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ABSTRACT

e matrix elements of (real time}

quantum mechanical propagators can be written

as limits of well-defined phase-space path
integrals involving a Brow jan giffusion process

on phase space. These 1limi
diverging diffusion constant.

Coherent stat

1. INTRODUCTION

Real time path integ
kernel of the unitary evao

rals in quantum mechanics give the integral

lution operator exp (~itH).

[exp(-iTH) ) (a"sa")
N 5o N 9m
= 1im f..Jexp 1= 129 [(ql+1—ql) jeie + ie V(ql)]} |5y 7
e {1.1})
with € = T/H & qN+1 =q" . qO =q
_ 1 1 2 " 1" {1 2)
=Nt sexp [- 31 g at -t sv(q) dt] "1 dalt) .
with a(T) =a" q{0) = a'

tter product formula for unitary

te a large class of potentials v

11, In (1.2) the limit for New has been taken impli-
1 is however only an "inte~

Feynman path integra
f Lebesgue measures “% dqit)"

One derives (1.1) by using the Tro

operators ; (1.1} i= exact for qui

{see Nelson,
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does not make mathematical sense, and the normalization constant / is
undefined. .

Analogous expressions can be written for the operator exp {(-tH).

{exp (-TH)] (q",q")

= lim f..fexp {- NE [(q1 1 - ql)2/25 - ¢ V(ql)]} ﬁ 732%2
e 1=0 * 1=1
=t Jexp [- % Iézdt - fv(q)dt] "r dq{t)" (1.3}
t
In this case however the formal expression (1.3) can be rewritten as

T

fexp (-TH)](q",q') = fexp [~ / V(q} dt] duy,(q) {1.4)
0

where u, is the (Wiener) measure for the Brownian process pinned at

both initial and final points {g(0) = qQ', a{T) = g") and with con-

nected covariance (t2 > tl)

< q(tz} q(tl) > -« q(te) q(tl) > . < q(te) > < q(tl) >

2
=t (1 - T_) .

Formally, different factors in (1.3) have combined to give rise to
the Wiener measure in (1.4) {see e¢.g. the discussion in Reed & Simon,
{2]). As 2 result {1.4) is a true integral on path space, with a ge-
nuine underlying measure. One can therefore use the full artillery of
measure and integration theory when using {(1.4) ; this has made the
Feynman-Kac formula (1.4) a powerful tool in mathematical physics.

This is in marked contrast to the Feynman path integral {1.2).
No formal recombination of factors, leading up to a genuine measure
on path space, is possible here. Several attempts have been made in
the past at defining the Feynman path integral in a mathematically
sound way without having recourse to the discrete time slicing of
{1.1). In [3] Gel'fand and Yaglom introduce an extra term - 5z f4° dt
in the c¥ponent, in order to produce a Wiener measure in comgination
with "4~ I da{t)". The limit for v»= should then have given the

integral keérnel for exp (~1TH). As.was pointed out by Cameron [4],

this procedure fails because exp [% 74" dt} is not measurable with

respect to Wie?er megsure, In 5] Its proposed to introduce the two
extra terms - 5= (4" + §°) dt into the exponent in the integrand of
(1.2} ; again the limit v+ should be taken in the end. This approach
works for a limited class of potentials V. Note that, because of the
presence of second order derivatives, two boundary values are needed
at both t=0, t=T (not only q(0) = q*, q(T) = g" ; extra boundary con-
ditions for 4(0), 4{T) have to be introduced), This means that the
hew object is no longer a true configuration space path integral. In
[6] Albeverio and Hoegh-Krohn circumvent the absence of a measure by
considering the Feynman path integral as a kind of Fourier integral.
Their approach works for all potentials ¥ which can be written as the
Fourier transform of a bounded measure. In [7] Combe, Hoegh-Krohn,
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Rodrigue i
i moienz&mS;;zﬁge{and sirugue -Collin define Feynman path integrais
thein path integr las opposed to configuration space). The measure in
fte support aregta i corresponds to a Poisson process the paths in
vorke Tor any pOtzgtggilz 3;}yhp%ecewise continuous. Thelr approach
FOU?i;r transform of a boundzg mézsﬁiz sun of 2 qUAGTATC part and the
e i ;
path spa::feogiesent a dlfferent approach, using also true measures on
Sol ' fond Yaglon apgroafhvls clo§er again, in spirit, to the alder
hastic process (anWiIto ideas, ln_the sense that we introduce a sto-
ceant v tondin i meger process in our case) with a diffusion con-
e in tnat ﬁe 0 %n the end. Our approach differs from all the
flgusation spac ?on51der phase space path integrals rather than con-
tiale ve pace o? mom?ntum.space) integrals. The class of poten—
can treat is quite different too ; it contains e.8. all poly-

nomial potentials which are bounded bhelow.

