Conjugate Gradient

Holden Lee

February 25, 2020

Good references for the conjugate gradient method are:

- https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
- $L x=b$, Chapter 16: https://theory.epfl.ch/vishnoi/Lxb-Web.pdf

1 Introduction

Our goal is to solve the system $A x=b$, where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ are given. We assume that A is symmetric positive definite. (See Section 5 for how to deal with general A.) Then the solution x also satisfies

$$
x=\operatorname{argmin}_{x \in \mathbb{R}^{n}} \underbrace{\left(\frac{1}{2} x^{\top} A x-b^{\top} x\right)}_{f(x)} .
$$

The method of gradient descent (or steepest descent) works by letting

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f(x)=x_{k}+\alpha_{k} \underbrace{\left(b-A x_{k}\right)}_{r_{k}}
$$

for some step size α_{k} to be chosen. Here $-\nabla f(x)$ is the direction of steepest descent, and by calculation it equals the residual $r_{k}=b-A x_{k}$. The step size α_{k} can be fixed, or it can be chosen to minimize $f\left(x_{k+1}\right)$. In this case, we arrive at the following algorithm (not optimized for efficiency):

```
Algorithm 1 Gradient descent for solving \(A x=b\)
    Input: Symmetric positive definite \(A \in \mathbb{R}^{n \times n}\), vector \(b \in \mathbb{R}^{n}\), initial value \(x_{0}\)
    for \(k=0,1, \ldots\) do
        Let \(r_{k}=b-A x_{k}\).
        Let \(\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k}^{\top} A r_{k}}\).
        Let \(x_{k+1}=x_{k}+\alpha_{k} r_{k}\).
    end for
```

To see the choice of α_{k}, we note that for any p_{k}, (we will take $p_{k}=r_{k}$, but we do the calculation more generally)

$$
\begin{aligned}
f\left(x_{k}+\alpha p_{k}\right) & =\frac{1}{2}\left(x_{k}+\alpha p_{k}\right)^{\top} A\left(x_{k}+\alpha p_{k}\right)-b^{\top}\left(x_{k}+\alpha p_{k}\right) \\
& =\frac{1}{2} p_{k}^{\top} A p_{k} \alpha^{2}+\alpha p_{k}^{\top}\left(A x_{k}-b\right)+\cdots
\end{aligned}
$$

where the rest of the terms do not contain α. This is a quadratic at α, which is minimized at

$$
\begin{equation*}
-\frac{p_{k}^{\top}\left(A x_{k}-b\right)}{p_{k}^{\top} A p_{k}}=\frac{p_{k}^{\top} r_{k}}{p_{k}^{\top} A p_{k}} . \tag{1}
\end{equation*}
$$

In our case, $p_{k}=r_{k}$, so we choose $\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{p_{k}^{\top} A p_{k}}$.
Unfortunately, gradient descent can converge slowly when A has large condition number.
Theorem 1.1 (Convergence of gradient descent). Let $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ denote the condition number of A. Then in Algorithm 2 ,

$$
\left\|x_{n}-x\right\|_{A} \leq\left(\frac{\kappa(A)-1}{\kappa(A)+1}\right)^{n}\left\|x_{0}-x\right\|_{A}
$$

where $\|x\|_{A}:=\left(x^{\top} A x\right)^{\frac{1}{2}}$ is the A-norm.
This ratio is $1-O\left(\frac{1}{\kappa(A)}\right)$. The proof of Theorem 1.1 is somewhat involved. However, when a bound for $\lambda_{\max }(A)$ and $\lambda_{\min }(A)$ is known, a fixed step can be chosen which essentially attains the same bound; see the homework.

