
Conjugate Gradient

Holden Lee

February 25, 2020

Good references for the conjugate gradient method are:

∙ https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

∙ 𝐿𝑥 = 𝑏, Chapter 16: https://theory.epfl.ch/vishnoi/Lxb-Web.pdf

1 Introduction

Our goal is to solve the system 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 are given. We assume
that 𝐴 is symmetric positive definite. (See Section 5 for how to deal with general 𝐴.) Then
the solution 𝑥 also satisfies

𝑥 = argmin𝑥∈R𝑛

Å
1

2
𝑥⊤𝐴𝑥− 𝑏⊤𝑥

ã
⏟ ⏞

𝑓(𝑥)

.

The method of gradient descent (or steepest descent) works by letting

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥) = 𝑥𝑘 + 𝛼𝑘 (𝑏− 𝐴𝑥𝑘)⏟ ⏞
𝑟𝑘

for some step size 𝛼𝑘 to be chosen. Here −∇𝑓(𝑥) is the direction of steepest descent, and by
calculation it equals the residual 𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘. The step size 𝛼𝑘 can be fixed, or it can be
chosen to minimize 𝑓(𝑥𝑘+1). In this case, we arrive at the following algorithm (not optimized
for efficiency):

Algorithm 1 Gradient descent for solving 𝐴𝑥 = 𝑏

1: Input: Symmetric positive definite 𝐴 ∈ R𝑛×𝑛, vector 𝑏 ∈ R𝑛, initial value 𝑥0

2: for 𝑘 = 0, 1, . . . do
3: Let 𝑟𝑘 = 𝑏− 𝐴𝑥𝑘.

4: Let 𝛼𝑘 =
𝑟⊤𝑘 𝑟𝑘
𝑟⊤𝑘 𝐴𝑟𝑘

.

5: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑟𝑘.
6: end for

1

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://theory.epfl.ch/vishnoi/Lxb-Web.pdf

Math 361S: Numerical analysis Conjugate gradient

To see the choice of 𝛼𝑘, we note that for any 𝑝𝑘, (we will take 𝑝𝑘 = 𝑟𝑘, but we do the
calculation more generally)

𝑓(𝑥𝑘 + 𝛼𝑝𝑘) =
1

2
(𝑥𝑘 + 𝛼𝑝𝑘)

⊤𝐴(𝑥𝑘 + 𝛼𝑝𝑘)− 𝑏⊤(𝑥𝑘 + 𝛼𝑝𝑘)

=
1

2
𝑝⊤𝑘 𝐴𝑝𝑘𝛼

2 + 𝛼𝑝⊤𝑘 (𝐴𝑥𝑘 − 𝑏) + · · ·

where the rest of the terms do not contain 𝛼. This is a quadratic at 𝛼, which is minimized
at

−𝑝⊤𝑘 (𝐴𝑥𝑘 − 𝑏)

𝑝⊤𝑘 𝐴𝑝𝑘
=

𝑝⊤𝑘 𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

. (1)

In our case, 𝑝𝑘 = 𝑟𝑘, so we choose 𝛼𝑘 =
𝑟⊤𝑘 𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

.

Unfortunately, gradient descent can converge slowly when 𝐴 has large condition number.

Theorem 1.1 (Convergence of gradient descent). Let 𝜅(𝐴) = ‖𝐴‖2 ‖𝐴−1‖2 =
𝜆max(𝐴)
𝜆min(𝐴)

denote
the condition number of 𝐴. Then in Algorithm 2,

‖𝑥𝑛 − 𝑥‖𝐴 ≤
Å
𝜅(𝐴)− 1

𝜅(𝐴) + 1

ã𝑛
‖𝑥0 − 𝑥‖𝐴

where ‖𝑥‖𝐴 := (𝑥⊤𝐴𝑥)
1
2 is the 𝐴-norm.

This ratio is 1 − 𝑂
Ä

1
𝜅(𝐴)

ä
. The proof of Theorem 1.1 is somewhat involved. However,

when a bound for 𝜆max(𝐴) and 𝜆min(𝐴) is known, a fixed step can be chosen which essentially
attains the same bound; see the homework.

What can go wrong is that gradient descent can oscillate. Consider 𝐴 =

Å
1 0
0 9

ã
, 𝑏 =

Å
0
0

ã
,

started at 𝑥0 =

Å
3
1/3

ã
. The matrix 𝐴 is ill-conditioned with 𝜅(𝐴) = 9. The function 1

2
𝑥⊤𝐴𝑥

is like a trough: shallow in the 𝑥 direction and steep in the 𝑦 direction. The solution is
𝑥 = (0

0). The iterates bounce back and forth in the trough and make little progress in the
shallow direction, the 𝑥-direction. This kind of oscillation makes gradient descent impractical
for solving 𝐴𝑥 = 𝑏.