2. PHASE SPACE PATH INTEGRALS

to '?he standard {formal} procedure for obtai
write the Trotter product formula

ning a path integral is

N
exp {-iTH) = 1i i T -
) ;i: [exp (-1 § (-4)) exp (-1 g ] . (2.1)
zgiwto insert the formal resolution of the identity fdx |x > < x} =1
een every two factors. This leads to {1.1), and thus (formally) to

it;?)- A differ?nt procedure is to insert alternatively (formal) reso—
- ions of the identity in configuration space {(rdalg > < ql = 1) and
momentum space (fdplp > < pl = 1). The result is

g"lexp (-iTH)|q' >
N

Fay

tim J.. i —q,) - if
im f..fexp 1 i (1 P,y (ay,4 a,) iH (p1+z'q1)]1

o+
1=0 N dp,.y N
1 _._];té n dq
10 27 1=l !
= = gt
with  ayy =9+ % a
fitp,a) = < plila> / <pla?
(2.2)

M rexp {1 f [pd - a(p,a)] ¢t} n{dp(t) dq ()}
t

4}

with g{T) =a" qio) = a'

tions on p)

exp (-iTH) } {q",q'). There
ction of the phase
tate path integral.
rmalized vectors,

{no boundary condi
space path integral for {
ther procedure for the constru

for exp(~iTH) * the coherent 8
) coherent atates |p,a > are no
points, and defined by

This is the phase
exists however ano
space path integral
The (canonical
labeled by phase Space

lp,g > = exP [i(pQ - gP}} 02

. i
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where |0 > is the harmonic oscillator ground state :

.

2 4 Q° - 1} o> =0

It is well-known (see e.g. Klauder & Sudarshan [B]) that the coherent
states give rise to a resolution of the identity

rﬂggg fpra > < pyg| =1L , {2.3)

Unlike the resolutions of the identity introduced above, (2.3) is not
Just a formal expression : the vectors involved are true, normalized
vectors, and the integral is weakly convergent.

If we insert (2.3) between every two factors in (2.1} we obtain

(see Klauder [8]) the following expression for the coherent state
matrix elements of exp (-iTH).

< p",q"]exp (“iTH)Ip|IQ' >

N dpldql N
lim f..f = o exp { [
N+ 1=1 1=0

IF

i
7 (P19y,17P1,19))

- 1 {p) 149y, i Pyeayl]}
with py . = p

I

' Oy < Q" Pg=pP' s Gy =gq
< Py, lile;,q >

< PoiGylp g, >

H(pzqu H Pl.ql) =

= M Jexp [ /(pdg-adp) ~ i H(p,q) dt] n[dp(t) da(t}) (2.4)
t

with p(0) = o', q(0) = q' , p{T) = p” , q(T) = ¢"
H{p,q) = < p,qlH|p,q >

The path integral (2.4) isg very similar to (2.2) ; the Hamiltonian
function H(p,q) entering the exponent in the integrand is different
however. Integrating (2.4) over P', p" leads to the integral kernel
{exp (-iTH)] (q",q'). :
Note that in (2.4) as well as in (2.2) the only terms involving
P or § in the exponent have the form fpddt = fpdq or fqbdt = Sqdp.
Since these expressions are perfectly well-defined stochastic integrals
with respect t Wiengr megsure, it is now legitimate to introduce two
extra terms - = S(H" + §%) dt in the exponent, and to recombine these
with " 1 dp(t? da{t)" in order to lead to a Wiener measure. The re-
sulting €xpression is a mathematically well-defined object. Our claim
is that in the limit for v » = it also leads to the right answer.