What can go wrong is that gradient descent can oscillate. Consider $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right), b=\binom{0}{0}$, started at $x_{0}=\binom{3}{1 / 3}$. The matrix A is ill-conditioned with $\kappa(A)=9$. The function $\frac{1}{2} x^{\top} A x$ is like a trough: shallow in the x direction and steep in the y direction. The solution is $x=\binom{0}{0}$. The iterates bounce back and forth in the trough and make little progress in the shallow direction, the x-direction. This kind of oscillation makes gradient descent impractical for solving $A x=b$.

We would like to fix gradient descent. Consider a general iterative method in the form

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k},
$$

where $p_{k} \in \mathbb{R}^{n}$ is the search direction. For example, in gradient descent, p_{k} is the residual $r_{k}=$ $b-A x_{k}$. Let's dream big: instead of x_{k+1} just being the best point of the form $x_{k}+\alpha_{k} p_{k}$ for minimizing $f(x)$, we would like x_{k} to be the best point of the form $x_{0}+\alpha_{0} p_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{k} p_{k}$: in the entire x_{0} plus the subspace generated by p_{0}, \ldots, p_{k}. In the case of $A \in \mathbb{R}^{2 \times 2}$, this means that x_{k} converges to the solution in 2 iterations, and in general, for $A \in \mathbb{R}^{n \times n}$, it will converge to the solution in n iterations (if it has not converged in $n-1$ iterations, the first n search directions will span the whole space). This is certainly not satisfied by gradient

Figure 1: Gradient descent for $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right), b=\binom{0}{0}, x_{0}=\binom{3}{1 / 3}$ converges slowly because $\kappa(A)$ is large. Note that at each point x_{k+1}, the search direction r_{k} is tangent to the contour lines.
descent: in our problem, after 2 steps, it's still far from the solution; it overshot in the p_{0} direction, and backtracked (too much).

How can we ensure that x_{k} is the best point in the form $x_{0}+\alpha_{0} p_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{k} p_{k}$? We can ensure this if the p_{i} are A-orthogonal: that is, $p_{i} A^{\top} p_{j}$ for $i \neq j$. To see this, note that this decouples the optimization problem: for $x_{k+1}=x_{0}+\alpha_{0} p_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{k} p_{k}$, we have

$$
\begin{equation*}
\frac{1}{2} x_{k+1}^{\top} A x_{k+1}-b^{\top} x_{k+1}=\frac{1}{2} x_{0}^{\top} A x_{0}-b_{0}^{\top} x_{0}+\sum_{i=0}^{k}\left(\frac{1}{2} \alpha_{i}^{2} p_{i}^{\top} A p_{i}+\alpha_{i} p_{i}^{\top}\left(A x_{0}-b\right)\right) \tag{2}
\end{equation*}
$$

Thus, if $x_{k} \in x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}$ was chosen to minimize $f(x)$, then choosing $x_{k+1}=$ $x_{k}+\alpha_{k} p_{k}$ to minimize $f(x)$, is the same as choosing $x_{k+1} \in x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}, p_{k}\right\}$ to minimize $f(x)$. Progress in new directions does not undo progress in old directions.

Conjugate gradient chooses the search directions to be A-orthogonal. For this, we will need some background: how to convert an arbitrary basis into an orthogonal basis using Gram-Schmidt, and how to modify this to get an A-orthogonal basis.

2 Gram-Schmidt Orthogonalization

Given vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ forming a basis, we would like a procedure that creates a basis of orthogonal vectors q_{1}, \ldots, q_{n} such that each q_{k} is a linear combination of a_{1}, \ldots, a_{k} :

$$
q_{k}=b_{1 k} a_{1}+\cdots+b_{k k} a_{k} .
$$

for some $b_{1 k}, \ldots, b_{k k}$. Note that this can also be expressed in matrix form as

$$
\begin{aligned}
{\left[\begin{array}{ccc}
\mid & & \mid \\
q_{1} & \cdots & q_{n} \\
\mid & & \mid
\end{array}\right] } & =\left[\begin{array}{ccc}
\mid & & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
0 & \ddots & \vdots \\
0 & 0 & b_{n n}
\end{array}\right] \\
Q & =A B
\end{aligned}
$$

for some upper triangular matrix B. Note that because q_{1}, \ldots, q_{n} form a basis, Q is nonsingular, so B must be nonsingular. By letting $R=B^{-1}$, we can also write this in the form

$$
A=Q R
$$

Since B is upper-triangular, R is also upper-triangular; this instead expresses a_{k} as a linear combination of the orthogonal vectors q_{1}, \ldots, q_{k} :

