
Math 361S Lecture Notes
Interpolation

Jeffrey Wong∗

February 12, 2020

Contents

1 Polynomial interpolation 2
1.1 Background: Facts about polynomials . 2
1.2 The basic interpolation problem . 2
1.3 General considerations . 3
1.4 Lagrange form of the interpolant . 4
1.5 Newton form . 7
1.6 Divided differences . 7
1.7 Evaluation . 9
1.8 Generalizations . 9

2 Polynomial interpolation: Error analysis 10
2.1 Error formula . 10
2.2 Consequences . 11

2.2.1 Example . 12
2.3 General error bound: equally spaced points 13
2.4 A very bad function: Runge’s phenomenon 14
2.5 The other remedy: piecewise interpolation 16

3 Proofs 17

4 Hermite interpolation (optional) 20

∗Edited by Holden Lee

1

1 Polynomial interpolation

1.1 Background: Facts about polynomials

Given an integer n ≥ 1, define Pn to be the space of polynomials with real coefficients of
degree at most n. That is,

p(x) ∈ Pn ⇐⇒ p(x) = a0 + a1x+ · · ·+ anx
n, ai ∈ Rn.

Polynomials can be added or multiplied by scalars, so Pn is a vector space. There are n+ 1
independent coefficients, which means that

dimPn = n+ 1.

A basis for Pn consists of n + 1 polynomials that span Pn. There are many choices, the
simplest of which are the ‘monomials’

1, x, x2, . . . , xn.

There are plenty of other bases, however, each with different properties; we will make use of
this freedom to choose a basis for numerical methods.

It is useful to recall that a non-zero polynomial of degree n always has exactly n com-
plex zeros (roots).

A polynomial p ∈ Pn should be thought of as containing n+ 1 pieces of information. To be
precise, we have the following:

Theorem: A polynomial of degree n is defined by its values on a set of n+1 distinct points.

Proof. Suppose x0, x1, . . . , xn are points and p, q,∈ Pn such that

p(xi) = q(xi) for i = 0, . . . , n.

Let r = p− q. Then r is also a polynomial of degree n and

r(xi) = 0 for i = 0, . . . , n.

Then r has degree n but has n+ 1 zeros, which is impossible unless r(x) = 0, i.e. p = q.

1.2 The basic interpolation problem

Consider a set of n+ 1 points (x, y),

(x0, y0), (x1, y1), . . . , (xn, yn).

The x-values are called the abscissas or nodes. The y-values are assumed to come from
some underlying function f , i.e.

yi = f(xi),

2

Figure 1: Interpolating polynomial for data at three abscissas (x0, x1, x2) and two possible
functions f(x). Given three points, p(x) may not be a good estimate of f (right) - the
interpolant cannot know what f does between the data points.

but the nature of the function f(x) may be unknown.

The goal of interpolation is to construction a simple function p that passes through (‘in-
terpolates’) the data

(x0, y0), (x1, y1), . . . , (xn, yn)

and produces a useful approximation to the function f(x). There are a number of different
‘simple functions’ to try; here we focus on the simplest choice (polynomials).

Definition: The interpolating polynomial for a set of n+ 1 points

(x0, y0), . . . , (xn, yn)

(or for a function f through points x0, . . . , xn) is the unique polynomial p ∈ Pn such that

p(xi) = yi, i = 0, 1, . . . , n.

The uniqueness is a consequence of the previous theorem. Existence will be settled by
constructing the interpolant in the next section. We will see that there are several methods
for constructing the interpolating polynomial, which all give the same p(x) in different forms.

1.3 General considerations

Given some basis φ0, · · ·φn for Pn, we may represent p in the form

p = c0φ0 + · · ·+ cnφn.

Finding the interpolant then amounts to finding ci’s such that

yi = c0φ0(xi) + · · ·+ cnφn(xi), i = 0, . . . , n

3

which is a set of n+ 1 linear equations for n+ 1 unknowns. To be of practical use, we should
choose the basis so that the expression for p has nice properties, such as

• The φi’s are easy to construct

• The ci’s are easy to compute

• The computations are numerically stable (safe against round off errors)

• p(x) is easy to evaluate once the ci’s and φi’s have been found

• The approximation is ‘flexible’ (it can be adjusted if the data changes).