We would like to fix gradient descent. Consider a general iterative method in the form

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘,

where 𝑝𝑘 ∈ R𝑛 is the search direction. For example, in gradient descent, 𝑝𝑘 is the residual 𝑟𝑘 =
𝑏−𝐴𝑥𝑘. Let’s dream big: instead of 𝑥𝑘+1 just being the best point of the form 𝑥𝑘 +𝛼𝑘𝑝𝑘 for
minimizing 𝑓(𝑥), we would like 𝑥𝑘 to be the best point of the form 𝑥0+𝛼0𝑝0+𝛼1𝑝1+· · ·+𝛼𝑘𝑝𝑘:
in the entire 𝑥0 plus the subspace generated by 𝑝0, . . . , 𝑝𝑘. In the case of 𝐴 ∈ R2×2, this
means that 𝑥𝑘 converges to the solution in 2 iterations, and in general, for 𝐴 ∈ R𝑛×𝑛, it will
converge to the solution in 𝑛 iterations (if it has not converged in 𝑛− 1 iterations, the first
𝑛 search directions will span the whole space). This is certainly not satisfied by gradient

2

Math 361S: Numerical analysis Conjugate gradient

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Figure 1: Gradient descent for 𝐴 =

Å
1 0
0 9

ã
, 𝑏 =

Å
0
0

ã
, 𝑥0 =

Å
3
1/3

ã
converges slowly because

𝜅(𝐴) is large. Note that at each point 𝑥𝑘+1, the search direction 𝑟𝑘 is tangent to the contour
lines.

descent: in our problem, after 2 steps, it’s still far from the solution; it overshot in the 𝑝0
direction, and backtracked (too much).

How can we ensure that 𝑥𝑘 is the best point in the form 𝑥0 + 𝛼0𝑝0 + 𝛼1𝑝1 + · · ·+ 𝛼𝑘𝑝𝑘?
We can ensure this if the 𝑝𝑖 are 𝐴-orthogonal: that is, 𝑝𝑖𝐴

⊤𝑝𝑗 for 𝑖 ̸= 𝑗. To see this, note
that this decouples the optimization problem: for 𝑥𝑘+1 = 𝑥0 + 𝛼0𝑝0 + 𝛼1𝑝1 + · · ·+ 𝛼𝑘𝑝𝑘, we
have

1

2
𝑥⊤
𝑘+1𝐴𝑥𝑘+1 − 𝑏⊤𝑥𝑘+1 =

1

2
𝑥⊤
0 𝐴𝑥0 − 𝑏⊤0 𝑥0 +

𝑘∑︁
𝑖=0

Å
1

2
𝛼2
𝑖 𝑝

⊤
𝑖 𝐴𝑝𝑖 + 𝛼𝑖𝑝

⊤
𝑖 (𝐴𝑥0 − 𝑏)

ã
. (2)

Thus, if 𝑥𝑘 ∈ 𝑥0 + span{𝑝0, . . . , 𝑝𝑘−1} was chosen to minimize 𝑓(𝑥), then choosing 𝑥𝑘+1 =
𝑥𝑘 + 𝛼𝑘𝑝𝑘 to minimize 𝑓(𝑥), is the same as choosing 𝑥𝑘+1 ∈ 𝑥0 + span{𝑝0, . . . , 𝑝𝑘−1, 𝑝𝑘} to
minimize 𝑓(𝑥). Progress in new directions does not undo progress in old directions.

Conjugate gradient chooses the search directions to be 𝐴-orthogonal. For this, we will
need some background: how to convert an arbitrary basis into an orthogonal basis using
Gram-Schmidt, and how to modify this to get an 𝐴-orthogonal basis.

2 Gram-Schmidt Orthogonalization

Given vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛 forming a basis, we would like a procedure that creates a basis
of orthogonal vectors 𝑞1, . . . , 𝑞𝑛 such that each 𝑞𝑘 is a linear combination of 𝑎1, . . . , 𝑎𝑘:

𝑞𝑘 = 𝑏1𝑘𝑎1 + · · ·+ 𝑏𝑘𝑘𝑎𝑘.

for some 𝑏1𝑘, . . . , 𝑏𝑘𝑘. Note that this can also be expressed in matrix form as⎡⎣ | |
𝑞1 · · · 𝑞𝑛
| |

⎤⎦ =

⎡⎣ | |
𝑎1 · · · 𝑎𝑛
| |

⎤⎦
⎡⎢⎣𝑏11 · · · 𝑏1𝑛

0
. . .