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
q_{1} & \cdots & q_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
0 & \ddots & \vdots \\
0 & 0 & r_{n n}
\end{array}\right]
$$

```
Algorithm 2 Gram-Schmidt Orthogonalization
    Input: Basis \(a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}\)
    for \(k=1\) to \(n\) do
        Let \(q_{k}=a_{k}-\sum_{i=1}^{k-1} \frac{\left\langle a_{k}, q_{i}\right\rangle}{\left\langle q_{i}, q_{i}\right\rangle} q_{i}\).
    end for
```

Theorem 2.1. Given a basis $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$, Algorithm 2 produces an orthogonal basis q_{1}, \ldots, q_{n}, such that each q_{k} is a linear combination of a_{1}, \ldots, a_{k}.

Proof. We would like to define $q_{k}=a_{k}+\sum_{j=1}^{k} b_{k j} q_{j}$ for some $b_{k j}$, but what $b_{k j}$ should we choose? We would like the result to be orthogonal to all q_{1}, \ldots, q_{k-1}. Taking the inner product with $q_{i}, i<k$ gives

$$
\begin{aligned}
\left\langle q_{k}, q_{i}\right\rangle & =\left\langle a_{k}, q_{i}\right\rangle+\sum_{j=1}^{k} b_{k j}\left\langle q_{j}, q_{i}\right\rangle \\
& =\left\langle a_{k}, q_{j}\right\rangle+b_{k i}\left\langle q_{i}, q_{i}\right\rangle
\end{aligned}
$$

because by orthogonality, $\left\langle q_{i}, q_{j}\right\rangle=0$ for $i \neq j$. Thus, to make $\left\langle q_{k}, q_{j}\right\rangle=0$, we take

$$
b_{k i}=-\frac{\left\langle q_{k}, q_{i}\right\rangle}{\left\langle q_{i}, q_{i}\right\rangle} .
$$

Then q_{k} is orthogonal to $q_{1}, \ldots, q_{k-1} . q_{k}$ is exactly defined using these coefficients $b_{k i}$.
Finally, note that $q_{k} \neq 0$. Indeed, if $q_{k}=0$, then a_{k} is a linear combination of q_{1}, \ldots, q_{k-1}, $a_{k}=-\sum_{i=1}^{k} b_{k i} q_{i}$. But q_{1}, \ldots, q_{k-1} are a linear combination of a_{1}, \ldots, a_{k-1}, so a_{k} is not linearly independent of a_{1}, \ldots, a_{k-1}, contradicting the fact that a_{1}, \ldots, a_{n} forms a basis.

3 Inner products

Definition 3.1: An inner product on a (real) vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following:

1. $\langle\cdot, \cdot\rangle$ is symmetric: for all $x, y \in V,\langle x, y\rangle=\langle y, x\rangle$.
2. $\langle\cdot, \cdot\rangle$ is a bilinear form: for all $x, y, z \in V$ and $a \in \mathbb{R},\langle a x+z, y\rangle=a\langle x, y\rangle+\langle z, y\rangle$ and $\langle x, a y+z\rangle=a\langle x, y\rangle+\langle x, z\rangle$.
3. $\langle x, x\rangle=0$ only if $x=0$.

An inner product defines a norm $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$.
On \mathbb{R}^{n}, the usual dot product $\langle x, y\rangle=x^{\top} y$ is an inner product, but it is not the only one. We can define an inner product with respect to any symmetric positive definite matrix A.