The simplest choice for a basis is the set of monomials:

p(x) = c0 + c1x+ · · ·+ cnx
n.

Writing out the equations (see textbook for details), we obtain a system that is solvable but
not in any way nice. For small values of n, things are not too bad. However, the formula is
a bit of a mess, and is not useful for developing theory and of limited use in practice.

1.4 Lagrange form of the interpolant

Suppose we want the ci’s to be as simple as possible. Then, at best, we would have

p(x) = y0L0(x) + · · ·+ ynLn(x)

for basis functions L0, · · · , Ln. That is, the coefficient of the i-th basis function is just the
i-th function value. This is the Lagrange form of the interpolating polynomial.

To construct it, observe that it suffices to find polynomials Li such that

(i) Li has degree n

(ii) Li(xi) = 1

(iii) Li(xj) = 0 for j 6= i.

Property (iii) can be satisfied by constructing a polynomial with roots at xj for j 6= i (there
are n of them, so (i) is not a concern):

Li(x) = c
∏
j 6=i

(x− xj).

Then, the constant c is chosen to satisfy (ii), which gives

Li(x) =
∏
j 6=i

x− xj
xi − xj

.

4

Theorem (Lagrange form of the interpolant): Let x0, · · · , xn be a set of n+ 1 distinct
nodes and let

Li(x) =
∏
j 6=i

x− xj
xi − xj

.

be the i-th ‘Lagrange basis polynomial’. Then the interpolating polynomial for the points
(x0, y0), · · · (xn, yn) can be expressed as

p(x) =
n∑

i=0

yiLi(x).

Proof. It is clear from the construction that Li is a polynomial of degree n such that

Li(xj) =

{
1 j = i

0 j 6= i
.

Thus p is a polynomial of degree n and, for 0 ≤ j ≤ n,

p(xj) =
n∑

i=0

yiLi(xj) = yjLj(xj) = yj.

Example (linear case): We can use this form to construct a line through two points
(x0, y0) and (x1, y1). The Lagrange basis functions are

L0(x) =
x− x1
x0 − x1

, L1(x) =
x− x0
x1 − x0

so

p1(x) = y0
x− x1
x0 − x1

+ y1
x− x0
x1 − x0

.

It is not apparent that the Lagrange form is valuable in practice since the Li’s are not nice
to compute. It is mainly used in theory, as the expression is easy to manipulate and the
function values appear in a natural way (we’ll make use of it later for differentiation and
integration).

Practical note: The Lagrange form can be constructed and evaluated efficiently, but it
takes some effort to derive the methods. See Section 10.3 of the book for the barycentric
formula for evaluation.

5

Example: Suppose we have the following data:

xi yi
0 −1

1/2 2/3
1 8/9

and wish to construct the interpolating polynomial. The result (dashed) and the function
the data came from (f(x) = x − 9−x) are shown above. To derive p(x), first find the
Lagrange basis polynomials, which are

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1/2)(x− 1)

1/2
= 2(x− 1

2
)(x− 1)

and

L1(x) = −4x(x− 1), L2(x) = 2x(x− 1

2
).

The function values at the three points are −1, 2/3 and 8/9 so

p(x) = −2(x− 1

2
)(x− 1)− 2

3
x(x− 1) +

16

9
x(x− 1

2
).

This is the unique quadratic function passing through the given data. For reference, the
basis polynomials are sketched below.

The data was taken from the function f(x) = x − 9−x in this case. The function f(x)
and interpolant p(x) (dashed) are shown below.

6

Note that even with three points, the approximation is quite close to the actual function
(we study the error in detail in section 2).

1.5 Newton form

The idea here is to build up the polynomial inductively, adding one point at a time. Define

pk = interpolating polynomial through (x0, y0), . . . (xk, yk).

The k = 0 case is trivial, since p0 is just a constant function:

p0(x) = y0.

