Conjugate Gradient

Holden Lee
February 25, 2020

Good references for the conjugate gradient method are:
e https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

e Lx = b, Chapter 16: https://theory.epfl.ch/vishnoi/Lxb-Web.pdf

1 Introduction

Our goal is to solve the system Ax = b, where A € R™*" and b € R™ are given. We assume
that A is symmetric positive definite. (See Section |5 for how to deal with general A.) Then
the solution x also satisfies

1
T = argmin_ cpn <§xTAx — bTx> :

N J/

i)
The method of gradient descent (or steepest descent) works by letting

Tpy1 = Tk — gV f(2) = 2 + o (b — Axy)
—_———

Tk
for some step size oy, to be chosen. Here —V f(x) is the direction of steepest descent, and by
calculation it equals the residual r, = b — Ax,. The step size oy can be fixed, or it can be

chosen to minimize f(zx;1). In this case, we arrive at the following algorithm (not optimized
for efficiency):

Algorithm 1 Gradient descent for solving Az = b

: Input: Symmetric positive definite A € R™", vector b € R", initial value xg
: for k=0,1,... do
Let r, = b — Axy,.

T’;T’k
r;Ark :

Let xp11 = xx + aygri.
end for

Let A =

A R A e
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To see the choice of ay, we note that for any py, (we will take p, = 7, but we do the
calculation more generally)

1
oy + apy) = 5(% + apg) " Azy, + apg) — b (z), + apy)

1
= §p;Apka2 + ap, (Axy —b) + -+

where the rest of the terms do not contain «. This is a quadratic at «, which is minimized
at

_pg(Axk —b) _ P;Tk (1)
Py Apr, pr Apy,
T
_ _ "k Tk
In our case, py = i, so we choose o = TR

Unfortunately, gradient descent can converge slowly when A has large condition number.

Amax(A) - 7o ote

Theorem 1.1 (Convergence of gradient descent). Let k(A) = ||A|l, |A7Y], = Nomin(A)

the condition number of A. Then in Algorithm [3

k(A) — T\"
fon =l < (S 57) ool

where ||z, == (xT Az)2 is the A-norm.

This ratiois 1 — O (ﬁ) The proof of Theorem is somewhat involved. However,

when a bound for Apax(A) and Ay (A) is known, a fixed step can be chosen which essentially
attains the same bound; see the homework.

What can go wrong is that gradient descent can oscillate. Consider A = <(1) 8), b= (8) )

started at xy = ( ) The matrix A is ill-conditioned with x(A) = 9. The function jz" Az

3
1/3
is like a trough: shallow in the z direction and steep in the y direction. The solution is
x = (J). The iterates bounce back and forth in the trough and make little progress in the
shallow direction, the z-direction. This kind of oscillation makes gradient descent impractical
for solving Az = b.

We would like to fix gradient descent. Consider a general iterative method in the form

Tpy1 = Tk + QpPy,

where p, € R™ is the search direction. For example, in gradient descent, py is the residual r, =
b— Axy. Let’s dream big: instead of z;; just being the best point of the form xj 4 aypy for
minimizing f(x), we would like xj to be the best point of the form xo+aopo+aip1+- - -+ pi:
in the entire xy plus the subspace generated by po,...,pr. In the case of A € R**2 this
means that x; converges to the solution in 2 iterations, and in general, for A € R"*", it will
converge to the solution in n iterations (if it has not converged in n — 1 iterations, the first
n search directions will span the whole space). This is certainly not satisfied by gradient
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Figure 1: Gradient descent for A = (é 8), b= (8), Ty = (1?3) converges slowly because

k(A) is large. Note that at each point xy 1, the search direction ry is tangent to the contour
lines.

descent: in our problem, after 2 steps, it’s still far from the solution; it overshot in the pq
direction, and backtracked (too much).