Definition 3.2: Given a symmetric positive definite matrix A, define the inner product with respect to A by

$$
\langle x, x\rangle_{A}=\langle x, A x\rangle=x^{\top} A x
$$

and define the norm with respect to A by

$$
\|x\|_{A}=\langle x, x\rangle_{A}^{\frac{1}{2}}=\left(x^{\top} A x\right)^{\frac{1}{2}} .
$$

Note that Gram-Schmidt Orthogonalization works with any inner product, not just the standard one $\langle x, y\rangle=x^{\top} y$. Indeed, we can verify that the proof of Theorem 2.1 only depends on the properties of $\langle\cdot, \cdot\rangle$ in Definition 3.1, and not on it being exactly $\langle x, y\rangle=x^{\top} y$. Thus, we can create an A-orthogonal basis q_{1}, \ldots, q_{n}, i.e., a basis such that $\left\langle q_{i}, A q_{j}\right\rangle=0$ for $i \neq j$, by letting

$$
q_{k}=a_{k}-\sum_{i=1}^{k-1} \frac{\left\langle a_{k}, q_{i}\right\rangle_{A}}{\left\langle q_{i}, q_{i}\right\rangle_{A}} q_{i}=a_{k}-\sum_{i=1}^{k-1} \frac{\left\langle a_{k}, A q_{i}\right\rangle}{\left\langle q_{i}, A q_{i}\right\rangle} q_{i} .
$$

4 Conjugate gradient method

We would like the search directions to be A-orthogonal. The natural search direction at the k th step is the residual $r_{k}=b-A x_{k}$. However, the residuals r_{0}, \ldots, r_{k} are not A-orthogonal to each other. Let's use Gram-Schmidt on the r_{0}, \ldots, r_{k} to obtain p_{0}, \ldots, p_{k}, and use these as the search directions. Note p_{0}, \ldots, p_{k-1} are computed with only knowledge of r_{0}, \ldots, r_{k-1}, so at the k th step, we just need to apply Gram-Schmidt to compute p_{k}.

We first characterize the subspace spanned by the r_{k} 's (which is also the subspace spanned by the p_{k} 's).

Definition 4.1: For $A \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^{n}$, define the nth Krylov subspace $\mathcal{K}_{k}(A ; y):=$ $\operatorname{span}\left\{y, A y, A^{2}, \ldots, A^{k-1} y\right\}$.

Proposition 4.2: The residual r_{k} is in the Krylov subspace

$$
\mathcal{K}_{k+1}\left(A ; r_{0}\right)=\operatorname{span}\left\{y, A r_{0}, A^{2} r_{0}, \ldots, A^{k} r_{0}\right\} .
$$

Thus, if $r_{k} \neq 0,\left\{p_{0}, \ldots, p_{k}\right\}$ forms a basis for $\mathcal{K}_{k+1}\left(A ; r_{0}\right)$, and for each $k, x_{k}-x_{0} \in \mathcal{K}_{k}\left(A ; r_{0}\right)$.

```
Algorithm 3 Conjugate gradient method for solving \(A x=b\) (not optimized)
    Input: Symmetric positive definite \(A \in \mathbb{R}^{n \times n}\), vector \(b \in \mathbb{R}^{n}\), initial value \(x_{0}\)
    Let \(p_{0}=r_{0}=b-A x_{0}\).
    for \(k=0,1, \ldots\) do
        Let \(\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{p_{k}^{\top} A p_{k}}\).
        Let \(x_{k+1}=x_{k}+\alpha_{k} p_{k}\).
        Let \(r_{k+1}=b-A x_{k+1}\).
        Let \(p_{k+1}=r_{k+1}+\frac{r_{k}^{\top} r_{k}}{r_{k+1}^{\top} r_{k+1}} p_{k}\).
    end for
```


Figure 2: In the 2-D problem with $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right), b=\binom{0}{0}, x_{0}=\binom{3}{1 / 3}$, Conjugate Gradient converges in 2 steps.

