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Abstract: Impaired blood flow and oxygenation contribute to many ocular pathologies, including
glaucoma. Here, a mathematical model is presented that combines an image-based heterogeneous
representation of retinal arterioles with a compartmental description of capillaries and venules. The
arteriolar model of the human retina is extrapolated from a previous mouse model based on confocal
microscopy images. Every terminal arteriole is connected in series to compartments for capillaries
and venules, yielding a hybrid model for predicting blood flow and oxygenation throughout the
retinal microcirculation. A metabolic wall signal is calculated in each vessel according to blood and
tissue oxygen levels. As expected, a higher average metabolic signal is generated in pathways with a
lower average oxygen level. The model also predicts a wide range of metabolic signals dependent on
oxygen levels and specific network location. For example, for high oxygen demand, a threefold range
in metabolic signal is predicted despite nearly identical PO2 levels. This whole-network approach,
including a spatially nonuniform structure, is needed to describe the metabolic status of the retina.
This model provides the geometric and hemodynamic framework necessary to predict ocular blood
flow regulation and will ultimately facilitate early detection and treatment of ischemic and metabolic
disorders of the eye.

Keywords: mathematical model; retina; microcirculation; metabolic signaling; oxygen transport;
blood flow; glaucoma; heterogeneous vascular network

1. Introduction

Eye disease and associated blindness are highly impactful to both individuals and
society as a whole. Despite their obvious importance, the exact cellular mechanisms in-
volved in many ocular pathologies are not well described due to the inaccessibility of deep
ocular tissues and the complex physiological interactions between systems. For instance,
primary open-angle glaucoma (OAG), a leading cause of irreversible blindness world-
wide, is characterized by progressive retinal ganglion cell death and loss of visual field.
Reduction of intraocular pressure (IOP) remains the only currently approved treatment in
OAG, yet lowering of IOP has not prevented or fully arrested the disease. Although many
studies have identified specific aspects of the ocular vasculature to be involved in OAG [1],
a clear understanding of mechanistic events during homeostatic hemodynamic regulation
and the disease process remains elusive. Previous experimental studies have established
relationships between retinal structure and visual function in glaucoma, while others have
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demonstrated a correlation between impaired blood flow and glaucoma. However, a uni-
fied theory of the structural and hemodynamic factors that combine to cause functional
visual impairment in glaucoma is missing. Other diseases such as diabetic retinopathy
have clear vascular involvement and clinical presentation but lack a robust understanding
of prior sequential events and/or individual susceptibility. In both examples, there are
significant gaps in knowledge related to the retinal microvasculature, tissue oxygenation,
and retinal regulatory capacity during stresses related to disease processes.

To date, mathematical models of the retinal microvasculature and tissue have included
only some aspects of the main elements impacting retinal blood flow and oxygenation.
The bulk structure of the retinal tissue is multilayered, and the vessel network supplying
the tissue is heterogeneous, with wide variations in vessel size, spacing, density, and
path length. Models for oxygen diffusion in tissue (e.g., Krogh cylinder model) vary
according to simplifying assumptions and network geometry. Previous modeling studies
have accounted for blood flow regulation in the retinal microcirculation [2,3]; however,
these have assumed a uniform structure to the network and have not included multiple
depths of retinal tissue. Studies that have included a more complex network and tissue
structure have not accounted for flow regulation [4,5]. A recent theoretical study [6]
used mathematical modeling to identify three possible factors that can lead to increased
venous oxygen saturation, demonstrating that clinical measures are not sufficient to explain
or identify the underlying mechanisms causing them. The multilayer tissue geometry,
heterogeneous vascular network structure, flow regulation, and oxygen transport in the
retina each contributes in a significant way to the accurate depiction of retinal blood flow;
thus, a model that combines all of these factors is greatly needed to make more definite
predictions of retinal oxygenation in health and disease conditions.