Now suppose pk−1 is known. We wish to add the point (xk, yk) and adjust pk−1 so that it
also passes through the new point, adding one to the degree. Write pk in the form

pk = pk−1 + ck(x− x0) · · · (x− xk−1).

for a constant ck. The added term does not ’spoil’ the previous work, since

pk(xi) = pk−1(xi) for 0 ≤ i < k.

Thus we need only choose ck so that pk(xk) = yk:

ck =
yk − pk−1(xk)

(xk − x0) · · · (xk − xk−1)
.

This inductively constructs pk in ‘Newton’ form

pk = c0 + c1(x− x0) + c2(x− x1)(x− x0) + · · ·+ ck(x− x0) · · · (x− xk−1)

or more succinctly (with
∏−1

i=0 · · · understood to be 1)

pk =
n∑

j=0

cj

j−1∏
i=0

(x− xi).

Notice that cj depends only on the points up to xj. This form is efficient to evaluate (using
Horner’s method; see homework), but we still need to find a good way to compute the
coefficients cj. It turns out there is a rather nice method (fast and simple!) for doing so.

1.6 Divided differences

For the detailed exposition, see Section 10.2 of the textbook. We define divided differences
inductively as follows (using square brackets to distinguish from regular function evaluation):

f [xi] = yi

f [xi−1, xi] =
f [xi]− f [xi−1]

xi − xi−1

7

and in general

f [xi, xi+1, . . . , xj−1, xj] =
f [xi+1, . . . , xj−1, xj]− f [xi, xi+1, . . . , xj−1]

xj − xi
(1)

for 0 ≤ i < j ≤ n. Because the notation is unwieldy, let us define some shorthand:

γj` = f [xj−`, xj−`+1, . . . xj]

(the ` here is the distance between the first and last index). Then

γj0 = yj, γj` =
γj,`−1 − γj−1,`−1

xj − xj−`
. (2)

It is not hard (but a little tedious) to show the following:

Theorem (Newton form of the interpolant): The polynomial interpolating f at the
n+ 1 abscissas x0, . . . , xn can be expressed in ’Newton form’,

pn(x) = f(x0) +
n∑

j=1

f [x0, x1, . . . , xj]

j−1∏
i=0

(x− xi). (3)

See Theorem 1 in Section 3 for the proof.
Example: Let

f(x) = x3 − 2x2 + 1, xi = 0, 1, 2, 3.

The divided differences are best arranged in a table, where each one depends on the values
to the left/upper-left in the previous column:

i xi γj0 γj1 γj2 γj3
0 0 f [x0]
1 1 f [x1] f [x0, x1]
2 2 f [x2] f [x1, x2] f [x0, x1, x2]
3 3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3].

From the formula (1) or (2), it is easy to compute the divided differences in the table. Each
entry is the difference between the two entries next to/above in the previous column, divided
by the appropriate difference of x-values (xj and xj−` for column `). For the example,

i xi γj0 γj1 γj2 γj3
0 0 1
1 1 0 −1
2 2 1 1 1
3 3 10 9 4 1

This gives

γ11 = f [x0, x1] = −1, γ22 = f [x0, x1, x2] = 1, γ33 = f [x0, x1, x2, x3] = 1

8

so the Newton form of the interpolating polynomial is

p3(x) = 1− x+ x(x− 1) + x(x− 1)(x− 2).

Note that p3 and f are the same function (why?).

Practical note: If we only need to compute the entries for the interpolant, the algorithm
can be improved to use only one column of space for the divided differences by overwriting
entries into the same column at each step. For the example it would look like

1
0
1
10

→


1
−1
1
9

→


1
−1
1
4

→


1
−1
1
1

 .
This amounts to running the formula (2) with (careful) overwriting.

1.7 Evaluation

Usually, we construct the interpolant in advance and then evaluate it for a large collection
of points. Thus the main measure of efficiency is the amount of work required to evaluate
pn(x) given the coefficients.