How can we ensure that x; is the best point in the form xg + agpo + aapr + - - - + aupr?
We can ensure this if the p; are A-orthogonal: that is, p;Ap; for i # j. To see this, note
that this decouples the optimization problem: for xp,1 = z¢ + agppg + a1pr + - - - + aupg, we
have

k
1 1 1
§atg+1Axk+1 — b 2y = §ngm0 — by o + Z (§a?piTApi + ap] (Amg — b)) . (2)
i=0
Thus, if zx € xg + span{py, ..., pr_1} was chosen to minimize f(z), then choosing zy,1 =
T + agpg to minimize f(xz), is the same as choosing x4 € xo + span{po, ..., Pr—1, Pk} tO

minimize f(x). Progress in new directions does not undo progress in old directions.

Conjugate gradient chooses the search directions to be A-orthogonal. For this, we will
need some background: how to convert an arbitrary basis into an orthogonal basis using
Gram-Schmidt, and how to modify this to get an A-orthogonal basis.

2 Gram-Schmidt Orthogonalization

Given vectors aq, . .., a, € R" forming a basis, we would like a procedure that creates a basis
of orthogonal vectors qi,...,q, such that each g, is a linear combination of aq, ..., a:

qx = bigar + - - - + bpray.

for some by, ..., bye. Note that this can also be expressed in matrix form as
| | | 17 (b o b
G ' Qqn| = (@1 -+ Qn 0 -
| | | [ 1lo 0o b
Q=AB
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for some upper triangular matrix B. Note that because qi,...,q, form a basis, () is non-
singular, so B must be nonsingular. By letting R = B~!, we can also write this in the
form

A=QR.
Since B is upper-triangular, R is also upper-triangular; this instead expresses a; as a linear
combination of the orthogonal vectors ¢y, ..., q:
IR O R M LR
ap -+ Qp| = |q1 " 4n . :
| | | Jlo 0o ru
Algorithm 2 Gram-Schmidt Orthogonalization
1: Input: Basis aq,...,a, € R"
2: for k=1 ton do
. _ Nk (aggs)
3: Let g = ar — >, Gy Ui
4: end for
Theorem 2.1. Given a basis ay,...,a, € R", Algorithm |4 produces an orthogonal basis
Q1, - -, qn, such that each qi is a linear combination of ay,. .., ax.

Proof. We would like to define ¢ = a; + Zj’;l bi;q; for some by;, but what by; should we
choose? We would like the result to be orthogonal to all qi,...,qx_1. Taking the inner
product with ¢;, 1 < k gives

(Qr, @) = (a, qi) + Zbkj (a5, i)

j=1
= <ak7 QJ> + bkz <QZ7 QZ>

because by orthogonality, (¢;,q;) = 0 for ¢ # j. Thus, to make (g, ¢;) = 0, we take

(¢ @)
Then gy, is orthogonal to qi,...,qx_1. qr is exactly defined using these coefficients by;.
Finally, note that g, # 0. Indeed, if g = 0, then ay, is a linear combination of ¢, ..., qx_1,
ap = — Zle briq;. But ¢q,...,q._1 are a linear combination of aq,...,ai_1, S0 aj is not
linearly independent of aq, ..., a;_1, contradicting the fact that aq,...,a, forms a basis. [

3 Inner products

Definition 3.1: An inner product on a (real) vector space V' is a function (-,-) : VxV — R
that satisfies the following:
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1. (-,-) is symmetric: for all z,y € V, (x,y) = (y,x).

2. (-,-) is a bilinear form: for all x,y,z € V and a € R, (ax + z,y) = a(z,y) + (z,y) and
(z,ay + 2) = a(z,y) + (2, 2).
3. (x,z) =0 only if z = 0.

An inner product defines a norm ||z|| = (z, x)%.

On R”, the usual dot product (z,y) = 2"y is an inner product, but it is not the only

one. We can define an inner product with respect to any symmetric positive definite matrix
A.

Definition 3.2: Given a symmetric positive definite matrix A, define the inner product
with respect to A by

<33,.CE>A = <37, Aﬂf) = QTTAZU
and define the norm with respect to A by
1
2], = (2, 2)3 = (2" Az)2.