3. PHASE SPACE PATH INTEGRALS WITH WIENER MEASURE

3.1 The Theorem

Let us start by stating our result, In [10] we have proved that
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lim 2n vT/2 i : v v
Mn e Texp [2 [{pdg-qdp) - i !h(p,q)dt]-dpw(p) dpw(q)
= < p",q"|exp (-iTH)[p'.a' > (3.1}
v
gire the u, are the Wiener measures associated to two independent
o ownian processes (one in p, one in q), with diffusion constants v,
s is apparent from the connected covariance (x is either p or q)

< x(t2) > < x{tl) >

b2
= vty (1 - T—) (t2 > tl)

< xlt,)x(t,) ¢ = < x(tz)x(tl) > -

The processes are pinned at poth initial and final points

p{0) = p* , a(0) = @' , (T} =P" giT) = q"

:he connection between the operator H and the function hi{p,q) is given

Y

H = ;QE_QS

= /== Ipa ? h(p,a) < Pal (3.2)

The function hi{p,q) can be calculated from the diagonal matrix elements
H(p.q) = < p,qlHip,q > by the prescription

hip,q) = lexp [-(33 + 32)/2) K (p,9) (3.3)

the operator H in order

Of course we have to impose some conditions on
) is true for all Hamil-

for {3.1) to hold. As was proved in [10], (3.1
tonians H satisfying the following three conditions

Jdp dq]h(p.q)[2 exp {—a(p2+q2)] <w
exp [—B(p2+q2)] < (3.%)

1) For all a > O ¢ (3.4)

4
2) For some B8 < % : fdp dgln(p.a)}

3) The set of finite linear combinations of coherent states,

J
(3.6)

{L «a R =} , is a core for H.
& FLLILY '

Remark. .
n hip.,a) is different from poth H(p.,q) in

One sees from {3.2) that hip,q) is the anti-
H {while H(p,qa) is the normal ordered symbol).

an be inverted, leading to

Note that the functio
(2.4) and Hip,g) in {2.2}).
normal ordered symbol of
The relationship (3.3) ¢

) = Iggéggl exp [~(p-p')2/2 - (q—q')2/2] nip',a'}

Hip,q
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3.2 Examples

1. For any Hamiltonian H polynomial in P and Q, the corresponding func-
tion hip,q) is a polynomial too ; (3.4} and (3.5) are then trivially
satisfied. The third condition is satisfied if e.g. H is bounded below.
This means we can handle, for instance,

92 + 02 4+ X Q4 (x > Q)

2 6

PPono?+2e® (5o

P Q2 P

As the last example shows,
Hamiltonians which can be s
is of course one of the adv
integrals.

we don't have to restrict ourselves to
plit into kinetic and potential parts. This
antages of working with phase space path

2. Any function h{p,q} which is boundad belew, and which satisfies both
(3.4) and (3.5) defines a Hamiltonian H (through (3.2)}) for which (3.1)
will heold.

Note that {f h(p.q) has the form h(p,q) = p° + v(q), then H has the
form H = P « V(Q}, where V is an entire function :

Vig) = % +‘I§%% exp [~(g-a")%/2] v(q")

3. We need not restrict ourselves to selfadjoint operators. (3.1) is
still true for maximal symmetric operators such as

% (PQ3 + QSP) (deficiency indices (0,1)).
We do however still require condition (3.8).
3.3 Sketch Of The Proof

We shall only outline the main ideas of the proof. For all the
technical details {and there are many), the reader is referred to f1o] .
Let us first look at what happens if h = 0. In that case, one
finds that the expression in the left hand side of {3.1), for finite v,

gives the integral kernsl of a contraction semigroup on
LZ(RZ ; dp dq/21}. More precisely,
evT/

2 i v v
2 = -
" fexp [2 I (pdg-qdp) ] duw(p) Quw(q)

E]

lexp (—vAT)] (p",q" ; p*,q")
. 1 . 2 s 2
with A = 5 [(-1aq + g) - (-13p * %) -1] .