Proof. Note that $A \cdot \mathcal{K}_{k}\left(A ; r_{0}\right) \subseteq \mathcal{K}_{k+1}\left(A ; r_{0}\right)$: that is, if $z \in \mathcal{K}_{k}(A ; y)$, then $A z \in \mathcal{K}_{k+1}(A ; y)$.
The claim is true for $k=0$. We proceed by induction. If it's true for k, then

$$
\begin{aligned}
r_{k+1} & =b-A x_{k+1} \\
& =b-A\left(x_{k}+\alpha_{k} p_{k}\right) \\
& =r_{k}-\alpha_{k} A p_{k} .
\end{aligned}
$$

Since $p_{k+1} \in \mathcal{K}_{k}\left(A ; r_{0}\right)$, we have $A p_{k} \in \mathcal{K}_{k+2}\left(A ; r_{0}\right)$, and so $r_{k+1} \in \mathcal{K}_{k+1}\left(A ; r_{0}\right)$. Note this does not depend on how α_{k} is defined!

We can summarize Conjugate Gradient in a line as: at each step k, go to the minimizer of $f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x$ in the subspace $x_{0}+\mathcal{K}_{k}\left(A ; r_{0}\right)$.

At step k, move to the f-minimizer in $x_{0}+\mathcal{K}_{k}\left(A ; r_{0}\right)$.
Lemma 4.3. The following hold.

1. $x_{k}=\operatorname{argmin}_{x \in x_{0}+\mathcal{K}_{k}\left(A ; r_{0}\right)} f(x)$.
2. The residual r_{k} is orthogonal (in the usual sense) to $\mathcal{K}_{k}\left(A ; r_{0}\right)$, and hence to p_{0}, \ldots, p_{k-1} and r_{0}, \ldots, r_{k-1}.
3. The residual r_{k} is A-orthogonal to $\mathcal{K}_{k-1}\left(A ; r_{0}\right)$, and hence to p_{0}, \ldots, p_{k-2} and r_{0}, \ldots, r_{k-2}.
4. The search directions are A-orthogonal: for any $j<k, p_{k}$ is A-orthogonal to p_{j}.

As we will see, the magic fact that makes conjugate gradient efficient is that r_{k} is A orthogonal to p_{0}, \ldots, p_{k-2}. This means that when doing Gram-Schmidt orthogonalization, we only need to subtract out one previous term p_{k-1}, rather than k terms p_{0}, \ldots, p_{k-1}. If we had to do that, then conjugate gradient would not be efficient-it would take $O(k d)$ flops at the k th iteration!

Proof.
$(1) \Longrightarrow(2)$: Note that x_{k} being the minimizer of $f(x)$ on the hyperplane $x_{0}+\mathcal{K}_{k}\left(A ; r_{0}\right)$ means that the gradient $\nabla f(x)$ must be perpendicular to the subspace $\mathcal{K}_{k}\left(A ; r_{0}\right)$. But the gradient is just $-r_{k}$, so r_{k} is orthogonal to $\mathcal{K}_{k}\left(A ; r_{0}\right)$, and to p_{0}, \ldots, p_{k-1} and r_{0}, \ldots, r_{k-1}.
$(2) \Longrightarrow(3):$ If $z \in \mathcal{K}_{k-1}\left(A ; r_{0}\right)$, then $A z \in \mathcal{K}_{k}\left(A ; r_{0}\right)$, so by (2), r_{k} is orthogonal to $A z$, or equivalently, r_{k} is A-orthogonal to z.
$(2,3) \Longrightarrow(4)$: We note that p_{k} is obtained by Gram-Schmidt orthogonalization. To see this, note that if p_{k} is defined using Gram-Schmidt on $\langle\cdot, \cdot\rangle_{A}$, then