...
0 0 𝑏𝑛𝑛

⎤⎥⎦
𝑄 = 𝐴𝐵

3

Math 361S: Numerical analysis Conjugate gradient

for some upper triangular matrix 𝐵. Note that because 𝑞1, . . . , 𝑞𝑛 form a basis, 𝑄 is non-
singular, so 𝐵 must be nonsingular. By letting 𝑅 = 𝐵−1, we can also write this in the
form

𝐴 = 𝑄𝑅.

Since 𝐵 is upper-triangular, 𝑅 is also upper-triangular; this instead expresses 𝑎𝑘 as a linear
combination of the orthogonal vectors 𝑞1, . . . , 𝑞𝑘:⎡⎣ | |

𝑎1 · · · 𝑎𝑛
| |

⎤⎦ =

⎡⎣ | |
𝑞1 · · · 𝑞𝑛
| |

⎤⎦
⎡⎢⎣𝑟11 · · · 𝑟1𝑛

0
. . .

...
0 0 𝑟𝑛𝑛

⎤⎥⎦

Algorithm 2 Gram-Schmidt Orthogonalization
1: Input: Basis 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛

2: for 𝑘 = 1 to 𝑛 do
3: Let 𝑞𝑘 = 𝑎𝑘 −

∑︀𝑘−1
𝑖=1

⟨𝑎𝑘,𝑞𝑖⟩
⟨𝑞𝑖,𝑞𝑖⟩ 𝑞𝑖.

4: end for

Theorem 2.1. Given a basis 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛, Algorithm 2 produces an orthogonal basis
𝑞1, . . . , 𝑞𝑛, such that each 𝑞𝑘 is a linear combination of 𝑎1, . . . , 𝑎𝑘.

Proof. We would like to define 𝑞𝑘 = 𝑎𝑘 +
∑︀𝑘

𝑗=1 𝑏𝑘𝑗𝑞𝑗 for some 𝑏𝑘𝑗, but what 𝑏𝑘𝑗 should we
choose? We would like the result to be orthogonal to all 𝑞1, . . . , 𝑞𝑘−1. Taking the inner
product with 𝑞𝑖, 𝑖 < 𝑘 gives

⟨𝑞𝑘, 𝑞𝑖⟩ = ⟨𝑎𝑘, 𝑞𝑖⟩+
𝑘∑︁

𝑗=1

𝑏𝑘𝑗 ⟨𝑞𝑗, 𝑞𝑖⟩

= ⟨𝑎𝑘, 𝑞𝑗⟩+ 𝑏𝑘𝑖 ⟨𝑞𝑖, 𝑞𝑖⟩

because by orthogonality, ⟨𝑞𝑖, 𝑞𝑗⟩ = 0 for 𝑖 ̸= 𝑗. Thus, to make ⟨𝑞𝑘, 𝑞𝑗⟩ = 0, we take

𝑏𝑘𝑖 = −⟨𝑞𝑘, 𝑞𝑖⟩
⟨𝑞𝑖, 𝑞𝑖⟩

.

Then 𝑞𝑘 is orthogonal to 𝑞1, . . . , 𝑞𝑘−1. 𝑞𝑘 is exactly defined using these coefficients 𝑏𝑘𝑖.
Finally, note that 𝑞𝑘 ̸= 0. Indeed, if 𝑞𝑘 = 0, then 𝑎𝑘 is a linear combination of 𝑞1, . . . , 𝑞𝑘−1,

𝑎𝑘 = −
∑︀𝑘

𝑖=1 𝑏𝑘𝑖𝑞𝑖. But 𝑞1, . . . , 𝑞𝑘−1 are a linear combination of 𝑎1, . . . , 𝑎𝑘−1, so 𝑎𝑘 is not
linearly independent of 𝑎1, . . . , 𝑎𝑘−1, contradicting the fact that 𝑎1, . . . , 𝑎𝑛 forms a basis.

3 Inner products

Definition 3.1: An inner product on a (real) vector space 𝑉 is a function ⟨·, ·⟩ : 𝑉×𝑉 → R
that satisfies the following:

4

Math 361S: Numerical analysis Conjugate gradient

1. ⟨·, ·⟩ is symmetric: for all 𝑥, 𝑦 ∈ 𝑉 , ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩.

