φ̂(ξ + 2πnk)| á C′2−n(γ+ε)k|φ̂(σkξ)|, ∀k. (3)

For all sufficiently large k, σkS′ lies in an arbitrarily small
neighborhood of ξ0. Since |φ̂| á c > 0 around ξ0, we
may then, for such large k, dispense with the expression
|φ̂(σkξ)| in (3) by changing the constant C′, if needed. We
thus obtain from (3), that, on S′ and for all sufficiently
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large k,

|φ̂(· + 2πnk)| á C′2−n(γ+ε)k á C′′n−(γ+ε)
k .

It then follows from our earlier discussion that no f̂, f ∈
V \ {0}, can decay at a rate faster than γ, where 2−γ is
the geometric average of the values assumed by |m0| on
an invariant cycle of τ. Therefore, if the decay rate of φ̂
is known to equal the parameter γ associated with some
invariant cycle of τ, then this decay rate is not exceeded by
the decay rate of any f̂, f ∈ V \ {0}.

Now, let φ be the function from the family of scaling
functions constructed in [5] that provides approximation
order k, k integer. It is known that the decay rate of φ̂
is, indeed, determined by the parameter γ associated with
the invariant cycle (2π/3, 4π/3) (cf. [3, 9]; see also Sect.
7.1.2 in [6]). Thus, we conclude that the decay rate of any
f̂, f ∈ V \ {0}, cannot exceed

γ := −1

2
log2 |m0(2π/3)m0(4π/3)|.

However, this last value behaves asymptotically like k(1 −
1

2
log2 3), and hence, by selecting k sufficiently large, we

obtain that the gap between the highest possible degree of
smoothness in a refinable space and its approximation order
can be arbitrarily large.
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