Note that Gram-Schmidt Orthogonalization works with any inner product, not just the
standard one (x,y) = x'y. Indeed, we can verify that the proof of Theorem only depends
on the properties of (-,-) in Definition and not on it being exactly (x,y) = x"y. Thus,
we can create an A-orthogonal basis qi, ..., qn, i.e., a basis such that (g;, Ag;) = 0 for ¢ # j,
by letting

kz_i <ak7Qi>A kz_i (ag, Agi)
4k = Qg — T 4 = Ak — T 4
im1 (i, %)A 1 (s Agi)

4 Conjugate gradient method

We would like the search directions to be A-orthogonal. The natural search direction at the
kth step is the residual r, = b — Ax,. However, the residuals rq, . .., r; are not A-orthogonal
to each other. Let’s use Gram-Schmidt on the rg, ..., to obtain pg, ..., py, and use these
as the search directions. Note py, ..., pr_1 are computed with only knowledge of rq, ..., r._1,
so at the kth step, we just need to apply Gram-Schmidt to compute py,.

We first characterize the subspace spanned by the r’s (which is also the subspace spanned
by the pi’s).

Definition 4.1: For A € R"*" and y € R", define the nth Krylov subspace Ky(A4;y) :=
Span{y7 Ay7 A27 R 7Ak_1y}'

Proposition 4.2: The residual ry is in the Krylov subspace
Kis1(A;70) = span{y, Arg, A’ro, ..., A*ro}.
Thus, if r, # 0, {po, . .., px} forms a basis for K1 (A; 1), and for each k, x—xo € Kr(A;7).

5
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Algorithm 3 Conjugate gradient method for solving Az = b (not optimized)

1: Input: Symmetric positive definite A € R"*", vector b € R", initial value x
2: Let pg = rg = b — Auxy.
3: for k=0,1,... do
. _ TRk
4: Let ap, = P
5: Let xp11 = xx + aupy.
6: Let rp41 = b — Axp.
’I'T'f"
7: Let pri1 = T + 72— Dk
k4+1"k+1
8: end for
. . 10 0 3 . .
Figure 2: In the 2-D problem with A = 0 9/ b= g) o= 1/3)" Conjugate Gradient

converges in 2 steps.

Proof. Note that A-Ky(A;r9) C Kri1(A;mg): that is, if 2z € I (A;y), then Az € Kr1(A4;y).
The claim is true for £ = 0. We proceed by induction. If it’s true for £, then

The1 = b — Az
=b— Ay + cupr)
=Tk — CYk;APk-

Since pry1 € Ki(A;rg), we have Apy € Kryo(A;10), and so rgyq € Kir1(A;7). Note this
does not depend on how ¢, is defined! O

We can summarize Conjugate Gradient in a line as: at each step k, go to the minimizer
of f(x) = %xTAx — bz in the subspace o + Ki(A; 7).

At step k, move to the f-minimizer in zq + KCp(A; 7).
Lemma 4.3. The following hold.

1. xp = argminge, ik, (o) f(z).

2. The residual y, is orthogonal (in the usual sense) to Ky (A; o), and hence to po, . .., Pr—1
and o, ..., Tp_1.
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3. The residual ry, is A-orthogonal to KCr_1(A; ), and hence to po, ..., pr—2 andro, ..., Tk_2.
4. The search directions are A-orthogonal: for any j < k, py is A-orthogonal to p;.

As we will see, the magic fact that makes conjugate gradient efficient is that r; is A-
orthogonal to pg,...,px_o. This means that when doing Gram-Schmidt orthogonalization,
we only need to subtract out one previous term p;_1, rather than k terms py, ..., pr_1. If we
had to do that, then conjugate gradient would not be efficient—it would take O(kd) flops at
the kth iteration!

Proof.