2. ⟨·, ·⟩ is a bilinear form: for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑎 ∈ R, ⟨𝑎𝑥+ 𝑧, 𝑦⟩ = 𝑎 ⟨𝑥, 𝑦⟩+ ⟨𝑧, 𝑦⟩ and
⟨𝑥, 𝑎𝑦 + 𝑧⟩ = 𝑎 ⟨𝑥, 𝑦⟩+ ⟨𝑥, 𝑧⟩.

3. ⟨𝑥, 𝑥⟩ = 0 only if 𝑥 = 0.

An inner product defines a norm ‖𝑥‖ = ⟨𝑥, 𝑥⟩
1
2 .

On R𝑛, the usual dot product ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦 is an inner product, but it is not the only
one. We can define an inner product with respect to any symmetric positive definite matrix
𝐴.

Definition 3.2: Given a symmetric positive definite matrix 𝐴, define the inner product
with respect to 𝐴 by

⟨𝑥, 𝑥⟩𝐴 = ⟨𝑥,𝐴𝑥⟩ = 𝑥⊤𝐴𝑥

and define the norm with respect to 𝐴 by

‖𝑥‖𝐴 = ⟨𝑥, 𝑥⟩
1
2
𝐴 = (𝑥⊤𝐴𝑥)

1
2 .

Note that Gram-Schmidt Orthogonalization works with any inner product, not just the
standard one ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦. Indeed, we can verify that the proof of Theorem 2.1 only depends
on the properties of ⟨·, ·⟩ in Definition 3.1, and not on it being exactly ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦. Thus,
we can create an 𝐴-orthogonal basis 𝑞1, . . . , 𝑞𝑛, i.e., a basis such that ⟨𝑞𝑖, 𝐴𝑞𝑗⟩ = 0 for 𝑖 ̸= 𝑗,
by letting

𝑞𝑘 = 𝑎𝑘 −
𝑘−1∑︁
𝑖=1

⟨𝑎𝑘, 𝑞𝑖⟩𝐴
⟨𝑞𝑖, 𝑞𝑖⟩𝐴

𝑞𝑖 = 𝑎𝑘 −
𝑘−1∑︁
𝑖=1

⟨𝑎𝑘, 𝐴𝑞𝑖⟩
⟨𝑞𝑖, 𝐴𝑞𝑖⟩

𝑞𝑖.

4 Conjugate gradient method

We would like the search directions to be 𝐴-orthogonal. The natural search direction at the
𝑘th step is the residual 𝑟𝑘 = 𝑏−𝐴𝑥𝑘. However, the residuals 𝑟0, . . . , 𝑟𝑘 are not 𝐴-orthogonal
to each other. Let’s use Gram-Schmidt on the 𝑟0, . . . , 𝑟𝑘 to obtain 𝑝0, . . . , 𝑝𝑘, and use these
as the search directions. Note 𝑝0, . . . , 𝑝𝑘−1 are computed with only knowledge of 𝑟0, . . . , 𝑟𝑘−1,
so at the 𝑘th step, we just need to apply Gram-Schmidt to compute 𝑝𝑘.

We first characterize the subspace spanned by the 𝑟𝑘’s (which is also the subspace spanned
by the 𝑝𝑘’s).

Definition 4.1: For 𝐴 ∈ R𝑛×𝑛 and 𝑦 ∈ R𝑛, define the 𝑛th Krylov subspace 𝒦𝑘(𝐴; 𝑦) :=
span{𝑦, 𝐴𝑦,𝐴2, . . . , 𝐴𝑘−1𝑦}.

Proposition 4.2: The residual 𝑟𝑘 is in the Krylov subspace

𝒦𝑘+1(𝐴; 𝑟0) = span{𝑦, 𝐴𝑟0, 𝐴2𝑟0, . . . , 𝐴
𝑘𝑟0}.

Thus, if 𝑟𝑘 ̸= 0, {𝑝0, . . . , 𝑝𝑘} forms a basis for 𝒦𝑘+1(𝐴; 𝑟0), and for each 𝑘, 𝑥𝑘−𝑥0 ∈ 𝒦𝑘(𝐴; 𝑟0).

5

Math 361S: Numerical analysis Conjugate gradient

Algorithm 3 Conjugate gradient method for solving 𝐴𝑥 = 𝑏 (not optimized)

1: Input: Symmetric positive definite 𝐴 ∈ R𝑛×𝑛, vector 𝑏 ∈ R𝑛, initial value 𝑥0

2: Let 𝑝0 = 𝑟0 = 𝑏− 𝐴𝑥0.
3: for 𝑘 = 0, 1, . . . do

4: Let 𝛼𝑘 =
𝑟⊤𝑘 𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

.

5: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘.
6: Let 𝑟𝑘+1 = 𝑏− 𝐴𝑥𝑘+1.