The Newton form (3) can be efficiently evaluated using Horner’s method:

pn(x) = c0 + (x− x0)
(
c1 + (x− x1)

(
c2 + · · ·+ (x− xn−1)cn) · · ·

))
.

where cj = f [x0, x1, · · · , xj]. This leads to a simple algorithm:

Input: x, abscissas/values x0, . . . , xn and f0, . . . , fn and coefficients c0, . . . , cn
Output: y = pn(x) (Newton form)
y ← cn
for k = n− 1, n− 2, . . . , 0 do

y ← ck + (x− xk)y
end for
return y

The algorithm takes roughly 3n flops, which is essentially optimal. The Lagrange form can
be evaluated in a similar amount of operations, but the Newton version is simpler.

1.8 Generalizations

Divided differences can be generalized in several ways. The above method works whenever
the xi’s are distinct.

• Typically, the xi’s are increasing, but they do not have to be! The above method also
works when the xi’s are in any order. This is useful, for instance, if we need to add a
point inside the interval, e.g. we have points 0, 0.5, 1 and add a point at 0.75.

9

• The method can be extended to have repeated points, which is used to interpolate
derivatives. See Section 10.7 of the textbook for details (e.g. Hermite interpolation).

• When the xi’s are equally spaced, an explicit formula can be derived.

2 Polynomial interpolation: Error analysis

Let us suppose that pn is the interpolant of the function f , i.e.

pn(xj) = f(xj), j = 0, . . . , n.

Assume that the nodes are increasing and lie in an interval [a, b]

a < x0 < x1 < x2 < · · · < xn < b,

If pn is to be a good approximation to f , we care about how close pn(x) is to f(x) for x
in an interval [c, d] contained in [a, b] where we wish to use the interpolant. The relevant
‘interpolation error’ is

max
x∈[c,d]

|f(x)− pn(x)|.

The key questions are:

• What is a bound on the interpolation error?

• How does it depend on n and the distribution of the points?

• How does the error depend on the interval?

The answers guide our strategy for approximating f in some interval by an interpolant.

Remark: Often, the interval of interest is just the interval between the endpoints x0 and xn.
When x lies outside this interval, the estimate pn(x) ≈ f(x) is called extrapolation rather
than ‘interpolation’. As we will see, extrapolation tends to do much worse, so it should be
avoided unless it is absolutely needed.

2.1 Error formula

Before stating the result, it is helpful to contrast with Taylor’s theorem. In this case, we are
given a point x0, a function f ∈ C(n+1) and the n+ 1 values

f(x0), f
′(x0), . . . , f

(n)(x0)

and construct a polynomial Tn(x) that approximates f :

f(x) = Tn(x) +Rn(x)

10

where

Tn(x) = f(x) + f ′(x)(x− x0) +
f ′′(x)

2
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n,

Rn(x) =
f (n+1)(ξx)

(n+ 1)
(x− x0)n+1

and ξx is a number between x0 and x.

For the interpolating polynomial, we instead have n+ 1 values

f(x0), . . . , f(xn)

at n+ 1 different points. But the main result is similar:

Theorem (Lagrange error formula): Suppose f ∈ Cn+1([a, b]) with the n+ 1 nodes

x0 < x1 < · · · < xn

contained in [a, b]. Let pn(x) be the interpolating polynomial. Then for every x ∈ [a, b],

f(x) = pn(x) + E(x)

where the error is

E(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
j=0

(x− xj)

for some ξx (depending on x) in [a, b].

See Theorem 2 in Section 3 for the proof. Note that the error looks similar to Taylor’s
theorem, except:

(x− x0) · · · (x− xn) instead of (x− x0)n+1.

The proof is essentially the same as for Taylor’s theorem (omitted).

The theorem does apply for extrapolation, i.e. x can be outside of [x0, xn].

2.2 Consequences

The error depends on three factors:

• The size of the n + 1-th derivative. Since ξx is only known to lie inside [a, b], we can
at best say that this factor is bounded by

M = max
x∈[a,b]

|f (n+1)(x)|. (4)

11

• The product

ωn+1(x) =
n∏

j=0

(x− xj) (5)

which is small if the nodes xj’s and x are close together, and large if they are far
apart or x is far from the nodes. In particular, it is clear that ω(x) will cause trouble
for extrapolation!

• The factor 1/(n + 1)! This factor helps as n increases; the other two factors tend to
grow with n. Whether the error gets better as n grows typically depends on which of
the competing factors win.