. (3.7)

This operator A has a purely discrete spectrum.
the nonnegative entire numbers 0, 1, 2, H

nitely degenerate. (Note that A can
2-dimensional charged
to the plane orthogona

Its eigenvalues are

«++ ; each eigenvalue is infi-
be seen as the Hamiltonian of a
particle in a constant magnetic field, restricted
1 to the field. The eigenvalues of A are then the

.
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. 5 Let P, be the orthogonal i
in L : ) projection operator,
{R® ; dp dg/2w}, onto the space spanned by the eigenvectors of A

with ei
eigenvalue 0. It turns out that P~ is an integral operator. Expli-

cit cor i its i '
omputation shows that its 1ntegra? kernel is equal to the ccherent

state "overlap function",

familiar Landau levels).

Py (PMia" i phha'} = <pr,q" | p'eat? (3.8
2 .2
(R" ; dp dg/2x) of P is exactly given

This means that the range Pg L
with T €9 = EZ(R). As v tends

:y the functions F(p.a) = < p.alf >
o =, obviously lLim exp (~vAT) = P, hence

wT/2 i 7
lim 27 e fexp {% f {pda-qdp}] dui(p) du;(Q)

yem
= <pq'lp.a ? {3.9)

(3v9)Fis exactly statement (3:1), restricted to the case h = 0.
ral ior‘ the general case, h £ 0, one finds again that the path inte-
5ea n the left hand side of (3.1}, forzfinite v, is the integral
rnel of a contraction semigroup on L (R% ; op da/27).
vI/2 i
25 e fexp 1§ /(pda~adp) - . fhip,q) dt] daug(P) dny(a)

= {exp [-{vA ¢ shy T1F (pr.a" i p',q") {3.10)

:gz generator'of the semigroup 1S now vA + ih, where A 1is as defined
ve, and h is the multiplication operator by the function hip,q}. AS
v tgnds to =, the presence of the vA-term will force the contraction
semigroup to "live" on P L° (R2 ; dp dg/en) only- on the other hand
only the first term of the decomposition h = PohP0 + (1-Po)hPo + h(l—PO)

contributes in this 1imit. Hence

1i - i = -
m exp [— (VA + in) 1] = Py ©XP (-i Py Py T) Py (3.11)

RVE . )

i Note that P. h P, is no longer & multiplication operator. pue to the
: connection (3.8) between PO and the coherent states, one finds
jé EPO exp (-1 Py h Py T) Pol {p",q" p'sq')
3 = < p*,q"lexp (-itH)|p*.a’ ?

with _ rdepdg

= IS5 1P nip,a) < psal -

f Together with (3.10) and (3.11), this implies {3.1).

3.4 Extensions And Open Problems.

bles. In [x0]

ther kinematical varia

treated. In f11] an outline is given of the
nt states, associated with general Lie
fine coherent state path

The same approach works for ©
spin path integrals Were
procedure for gen
groups. In {12] 2 d

eralized cohere
etailed treatment of af
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integrals will be given.

Open problems we intend to study in the future are for instance
path integrals of systems with constraints, an extension of our present

work to more singular potentials, and the implementation of our ideas
in field theory.
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RKS ON THE TIME TRANSFORMATION TECHNIQUE
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Abstract

The ti
me transformation technique has proven very useful and

gizeiziee:tac?ded a new dimension to path integral calculation.
' is not all well understood ¥
zz:ifiEZ»i:Eez:ent time transformation works in path integra”
e v e:ibasis for thetimeFransformationtechnique’
a modified Feynman's path'integral. called the

1
pro ¥ o+

motor,” PENX'3T) = Iexp[(i/ﬁ)f(L4-E)dt]D§, by inte-
ntGreen'sfunction can be
gion in

hy the nonintegrable

gration of which the energy-depende

ev.
aluated. In order to implement t

actu
al path integration, we propose 3 scaling rul
e slicing can-

andardisometrictim
4 after the positicn-
rime slicing is
e for

he time gransforma
e for 1ocal

t%me intervals. Since thest
not be applied equipollently before an
an anisometric
tent sealing rul
transformation,
1 becaus€

dependent time transformation,
propused, which leadsto 8 unique consis
a finite time interval, We find that the time
even if nonintegrable,canwork ins
the dominant contribution comes from the path alon

t
ransformation is integrable.

ide apathintegra
g which the