$$
\begin{aligned}
p_{k} & =r_{k}-\sum_{i=0}^{k-1} \frac{\left\langle r_{k}, p_{i}\right\rangle_{A}}{\left\langle p_{i}, p_{i}\right\rangle_{A}} p_{i} \\
& =r_{k}-\frac{\left\langle r_{k}, p_{k-1}\right\rangle_{A}}{\left\langle p_{k-1}, p_{k-1}\right\rangle_{A}} p_{k-1} \\
& =-\frac{r_{k}^{\top} p_{k-1}}{p_{k-1}^{\top} A p_{k-1}}
\end{aligned}
$$

since r_{k} is A-orthogonal to p_{k-2}, \ldots, p_{0}. We rewrite this in the form in the algorithm. Note

$$
\begin{align*}
r_{k} & =b-A x_{k} \\
& =b-A\left(x_{k-1}+\alpha_{k-1} A p_{k-1}\right) \\
& =r_{k-1}-\alpha_{k-1} A p_{k-1} \\
\Longrightarrow A p_{k-1} & =\frac{1}{\alpha_{k-1}}\left(r_{k}-r_{k-1}\right) \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
p_{k-1}=p_{k-1}+\beta_{k-2} p_{k-2} \tag{4}
\end{equation*}
$$

for some β_{k-2}. Substituting this in, we have

$$
\begin{array}{rlr}
-\frac{\left\langle r_{k}, p_{k-1}\right\rangle_{A}}{\left\langle p_{k-1}, p_{k-1}\right\rangle_{A}} & =-\frac{r_{k}^{\top} A p_{k-1}}{p_{k-1}^{\top} A p_{k-1}} \\
& =-\frac{\frac{1}{\alpha_{k-1}} r_{k}^{\top}\left(r_{k}-r_{k-1}\right)}{\left(r_{k-1}+\beta_{k-2} p_{k-2}\right)^{\top} A p_{k-1}} & \text { by (3) and (4) } \\
& =-\frac{\frac{1}{\alpha_{k-1}} r_{k}^{\top}\left(r_{k}-r_{k-1}\right)}{\frac{1}{\alpha_{k-1}} r_{k-1}^{\top}\left(r_{k}-r_{k-1}\right)} & p_{k-1} \perp_{A} p_{k-2} \\
& =\frac{r_{k}^{\top} r_{k}}{r_{k-1}^{\top} r_{k-1}} & r_{k} \perp r_{k-1}
\end{array}
$$

using the fact that $r_{k} \perp r_{k-1}$ and $p_{k-1} \perp_{A} p_{k-2}$. This is exactly the update in the algorithm.
$\Rightarrow(1)(k+1)$ We now show the induction step.
As explained by the decomposition 2 , when the search directions p_{j} 's are A-orthogonal, choosing $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ to minimize $f(x)$, actually gives the minimum over $x_{0}+$ $\operatorname{span}\left\{p_{0}, \ldots, p_{k}\right\}=x_{0}+\mathcal{K}_{k+1}\left(A ; r_{0}\right)$.
The choice of α_{k} is given by (1):

$$
\alpha_{k}=\frac{p_{k}^{\top} r_{k}}{p_{k}^{\top} A p_{k}}=\frac{\left(r_{k}+\beta_{k} p_{k-1}\right)^{\top} r_{k}}{p_{k}^{\top} A p_{k}}=\frac{r_{k}^{\top} r_{k}}{p_{k}^{\top} A p_{k}}
$$

because p_{k-1} is perpendicular to r_{k}.

Conjugate gradient improves the dependence on $\kappa(A)$ by a square-root factor.
Theorem 4.4 (Convergence of conjugate gradient). Let $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ denote the condition number of A. Then in Algorithm 3,

$$
\left\|x_{n}-x\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{n}\left\|x_{0}-x\right\|_{A}
$$

The proof of this involves Chebyshev polynomials; we will carry out the proof in the unit on polynomial interpolation.