A bound on the error in an interval I can be obtained by bounding each part:

max
x∈I
|pn(x)− f(x)| = max

x∈I
|En(x)| ≤ M

(n+ 1)!
max
x∈I
|ωn+1(x)|.

Note that even if we know x lies in some small interval I, we cannot assume the ξ where
the n + 1-th derivative is evaluated lies in I, so we are stuck with the bound (4) on f (n+1)

over all of [a, b].

On the other hand, ω only has to be bounded in I, so if we only care about interpola-
tion in a small interval, say [x1, x2] then ω only needs to be bounded inside [x1, x2] but
f (n+1)(x) must still be bounded in [x0, xn] as in (4).

2.2.1 Example

Suppose we have the function
f(x) = ex

and its values at points
x1 = 0, x2 = 1

and wish to approximate it in the interval [0, 1]. The interpolating polynomial is

p1 = 1 + (e− 1)x

and the error has the form

E(x) =
f ′′(ξx)

2!
x(x− 1)

for ξx ∈ [0, 1]. The best we can do for the f ′′ term is the bound

M = max
x∈[0,1]

|f ′′(x)| = max
x∈[0,1]

|ex| ≤ e.

For the other term,
max
x∈[0,1]

|x(x− 1)| ≤ 1/4

by finding the maximum (which is at x = 1/2). Thus

|p1(x)− f(x)| ≤ e

8
≈ 0.34 for x in [0, 1]

12

which is not great, but since p1 just uses two function values, it should not be expected to
do any better.

On the other hand, suppose we wanted to approximate ex by p1 (the same interpolant)
in the interval [0, 2]. Then

M = max
x∈[0,1]

|f ′′(x)| = e2, max
x∈[0,2]

|x(x− 1)| ≤ 2

which gives the bound

|p1(x)− f(x)| ≤ 2e2 ≈ 15 for x in [0, 1].

Now, returning to [0, 1], suppose that we now use 10 equally spaced points

xj = jh, for j = 0, · · · 9

where h = 1/9 is the spacing between points. Then the error is

E(x) =
f (10)(ξx)

10!

9∏
j=0

(x− xj).

Then
|f (10)(ξx)| ≤ e

as before. The product cannot be bounded precisely. We can obtain a crude estimate by
noting that

|x− xj| ≤ 1

which gives

|E(x)| ≤ e

10!
≈ 7.5× 10−7.

In fact, one can do a bit better since some of the nodes are closer to x; this is derived in
general in the next section.

2.3 General error bound: equally spaced points

Let us suppose we now have points

a = x0 < x1 < · · · < xn = b

and a point x ∈ [a, b], and the points are equally spaced with spacing h:

xi = a+ jh, h =
b− a
n

.

Let ωn be defined as in (5). The error is worst when x is close to one of the endpoints (why
is this plausible?). Suppose x ∈ [x0, x1]. Then

|x− xj| ≤ (j + 1)h for j = 0, · · ·n

13

so it follows that (once you are convinced the error between x1 and b is no worse)

|ωn+1(x)| ≤
n∏

j=0

|x− xj| ≤ (n+ 1)!hn+1 for x ∈ [a, b].

Thus the error En for the degree n interpolant has the following bound:

|En(x)| ≤
(

max
x∈[a,b]

|f (n+1)(x)|
)
hn+1.

What happens when points are added? The factor hn+1 goes to zero as h → 0, but the
derivative f (n+1) can grow. Whether increasing the number of points improves the error
depends on how fast the n-th derivative grows. For instance, suppose

f(x) = 1/x, x0 = 1, xn = 2.

Then for x ∈ [0, 1].

|fn+1(x)| ≤ (n+ 1)!

(
max
x∈[1,2]

|1/x|
)

= (n+ 1)!

The hn+1 decays fast enough to cancel this out:

|En(x)| ≤ (n+ 1)!

(
1

n

)n+1

∼
√

2πn

e
e−n as n→∞

making use of Stirling’s approximation

n! ∼ e−nnn
√

2πn as n→∞.

This cancellation is typical, leaving exponential decay. There are, however, catastrophic
cases where f (n+1) grows too fast (see next section).