(1) = (2): Note that z being the minimizer of f(x) on the hyperplane xo + Kx(A; 79) means that
the gradient V f(z) must be perpendicular to the subspace Ky (A; 7). But the gradient
is just —ry, so ry is orthogonal to IC(A;7g), and to pg,...,pk—1 and rq,. .., g 1.

(2) = (3): If z € Ky_1(A;10), then Az € Kr(A;ro), so by (2), 7y is orthogonal to Az, or equiva-
lently, ry is A-orthogonal to z.

(2,3) = (4): We note that pj, is obtained by Gram-Schmidt orthogonalization. To see this, note
that if py is defined using Gram-Schmidt on (-, -) ,, then

k—1

Tk, Di
pp=rg— Y lila,

i—0 (i i) 4
<7‘k,pk—1>A
<pk—17pk:—1>A
_ T Dk
N pE_yApkfl

=Tk — Pr—1

since r, is A-orthogonal to py_o, ..., po. We rewrite this in the form in the algorithm.
Note

Ty = b — Al’k
=b— A(xp—1 + ap_1Apr_1)

= Tp_1 — 1 Apip_1

L (=i 3)

Qg1

= App_1 =

and

DPk—1 = Dk—1 + Br—2Pk—2 (4)
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for some fB;_o. Substituting this in, we have

<7‘k,pk—1>A . TkTApkq

<pk—17 pk—1>A p];r_lApk—l
1T
Ty (T — Th—1)
ap—1
=— by (3)) and (4))
(16—1 + Br—2Pk—2) " Apr—1

e (e — Te_1)

o AO—1 J_
=1 7T Pr—1 LA Pr—2
ak,lrk—l(ﬁc —T-1)
-
i T Lrp_y
Ty o Th—
k—1"k—1

using the fact that r, L 7,1 and pr_1 L pr_o. This is exactly the update in the
algorithm.

=(1)(k + 1) We now show the induction step.

As explained by the decomposition , when the search directions p;’s are A-orthogonal,
choosing 11 = = + agpr to minimize f(z), actually gives the minimum over zy +
span{po, ..., pr} = o + Kyt1(A; 7o)

The choice of a4, is given by :

Da Tk _ (7% + Brpr—1) "7 _ ek
p;IApk pZApk pEApk

ap =

because pj_1 is perpendicular to 7.

O
Conjugate gradient improves the dependence on k(A) by a square-root factor.
Theorem 4.4 (Convergence of conjugate gradient). Let x(A) = [JAll, [[A7Y, = /\"‘?;((AA))

denote the condition number of A. Then in Algorithm[3,

k(A —1\"
o = aly < 2( YR o=,

The proof of this involves Chebyshev polynomials; we will carry out the proof in the unit
on polynomial interpolation.

We relate the convergence of conjugate gradient to a problem about polynomial interpo-
lation.

Lemma 4.5. Let k(A) = ||A|, |47, = ’;m‘?"((j)) denote the condition number of A. Then
in Algorithm [3,

_ < i — .
[z — x4 < e g ala o =l



Math 361S: Numerical analysis Conjugate gradient

Proof. Because x, € xg + K, (A;7g), we can write
zn = xo + p(A)ro = o + p(A)(b — Axg) = 0 + p(A)A(x — 20)
Ty —x = —p(A)A)(xg — x).

for some polynomial p of degree < n — 1.

Intuition: In order for x, to be close to z, we would like p(A)A ~ I. Thinking of p as
a function on R rather than on matrices, this is like saying that p(z) ~ <, or that p(z)
is a good interpolation of % on some interval. It turns out that we can bound p(A)A
by its evaluation on eigenvalues of A, so that we want p(x) ~ i for € [Amin, Amax]-
It will be easier for us to work with the polynomial 1 — xp(x), which we do below.

Moreover, by construction, p(z) is the polynomial of degree < k — 1 that minimizes
1z} Az, — b"z, or equivalently minimizes (z, — z)" A(z, — z) when z,, = 2o + p(A)ro. This
is the A-norm of the error e,. Letting ¢(x) = 1 — p(x)z, we note that degq < k, and we
have the restriction ¢(0) = 1. Hence

= mi Aegll, < mi A .
lenlla =, min g la(Deolly < | min - la(A) 4 lleoll.