We relate the convergence of conjugate gradient to a problem about polynomial interpolation.

Lemma 4.5. Let $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ denote the condition number of A. Then in Algorithm 3.

$$
\left\|x_{n}-x\right\|_{A} \leq \min _{\operatorname{deg} q \leq n, q(0)=1 \lambda \text { eigenvalue of } A}|q(\lambda)|\left\|x_{0}-x\right\|_{A}
$$

Proof. Because $x_{n} \in x_{0}+\mathcal{K}_{n}\left(A ; r_{0}\right)$, we can write

$$
\begin{aligned}
x_{n} & =x_{0}+p(A) r_{0}=x_{0}+p(A)\left(b-A x_{0}\right)=x_{0}+p(A) A\left(x-x_{0}\right) \\
x_{n}-x & =(I-p(A) A)\left(x_{0}-x\right) .
\end{aligned}
$$

for some polynomial p of degree $\leq n-1$.
Intuition: In order for x_{n} to be close to x, we would like $p(A) A \approx I$. Thinking of p as a function on \mathbb{R} rather than on matrices, this is like saying that $p(x) \approx \frac{1}{x}$, or that $p(x)$ is a good interpolation of $\frac{1}{x}$ on some interval. It turns out that we can bound $p(A) A$ by its evaluation on eigenvalues of A, so that we want $p(x) \approx \frac{1}{x}$ for $x \in\left[\lambda_{\min }, \lambda_{\max }\right]$. It will be easier for us to work with the polynomial $1-x p(x)$, which we do below.

Moreover, by construction, $p(x)$ is the polynomial of degree $\leq k-1$ that minimizes $\frac{1}{2} x_{n}^{\top} A x_{n}-b^{\top} x_{n}$ or equivalently minimizes $\left(x_{n}-x\right)^{\top} A\left(x_{n}-x\right)$ when $x_{n}=x_{0}+p(A) r_{0}$. This is the A-norm of the error e_{n}. Letting $q(x)=1-p(x) x$, we note that $\operatorname{deg} q \leq k$, and we have the restriction $q(0)=1$. Hence

$$
\left\|e_{n}\right\|_{A}=\min _{\operatorname{deg} p \leq n, p(0)=1}\left\|q(A) e_{0}\right\|_{A} \leq \min _{\operatorname{deg} p \leq n, p(0)=1}\|q(A)\|_{A}\left\|e_{0}\right\|_{A}
$$

If the condition number of A is $\kappa(A)$, then all eigenvalues are in $\left[\lambda_{\min }, \lambda_{\max }\right]$ where $\kappa(A)=$ $\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$. Now $\|q(A)\|_{A}=\max _{x} \frac{x^{\top} q(A) A q(A) x}{x^{\top} A x}=\max _{y} \frac{y^{\top} q(A) q(A) y}{y^{\top} y}=\|q(A)\|_{2}$ by setting $y=A^{\frac{1}{2}} x$.

Now, because A is symmetric, we can diagonalize it as $U D U^{\top}$ where U is orthogonal and D is diagonal. Then $q(A)=U p(D) U^{\top}$, and

$$
\|q(A)\|_{A}=\|q(A)\|=\|q(D)\|=\max _{\lambda \text { eigenvalue of } A}|q(\lambda)|
$$

Proof of Theorem 4.4. By Lemma 4.5, we have reduced to solving the following problem: Find the polynomial p such that $p(0)=1$ and $\operatorname{deg} p \leq n$, such that $\max _{x \in\left[\lambda_{\min }, \lambda_{\max }\right]}|p(x)|$ is minimized. Then this will be the factor that we get.

Let $\kappa=\kappa(A)$. We now construct a $p(x)$ such that $\max _{x \in\left[\lambda_{\min }, \lambda_{\max }\right]}|p(x)| \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n}$, using Chebyshev polynoimals.