2.4 A very bad function: Runge’s phenomenon

In general, it is dangerous to increase the number of nodes to try to improve the interpolant.
The standard example is the seemingly nice function

f(x) =
1

x2 + 25
.

Let pn(x) be the interpolant for nodes

−1 = x0 < · · · < xn = 1

that are equally spaced. Plots of the interpolants for small and large n are shown below.

14

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-6

-4

-2

0

2

4

6

The polynomial oscillates wildly near the endpoints, getting worse and worse as n increases.
In fact, the maximum error

max
x∈[−1,1]

|pn(x)− f(x)|

grows exponentially as n→∞.

The poor behavior is not really unexpected, given some thought. If the polynomial is in-
creasing through one node, it needs to turn sharply to get back to the next node, causing
rapid variation. Thus, once the polynomial ends up with a large derivative, it gets out of
control and there is not much hope.

How does this relate to the error formula? The competing factors are

f (n+1)(ξ)

(n+ 1)!
, ωn+1(x) =

n∏
j=0

(x− xj).

It can be checked that if n is large, f (n)/(n + 1)! grows quite rapidly with n, fast enough
that the good behavior of ωn+1/(n+ 1)! (exponential decay) is not enough to counteract it.

However, by choosing different points so that ωn is smaller, we can optimize the size of
ωn enough that the interpolant works; this is the basis of Chebyshev interpolation. The
nodes (for n points) are

xj = cos

(
2j + 1

2n
π

)
, j = 0, . . . , n− 1.

As shown in the plot below (n = 10 and n = 50), the error is now well-behaved!

15

-1 -0.5 0 0.5 1

0

0.5

1

1.5

-1 -0.5 0 0.5 1

0

0.5

1

1.5

Thus the problem is not the increase in the number of points itself, but the distribution of
the points; a smarter choice is fine.

Key point: The lesson here is that equally spaced interpolants of high degree can be
disastrous (and should be avoided if possible).

However, with the right choice of points, high degree interpolants can work.

More context: In general, the criterion for which sets of points and functions are problem-
atic is subtle. It turns out that for any given scheme for choosing points, there is a function
that causes problems, even for the Chebyshev nodes (however, such examples are so patho-
logical for these nodes they are, for practical purposes, a good choice for all ’reasonable’
functions).

For Runge’s example, the problem is that f has a singularity in the complex plane that
is too close to the interpolation interval, which is the right condition for when equally spaced
points fail for a function f .

2.5 The other remedy: piecewise interpolation

The problem of high-degree interpolation can be avoided altogether by constructing a piece-
wise approximation. For nodes

x0 < x1 < · · · < xn

we can use low-degree interpolants (degree up to 3, rarely higher) in sub-intervals. For
instance, we could construct linear interpolants in [xi, xi+1]. Increasing the number of
points never causes the problem of the previous section. The error decreases as the spacing
h = xi+1 − xi goes to zero (by the Lagrange error formula). The piecewise linear approxi-
mation has the disadvantage that it is not differentiable at the nodes, however.

16

The most common choice, when the function is available, is to use a cubic spline. The idea
here is to use cubic interpolants that use the data

f(xi), f
′(xi), f(xi+1), f

′(xi+1)

(this is an example of Hermite interpolation, which matches function values and derivatives).
These interpolants are then glued together such that the function value and derivative line
up, creating a nice, smooth interpolant. See Section 11.3 of the textbook for details.

Cubic splines are a common choice when one needs to build a representation of a com-
plex function out of data (and the function and its derivative are available to evaluate), for
instance the outline of a shape in computer graphics.

3 Proofs

Theorem 1. The polynomial interpolating f at the n + 1 abscissas x0, . . . , xn can be ex-
pressed in Newton form,

pn(x) =
n∑

j=0

f [x0, x1, . . . , xj]

j−1∏
i=0

(x− xi), (6)

where the f [xi, . . . , xj] are recursively defined by

f [xi] = f(xi) (7)

f [xi, xi+1, . . . , xj−1, xj] =
f [xi+1, . . . , xj−1, xj]− f [xi, xi+1, . . . , xj−1]

xj − xi
. (8)

Proof. We define f [x0, . . . , xj] as the coefficient of
∏j−1

i=0 (x−xi) in (6) and show the recursive
formula holds (rather than define it by the recursive formula and show that they are the
coefficients).