7: Let 𝑝𝑘+1 = 𝑟𝑘+1 +
𝑟⊤𝑘 𝑟𝑘

𝑟⊤𝑘+1𝑟𝑘+1
𝑝𝑘.

8: end for

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Figure 2: In the 2-D problem with 𝐴 =

Å
1 0
0 9

ã
, 𝑏 =

Å
0
0

ã
, 𝑥0 =

Å
3
1/3

ã
, Conjugate Gradient

converges in 2 steps.

Proof. Note that 𝐴 ·𝒦𝑘(𝐴; 𝑟0) ⊆ 𝒦𝑘+1(𝐴; 𝑟0): that is, if 𝑧 ∈ 𝒦𝑘(𝐴; 𝑦), then 𝐴𝑧 ∈ 𝒦𝑘+1(𝐴; 𝑦).
The claim is true for 𝑘 = 0. We proceed by induction. If it’s true for 𝑘, then

𝑟𝑘+1 = 𝑏− 𝐴𝑥𝑘+1

= 𝑏− 𝐴(𝑥𝑘 + 𝛼𝑘𝑝𝑘)

= 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘.

Since 𝑝𝑘+1 ∈ 𝒦𝑘(𝐴; 𝑟0), we have 𝐴𝑝𝑘 ∈ 𝒦𝑘+2(𝐴; 𝑟0), and so 𝑟𝑘+1 ∈ 𝒦𝑘+1(𝐴; 𝑟0). Note this
does not depend on how 𝛼𝑘 is defined!

We can summarize Conjugate Gradient in a line as: at each step 𝑘, go to the minimizer
of 𝑓(𝑥) = 1

2
𝑥⊤𝐴𝑥− 𝑏⊤𝑥 in the subspace 𝑥0 +𝒦𝑘(𝐴; 𝑟0).

At step 𝑘, move to the 𝑓 -minimizer in 𝑥0 +𝒦𝑘(𝐴; 𝑟0).

Lemma 4.3. The following hold.

1. 𝑥𝑘 = argmin𝑥∈𝑥0+𝒦𝑘(𝐴;𝑟0) 𝑓(𝑥).

2. The residual 𝑟𝑘 is orthogonal (in the usual sense) to 𝒦𝑘(𝐴; 𝑟0), and hence to 𝑝0, . . . , 𝑝𝑘−1

and 𝑟0, . . . , 𝑟𝑘−1.

6

Math 361S: Numerical analysis Conjugate gradient

3. The residual 𝑟𝑘 is 𝐴-orthogonal to 𝒦𝑘−1(𝐴; 𝑟0), and hence to 𝑝0, . . . , 𝑝𝑘−2 and 𝑟0, . . . , 𝑟𝑘−2.

4. The search directions are 𝐴-orthogonal: for any 𝑗 < 𝑘, 𝑝𝑘 is 𝐴-orthogonal to 𝑝𝑗.

As we will see, the magic fact that makes conjugate gradient efficient is that 𝑟𝑘 is 𝐴-
orthogonal to 𝑝0, . . . , 𝑝𝑘−2. This means that when doing Gram-Schmidt orthogonalization,
we only need to subtract out one previous term 𝑝𝑘−1, rather than 𝑘 terms 𝑝0, . . . , 𝑝𝑘−1. If we
had to do that, then conjugate gradient would not be efficient—it would take 𝑂(𝑘𝑑) flops at
the 𝑘th iteration!

Proof.

(1) =⇒ (2): Note that 𝑥𝑘 being the minimizer of 𝑓(𝑥) on the hyperplane 𝑥0+𝒦𝑘(𝐴; 𝑟0) means that
the gradient ∇𝑓(𝑥) must be perpendicular to the subspace 𝒦𝑘(𝐴; 𝑟0). But the gradient
is just −𝑟𝑘, so 𝑟𝑘 is orthogonal to 𝒦𝑘(𝐴; 𝑟0), and to 𝑝0, . . . , 𝑝𝑘−1 and 𝑟0, . . . , 𝑟𝑘−1.

(2) =⇒ (3): If 𝑧 ∈ 𝒦𝑘−1(𝐴; 𝑟0), then 𝐴𝑧 ∈ 𝒦𝑘(𝐴; 𝑟0), so by (2), 𝑟𝑘 is orthogonal to 𝐴𝑧, or equiva-
lently, 𝑟𝑘 is 𝐴-orthogonal to 𝑧.