To obtain a polynomial that is as small as possible on an interval, and with the given value $p(0)=1$, we take p to be a Chebyshev polynomial suitably scaled. Let

$$
p(x)=\frac{1}{T_{n}\left(-\frac{\lambda_{\min }+\lambda_{\max }}{\lambda_{\max }-\lambda_{\min }}\right)} T_{n}\left(\frac{x-\frac{\lambda_{\min }+\lambda_{\max }}{2}}{\frac{\lambda_{\max }-\lambda_{\min }}{2}}\right) .
$$

The scaling factor in front was chosen so that $p(0)=1$, the linear function in the argument takes the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ to $[-1,1]$. Note that the maximum of $T_{n}\left(\frac{x-\frac{\lambda_{\min }+\lambda_{\max }}{2}}{\frac{\lambda_{\max }-\lambda_{\min }}{2}}\right)$ on [$\lambda_{\min }, \lambda_{\max }$] is the maximum of $T_{n}(x)$ on $[-1,1]$, which is 1 . Hence

$$
\max _{x \in\left[\lambda_{\min }, \lambda_{\max }\right]}|p(x)|=\left|T_{n}\left(-\frac{\lambda_{\min }+\lambda_{\max }}{\lambda_{\max }-\lambda_{\min }}\right)\right|=\left|T_{n}\left(-\frac{\kappa+1}{\kappa-1}\right)\right| .
$$

It is left as an exercise to show that $\left|T_{n}\left(-\frac{\kappa+1}{\kappa-1}\right)\right| \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n}$. (Hint: Use the fact that $\left.T_{n}\left(z+\frac{1}{z}\right)=z^{n}+\frac{1}{z^{n}}.\right)$

5 Remarks

- We can apply preconditioning to gradient descent or conjugate gradient by considering the system

$$
\left(P^{-1 / 2} A P^{-1 / 2}\right)\left(P^{1 / 2} x\right)=P^{-1 / 2} b
$$

where P is chosen to reduce the condition number: $\kappa\left(P^{-1 / 2} A P^{-1 / 2}\right)<\kappa(A)$. Preconditioning can be done implicitly in the algorithm.

- For nonsymmetric, nonsingular A, we can write $A x=b$ as $A^{\top} A x=A^{\top} b$, where $A^{\top} A$ is now symmetric positive definite, and then apply conjugate gradient to $A^{\top} A$.
However, $\kappa\left(A^{\top} A\right)=\kappa(A)^{2}$, so convergence becomes slow. It is better to use more sophisticated methods that work with A directly (see Section 6.5 of Ascher and Greif).
- Conjugate gradient is a "direct method in theory, but an iterative method in practice." If exact arithmetic is used, then for $A \in \mathbb{R}^{n \times n}, x_{n}=x$: the exact solution is obtained in n steps. This is because each r_{k} is A-orthogonal to r_{0}, \ldots, r_{k-1}, so if $r_{k} \neq 0$, then r_{0}, \ldots, r_{k} are linearly independent, and we must have $k<n$. In other words, if $r_{k} \neq 0$, then conjugate gradient explores a new linearly independent direction, and there are only n dimensions. (Another way to see this is from Lemma 4.5 the degree- n polynomial q can be chosen to have all the eigenvalues as zeros.)
However, in practice, it is useless as a direct method because Conjugate Gradient is unstable: round-off error blows up. This instability is due to instability in the Gram-Schmidt orthogonalization process when the input vectors are "close" to linearly dependent.
It is fine however, to run Conjugate Gradient for a number of iterations $k \ll n$. If you run many iterations, you may want to "restart" the algorithm periodically to prevent the instability.
Historically, CG was proposed as a direct method, and people lost interest because of its instability, but then it made a comeback as an iterative method.
- One application where symmetric positive definite matrices come up naturally is graph Laplacians. For a network of resistors, putting the inverse resistances between nodes in the L term, given the outgoing currents in b, the voltages x are given by Ohm's Law $L x=b$.