First, (7) holds because f(xi) is the constant polynomial interpolating (xi, f(xi)).
Let pn−1 be the polynomial interpolating f at x0, . . . , xn−1 and q be the polynomial

interpolating f at x1, . . . , xn. We construct pn from pn−1 and q, and then match coefficients
to obtain the result. We claim

pn(x) = pn−1(x) +
x− x0
xn − x0

(q(x)− pn−1(x)). (9)

The motivation is the following: pn−1(x) agrees with pn(x) at x = x0, . . . , xn−1. We want
to also make it agree at x = xn. For this, we add g(x)(q(x) − pn−1(x)) for some g(x). We
want g(x) = 1 for x = xn, so that for x = xn, this is just adding q(x) − pn−1(x), giving
pn(xn) = f(xn). We want g(x) = 0 for x = x0, because pn−1(x) already has the right value
at x = x0. Thus we can take g(x) = x−x0

xn−x0
.

Formally, let g(x) = x−x0

xn−x0
and we check that:

17

• Both sides agree at x = x0: We have pn(x0) = f(x0). Moreover, g(x0) = 0, so

pn−1(x0) + g(x0)(q(x0)− pn−1(x0)) = pn−1(x0) + 0 = f(x0)

because pn−1 interpolates f at x0.

• Both sides agree at x = x1, . . . , xn−1: For 1 ≤ i ≤ n − 1, we have pn(xi) = f(xi).
Moreover, q(xi) = pn−1(xi) = f(xi) because both q and pn−1 interpolate f at xi.
Hence

pn−1(xi) + g(xi)(q(xi)− pn−1(xi)) = pn−1(xi) + 0 = f(xi).

Note it doesn’t matter what g(xi) is.

• Both sides agree at x = xn: We have pn(xn) = f(xn). Moreover, g(xn) = 1, so

pn−1(xn) + g(xn)(q(xn)− pn−1(xn)) = pn−1(xn) + (q(xn)− pn−1(xn)) = q(xn) = f(xn)

because q interpolates f at xn.

Now because both sides are polynomials of degree ≤ n, and they are the same at n + 1
points, they must be the same polynomial. This shows (9).

Now consider the coefficient of xn on both sides of (9). For the left-hand-side, note that
in (6), the only summand with degree n is the last one, so the coefficient is f [x0, . . . , xn].
For the right-hand side, the coefficient of xn is the coefficient of xn−1 in 1

xn−x0
q(x)− pn−1(x),

which by similar reasoning is
f [x1,...,xj]−f [x0,...,xj−1]

xn−x0
.

This shows (8) for i = 0, j = n. The equation holds for any xi, . . . , xj by relabeling.

Theorem 2. Suppose f ∈ Cn+1([a, b]) with the n+ 1 nodes

x0 < x1 < · · · < xn

contained in [a, b]. Let pn(x) be the interpolating polynomial. Then for every x ∈ [a, b],

f(x) = pn(x) + E(x)

where the error is

E(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
j=0

(x− xj)

for some ξx (depending on x) in [a, b].

Proof. The idea is that we treat x as another point to interpolate f at. We create a function
interpolating f at x0, . . . , xn, x, and take its (n+ 1)th derivative.

The polynomial of degree n+ 1 interpolating f at x0, . . . , xn, x is

g(t) : = pn(t) + f [x0, . . . , xn, x]
n∏

j=0

(t− xj).

18

Now consider

h(t) : = f(t)− g(t) = f(t)− pn(t)− f [x0, . . . , xn, x]
n∏

j=0

(t− xj)

Because g interpolates f at x0, . . . , xn, x, h(t) has zeros at n+2 points, namely x0, . . . , xn, x.
We use the following fact: if h ∈ C[a, b] has k zeros in an interval [a, b], then h′ has at

least k− 1 zeros in (a, b). This follows from Rolle’s Theorem: if h(c) = h(d) = 0, then there
is ξ ∈ (c, d) such that h′(ξ) = 0.