(2,3) =⇒ (4): We note that 𝑝𝑘 is obtained by Gram-Schmidt orthogonalization. To see this, note
that if 𝑝𝑘 is defined using Gram-Schmidt on ⟨·, ·⟩𝐴, then

𝑝𝑘 = 𝑟𝑘 −
𝑘−1∑︁
𝑖=0

⟨𝑟𝑘, 𝑝𝑖⟩𝐴
⟨𝑝𝑖, 𝑝𝑖⟩𝐴

𝑝𝑖

= 𝑟𝑘 −
⟨𝑟𝑘, 𝑝𝑘−1⟩𝐴
⟨𝑝𝑘−1, 𝑝𝑘−1⟩𝐴

𝑝𝑘−1

= − 𝑟⊤𝑘 𝑝𝑘−1

𝑝⊤𝑘−1𝐴𝑝𝑘−1

since 𝑟𝑘 is 𝐴-orthogonal to 𝑝𝑘−2, . . . , 𝑝0. We rewrite this in the form in the algorithm.
Note

𝑟𝑘 = 𝑏− 𝐴𝑥𝑘

= 𝑏− 𝐴(𝑥𝑘−1 + 𝛼𝑘−1𝐴𝑝𝑘−1)

= 𝑟𝑘−1 − 𝛼𝑘−1𝐴𝑝𝑘−1

=⇒ 𝐴𝑝𝑘−1 =
1

𝛼𝑘−1

(𝑟𝑘 − 𝑟𝑘−1) (3)

and

𝑝𝑘−1 = 𝑝𝑘−1 + 𝛽𝑘−2𝑝𝑘−2 (4)

7

Math 361S: Numerical analysis Conjugate gradient

for some 𝛽𝑘−2. Substituting this in, we have

− ⟨𝑟𝑘, 𝑝𝑘−1⟩𝐴
⟨𝑝𝑘−1, 𝑝𝑘−1⟩𝐴

= − 𝑟⊤𝑘 𝐴𝑝𝑘−1

𝑝⊤𝑘−1𝐴𝑝𝑘−1

= −
1

𝛼𝑘−1
𝑟⊤𝑘 (𝑟𝑘 − 𝑟𝑘−1)

(𝑟𝑘−1 + 𝛽𝑘−2𝑝𝑘−2)⊤𝐴𝑝𝑘−1

by (3) and (4)

= −
1

𝛼𝑘−1
𝑟⊤𝑘 (𝑟𝑘 − 𝑟𝑘−1)

1
𝛼𝑘−1

𝑟⊤𝑘−1(𝑟𝑘 − 𝑟𝑘−1)
𝑝𝑘−1 ⊥𝐴 𝑝𝑘−2

=
𝑟⊤𝑘 𝑟𝑘

𝑟⊤𝑘−1𝑟𝑘−1

𝑟𝑘 ⊥ 𝑟𝑘−1

using the fact that 𝑟𝑘 ⊥ 𝑟𝑘−1 and 𝑝𝑘−1 ⊥𝐴 𝑝𝑘−2. This is exactly the update in the
algorithm.

⇒(1)(𝑘 + 1) We now show the induction step.

As explained by the decomposition 2, when the search directions 𝑝𝑗’s are 𝐴-orthogonal,
choosing 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 to minimize 𝑓(𝑥), actually gives the minimum over 𝑥0 +
span{𝑝0, . . . , 𝑝𝑘} = 𝑥0 +𝒦𝑘+1(𝐴; 𝑟0).

The choice of 𝛼𝑘 is given by (1):

𝛼𝑘 =
𝑝⊤𝑘 𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

=
(𝑟𝑘 + 𝛽𝑘𝑝𝑘−1)

⊤𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

=
𝑟⊤𝑘 𝑟𝑘
𝑝⊤𝑘 𝐴𝑝𝑘

because 𝑝𝑘−1 is perpendicular to 𝑟𝑘.

Conjugate gradient improves the dependence on 𝜅(𝐴) by a square-root factor.

Theorem 4.4 (Convergence of conjugate gradient). Let 𝜅(𝐴) = ‖𝐴‖2 ‖𝐴−1‖2 = 𝜆max(𝐴)
𝜆min(𝐴)

denote the condition number of 𝐴. Then in Algorithm 3,

‖𝑥𝑛 − 𝑥‖𝐴 ≤ 2

Ç√︀
𝜅(𝐴)− 1√︀
𝜅(𝐴) + 1

å𝑛

‖𝑥0 − 𝑥‖𝐴 .

The proof of this involves Chebyshev polynomials ; we will carry out the proof in the unit
on polynomial interpolation.

We relate the convergence of conjugate gradient to a problem about polynomial interpo-
lation.