If the condition number of A is k(A), then all eigenvalues are in [Apin, Amax] Where k(A) =
z’ T T . 1l
jusx - Now [|g(A)| , = max, =LA — max, LA — jig(A)||, by setting y = Az
Now, because A is symmetric, we can diagonalize it as UDU " where U is orthogonal and
D is diagonal. Then ¢(A) = Up(D)U", and
la(A)[[4 = lla(Al = llaD)| = max = g(A)].

A eigenvalue of A

]

Proof of Theorem[4.4 By Lemma [4.5] we have reduced to solving the following problem:
Find the polynomial p such that p(0) = 1 and degp < n, such that maxgex, ., Ama] [P(T)] 95
manimized. Then this will be the factor that we get.

Let £ = r(A). We now construct a p(z) such that max,cp,. ana [P(2)] < 2 (ﬁ:)n,
using Chebyshev polynoimals.
To obtain a polynomial that is as small as possible on an interval, and with the given

value p(0) = 1, we take p to be a Chebyshev polynomial suitably scaled. Let

1 T €T — )\min‘gAmax
p(z) = WS s Wy wea I
Tn __ Amin Zimax’ “tmin

2

)\max_Amin

The scaling factor in front was chosen so that p(0) = 1, the linear function in the argument

Amin TAmax
takes the interval [Amin, Amax] to [—1,1]. Note that the maximum of T, (33_—2) on

Amax —Amin
2

[Amins Amax] 18 the maximum of 7}, (z) on [—1, 1], which is 1. Hence

)\min + )\max> ( R + 1)
ﬂ?e[)\llrnlii})fmax] ‘p(x)‘ /\max - AIIliIl R — ]'
It is left as an exercise to show that |7, (—’;—ﬂ)‘ <2 (ﬁ:&)n (Hint: Use the fact that
T,(:+ 1) =21 L) m
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5 Remarks

e We can apply preconditioning to gradient descent or conjugate gradient by considering
the system

(P—l/QAP—l/Q)(Pl/QI,) _ P—1/2b

where P is chosen to reduce the condition number: x(P~Y/2AP~1/?) < x(A). Precon-
ditioning can be done implicitly in the algorithm.

e For nonsymmetric, nonsingular A, we can write Az = bas A" Av = ATb, where AT A
is now symmetric positive definite, and then apply conjugate gradient to A" A.

However, x(ATA) = k(A)?, so convergence becomes slow. It is better to use more
sophisticated methods that work with A directly (see Section 6.5 of Ascher and Greif).

e Conjugate gradient is a “direct method in theory, but an iterative method in practice.”
If exact arithmetic is used, then for A € R™™", x,, = z: the exact solution is obtained
in n steps. This is because each r; is A-orthogonal to rg,...,7x_1, so if r, # 0,
then rg,...,r, are linearly independent, and we must have £ < n. In other words,
if 7, # 0, then conjugate gradient explores a new linearly independent direction, and
there are only n dimensions. (Another way to see this is from Lemma : the degree-n
polynomial ¢ can be chosen to have all the eigenvalues as zeros.)

However, in practice, it is useless as a direct method because Conjugate Gradient
is unstable: round-off error blows up. This instability is due to instability in the
Gram-Schmidt orthogonalization process when the input vectors are “close” to linearly
dependent.

It is fine however, to run Conjugate Gradient for a number of iterations k < n. If you
run many iterations, you may want to “restart” the algorithm periodically to prevent
the instability.

Historically, CG was proposed as a direct method, and people lost interest because of
its instability, but then it made a comeback as an iterative method.

e One application where symmetric positive definite matrices come up naturally is graph
Laplacians. For a network of resistors, putting the inverse resistances between nodes
in the L term, given the outgoing currents in b, the voltages x are given by Ohm’s Law
Lz =0b.
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