Hence by induction h(n+1) as at least 1 zero in [a, b], say h(n+1)(ξx) = 0. Because the
(n+ 1)th derivative of a degree-n polynomial is 0,

h(n+1)(t) = f (n+1)(t)− 0− (n+ 1)!f [x0, . . . , xn, x].

Then plugging in t = ξx and rearranging gives

f [x0, . . . , xn, x] =
1

(n+ 1)!
f (n+1)(ξx).

Because g interpolates f at x, we have

f(x) = pn(x) + f [x0, . . . , xn, x]
n∏

j=0

(x− xj) =
1

(n+ 1)!
f (n+1)(ξx)

n∏
j=0

(x− xj)

19

4 Hermite interpolation (optional)

Interpolants can also be constructed that match the derivatives of the function values at the
nodes. To simplify matters, we will consider only one important case, Hermite interpola-
tion, in which we construct a polynomial p such that

p(xj) = f(xj), p′(xj) = f ′(xj), j = 0, 1, 2, . . . , n. (10)

It is possible to generalize to allow any number of derivatives at each point. The main
theorem is that

Theorem. Given a function f and its derivatives at xj for j = 0, 1, · · ·n, there is a unique
polynomial p of degreee (at most) 2n+ 1 such that (10) holds.

Note that the degree is 2n + 1. In general, the degree will one less than the number of
given conditions (here there are two per node, for a total of 2n+ 2). The error formula is

p(x) = f(x) +
f (2n+2)(x)

(2n+ 2)!

n∏
j=0

(x− xj)2

which is the same as the Lagrange formula for a set of 2n + 2 points but with a duplicate
set of n+ 1 points (it is possible to make sense of this coincidence via some limits).

There is an Hermite basis analogous to the Lagrange basis but it is tedious to construct.
Fortunately, Hermite interpolants are easy to compute via divided differences. We define a
set of 2n+ 2 points

z2i = z2i+1 = xi, 0 ≤ i ≤ n

i.e. the new z-points are x0, x0, x1, x1, x2, x2, Now we compute the divided differences
f [zi, . . . , zi+j] the same way as before, except that if there is a division by zero we replace
the quotient with a derivative:

f [z2i, z2i+1] = f ′(xi) instead of
f [z2i+1]− f [z2i]

z2i+1 − z2i
.

This only changes the first (non-trivial) column; the rest of the divided differences work as
before. The result is that

p(x) =
2n+1∑
j=0

f [z0, . . . , zj]

j−1∏
i=0

(x− zi).

Again, this is the same as before but with a set of 2n + 2 points that have repeats. For
example, let us compute the cubic Hermite interpolant for the data

f(−1) = 2, f ′(−1) = -1 , f(1) = 0, f ′(1) = 3 .

20

The divided difference table is (with the derivatives in boxes and diagonal entries used for
p(x) in red as before)

i zi f [zi] f [zi, zi−1] · · · · · ·
0 −1 2

1 −1 2 -1
2 1 0 −1 0

3 1 0 3 2 1

so the Hermite interpolant is

p(x) = 2− (x+ 1) + 0 · (x+ 1)2 + 1 · (x+ 1)2(x− 1).

Typically, derivative information greatly improves the quality of the interpolant (the dis-
advantage: we need to know the derivative). It can be shown that if p2n+1 is the Hermite
interpolant for the Runge example with n+1 equally spaced points (from earlier), then p2n+1

does converge to f .

The high degree is still undesirable, however; it is more common to use the piecewise method
described in subsection 2.5 (cubic interpolants in intervals between points).

21

	Polynomial interpolation
	Background: Facts about polynomials
	The basic interpolation problem
	General considerations
	Lagrange form of the interpolant
	Newton form
	Divided differences
	Evaluation
	Generalizations

	Polynomial interpolation: Error analysis
	Error formula
	Consequences
	Example

	General error bound: equally spaced points
	A very bad function: Runge's phenomenon
	The other remedy: piecewise interpolation

	Proofs
	Hermite interpolation (optional)