Lemma 4.5. Let 𝜅(𝐴) = ‖𝐴‖2 ‖𝐴−1‖2 = 𝜆max(𝐴)
𝜆min(𝐴)

denote the condition number of 𝐴. Then
in Algorithm 3,

‖𝑥𝑛 − 𝑥‖𝐴 ≤ min
deg 𝑞≤𝑛,𝑞(0)=1

max
𝜆 eigenvalue of 𝐴

|𝑞(𝜆)| ‖𝑥0 − 𝑥‖𝐴 .

8

Math 361S: Numerical analysis Conjugate gradient

Proof. Because 𝑥𝑛 ∈ 𝑥0 +𝒦𝑛(𝐴; 𝑟0), we can write

𝑥𝑛 = 𝑥0 + 𝑝(𝐴)𝑟0 = 𝑥0 + 𝑝(𝐴)(𝑏− 𝐴𝑥0) = 𝑥0 + 𝑝(𝐴)𝐴(𝑥− 𝑥0)

𝑥𝑛 − 𝑥 = (𝐼 − 𝑝(𝐴)𝐴)(𝑥0 − 𝑥).

for some polynomial 𝑝 of degree ≤ 𝑛− 1.

Intuition: In order for 𝑥𝑛 to be close to 𝑥, we would like 𝑝(𝐴)𝐴 ≈ 𝐼. Thinking of 𝑝 as
a function on R rather than on matrices, this is like saying that 𝑝(𝑥) ≈ 1

𝑥
, or that 𝑝(𝑥)

is a good interpolation of 1
𝑥
on some interval. It turns out that we can bound 𝑝(𝐴)𝐴

by its evaluation on eigenvalues of 𝐴, so that we want 𝑝(𝑥) ≈ 1
𝑥
for 𝑥 ∈ [𝜆min, 𝜆max].

It will be easier for us to work with the polynomial 1− 𝑥𝑝(𝑥), which we do below.

Moreover, by construction, 𝑝(𝑥) is the polynomial of degree ≤ 𝑘 − 1 that minimizes
1
2
𝑥⊤
𝑛𝐴𝑥𝑛 − 𝑏⊤𝑥𝑛 or equivalently minimizes (𝑥𝑛 − 𝑥)⊤𝐴(𝑥𝑛 − 𝑥) when 𝑥𝑛 = 𝑥0 + 𝑝(𝐴)𝑟0. This

is the 𝐴-norm of the error 𝑒𝑛. Letting 𝑞(𝑥) = 1 − 𝑝(𝑥)𝑥, we note that deg 𝑞 ≤ 𝑘, and we
have the restriction 𝑞(0) = 1. Hence

‖𝑒𝑛‖𝐴 = min
deg 𝑝≤𝑛,𝑝(0)=1

‖𝑞(𝐴)𝑒0‖𝐴 ≤ min
deg 𝑝≤𝑛,𝑝(0)=1

‖𝑞(𝐴)‖𝐴 ‖𝑒0‖𝐴 .

If the condition number of 𝐴 is 𝜅(𝐴), then all eigenvalues are in [𝜆min, 𝜆max] where 𝜅(𝐴) =
𝜆max

𝜆min
. Now ‖𝑞(𝐴)‖𝐴 = max𝑥

𝑥⊤𝑞(𝐴)𝐴𝑞(𝐴)𝑥
𝑥⊤𝐴𝑥

= max𝑦
𝑦⊤𝑞(𝐴)𝑞(𝐴)𝑦

𝑦⊤𝑦
= ‖𝑞(𝐴)‖2 by setting 𝑦 = 𝐴

1
2𝑥.

Now, because 𝐴 is symmetric, we can diagonalize it as 𝑈𝐷𝑈⊤ where 𝑈 is orthogonal and
𝐷 is diagonal. Then 𝑞(𝐴) = 𝑈𝑝(𝐷)𝑈⊤, and

‖𝑞(𝐴)‖𝐴 = ‖𝑞(𝐴)‖ = ‖𝑞(𝐷)‖ = max
𝜆 eigenvalue of 𝐴

|𝑞(𝜆)|.

Proof of Theorem 4.4. By Lemma 4.5, we have reduced to solving the following problem:
Find the polynomial 𝑝 such that 𝑝(0) = 1 and deg 𝑝 ≤ 𝑛, such that max𝑥∈[𝜆min,𝜆max] |𝑝(𝑥)| is
minimized. Then this will be the factor that we get.

Let 𝜅 = 𝜅(𝐴). We now construct a 𝑝(𝑥) such that max𝑥∈[𝜆min,𝜆max] |𝑝(𝑥)| ≤ 2
Ä√

𝜅−1√
𝜅+1

ä𝑛
,

using Chebyshev polynoimals.
To obtain a polynomial that is as small as possible on an interval, and with the given

value 𝑝(0) = 1, we take 𝑝 to be a Chebyshev polynomial suitably scaled. Let

𝑝(𝑥) =
1

𝑇𝑛

Ä
−𝜆min+𝜆max

𝜆max−𝜆min

ä𝑇𝑛

Ç
𝑥− 𝜆min+𝜆max

2
𝜆max−𝜆min

2

å
.

The scaling factor in front was chosen so that 𝑝(0) = 1, the linear function in the argument

takes the interval [𝜆min, 𝜆max] to [−1, 1]. Note that the maximum of 𝑇𝑛

Å
𝑥−𝜆min+𝜆max

2
𝜆max−𝜆min

2

ã
on

[𝜆min, 𝜆max] is the maximum of 𝑇𝑛(𝑥) on [−1, 1], which is 1. Hence

max
𝑥∈[𝜆min,𝜆max]

|𝑝(𝑥)| =
⃒⃒⃒⃒
𝑇𝑛

Å
−𝜆min + 𝜆max

𝜆max − 𝜆min

ã⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑇𝑛

Å
−𝜅+ 1

𝜅− 1

ã⃒⃒⃒⃒
.

It is left as an exercise to show that
⃒⃒⃒
𝑇𝑛

Ä
−𝜅+1

𝜅−1

ä⃒⃒⃒
≤ 2
Ä√

𝜅−1√
𝜅+1

ä𝑛
. (Hint: Use the fact that

𝑇𝑛

(︀
𝑧 + 1

𝑧

)︀
= 𝑧𝑛 + 1

𝑧𝑛
.)

9

Math 361S: Numerical analysis Conjugate gradient

5 Remarks

∙ We can apply preconditioning to gradient descent or conjugate gradient by considering
the system

(𝑃−1/2𝐴𝑃−1/2)(𝑃 1/2𝑥) = 𝑃−1/2𝑏

where 𝑃 is chosen to reduce the condition number: 𝜅(𝑃−1/2𝐴𝑃−1/2) < 𝜅(𝐴). Precon-
ditioning can be done implicitly in the algorithm.

∙ For nonsymmetric, nonsingular 𝐴, we can write 𝐴𝑥 = 𝑏 as 𝐴⊤𝐴𝑥 = 𝐴⊤𝑏, where 𝐴⊤𝐴
is now symmetric positive definite, and then apply conjugate gradient to 𝐴⊤𝐴.

However, 𝜅(𝐴⊤𝐴) = 𝜅(𝐴)2, so convergence becomes slow. It is better to use more
sophisticated methods that work with 𝐴 directly (see Section 6.5 of Ascher and Greif).

∙ Conjugate gradient is a “direct method in theory, but an iterative method in practice.”
If exact arithmetic is used, then for 𝐴 ∈ R𝑛×𝑛, 𝑥𝑛 = 𝑥: the exact solution is obtained
in 𝑛 steps. This is because each 𝑟𝑘 is 𝐴-orthogonal to 𝑟0, . . . , 𝑟𝑘−1, so if 𝑟𝑘 ̸= 0,
then 𝑟0, . . . , 𝑟𝑘 are linearly independent, and we must have 𝑘 < 𝑛. In other words,
if 𝑟𝑘 ̸= 0, then conjugate gradient explores a new linearly independent direction, and
there are only 𝑛 dimensions. (Another way to see this is from Lemma 4.5: the degree-𝑛
polynomial 𝑞 can be chosen to have all the eigenvalues as zeros.)

However, in practice, it is useless as a direct method because Conjugate Gradient
is unstable: round-off error blows up. This instability is due to instability in the
Gram-Schmidt orthogonalization process when the input vectors are “close” to linearly
dependent.

It is fine however, to run Conjugate Gradient for a number of iterations 𝑘 ≪ 𝑛. If you
run many iterations, you may want to “restart” the algorithm periodically to prevent
the instability.

Historically, CG was proposed as a direct method, and people lost interest because of
its instability, but then it made a comeback as an iterative method.

∙ One application where symmetric positive definite matrices come up naturally is graph
Laplacians. For a network of resistors, putting the inverse resistances between nodes
in the 𝐿 term, given the outgoing currents in 𝑏, the voltages 𝑥 are given by Ohm’s Law
𝐿𝑥 = 𝑏.

10

	Introduction
	Gram-Schmidt Orthogonalization
	Inner products
	Conjugate gradient method
	Remarks