The current study serves as a necessary first step that will allow for the integration of
clinical measures with theoretical models to relate changes in tissue-specific blood flow
and oxygenation to visual function and structure in healthy and glaucomatous eyes. In
particular, a mathematical model was developed here that can be used to predict oxygen
transport and components of blood flow regulation in a heterogeneous description of the
retinal microvasculature. The model combined a heterogeneous description of the retinal
arterioles with a compartmental model of retinal capillaries and venules. Including a com-
partmental representation of the downstream microvessels allowed for realistic predictions
of PO2 downstream of the arterioles. Regulation of blood flow in the microcirculation
depended in part upon metabolic signals generated and conducted upstream throughout
the entire microvascular network. This model allowed for the prediction of conducted
metabolic signals along all nonuniform pathways throughout the network, leading to a
spatially heterogeneous distribution of metabolic responses throughout the realistic net-
work of regulating arterioles and, more importantly, providing more accurate predictions
of downstream conducted metabolic signals. The implications of the model are highly
relevant for glaucoma and other ocular pathologies that involve and potentially alter retinal
metabolism and ultimately threaten ganglion cell preservation.

2. Materials and Methods
2.1. Network Geometry
2.1.1. Arteriolar Network Description

In this study, a theoretical model of human retinal arterioles was extrapolated from a
previous model of the mouse retina [7]. In [7], detailed mappings of the positions, lengths,
and diameters of the arteriolar network in the mouse retina (Figure 1A) were obtained from
confocal microscopy images [8,9]. Since such detailed mappings have not been obtained
from a human retina, human oximetry data were used to translate the murine arteriolar
network to a human network by adapting three main components: (i) the number of main
arterial and venous branches and the angles between them, (ii) vessel diameters, and
(iii) vessel lengths. First, two of the six arterial branches in the mouse retinal network
were eliminated; the remaining four were repositioned to superior/inferior temporal/nasal
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positions according to angles calculated from oximetry images and the position of the fovea.
Next, based on oximetry biomarkers from human retinal arterioles [10], a scaling factor of
3.6 was used to convert murine vessel diameters to human values. Last, the distance from
the CRA to the fovea in the human retina (approximately 4.5 mm) was used to determine
a 5.9 scaling factor between mouse and human vessel lengths [11,12]. Importantly, the
heterogeneity of the network branching structure was assumed to be similar between
species since several studies have indicated that the morphology of the human and murine
vascular networks is strikingly similar [13,14]. The resulting human arteriolar network is
shown in Figure 1B. To validate this mouse-to-man conversion process, it is noted that an
assumed pressure drop of 16 mmHg along the human arteriolar network [2] corresponds
to a total flow of 36,670 nL/min to the human retinal microcirculation, which is consistent
with the flows measured in human retina [15,16].

Figure 1. (A) Heterogeneous mouse arteriolar network obtained using position, length, and diameter data from [8,9], as
described in [7]. (B) Heterogeneous human arteriolar network developed by modifying the mouse model in panel (A) in
the following ways: reducing the number of main branches from six to four, rotating the four main branches according to
oximetry images, and increasing vessel diameters and lengths by a scaling factor of 3.6 and 5.9, respectively.

2.1.2. Capillary and Venular Network Description

Although the model defined in [7] included a heterogeneous description of the capil-
laries and venules, the current study represented retinal capillaries (C), small venules (SV),
and large venules (LV) using a series of compartments (as in [2,17]) in an effort to obtain
insights into flow and oxygenation throughout the entire retina without requiring intense
computational power. Each vessel compartment was assumed to contain a set of identical,
parallel-arranged segments that experience identical hemodynamic and metabolic condi-
tions. This compartmental model was used to evaluate flow and oxygenation of the retinal
microcirculation downstream of the heterogeneous arteriolar network.

2.1.3. Hybrid Model Description

The theoretical model of the human retinal microcirculation introduced in this study
was defined as a hybrid model that combines the heterogeneous model of retinal arterioles
described in Section 2.1.1 with a compartmental representation of capillaries and venules
described in Section 2.1.2. More specifically, vessel compartments corresponding to capil-
laries, small venules, and large venules were connected in series to each terminal arteriole
in the heterogeneous model. This model expanded previous work [2] by capturing the full
heterogeneity of the arteriolar network structure. Since arterioles are the primary microves-
sels capable of actively regulating flow, this hybrid model allowed for spatial predictions
of oxygen distribution and blood flow. The heterogeneity of the arteriolar network was



Photonics 2021, 8, 409 4 of 15

preserved in the downstream compartments by requiring that the inflow oxygen content to
the capillary compartment be calculated as a weighted sum of the hematocrit in each of the
outflowing arterioles. The hybrid model is depicted in Figure 2.

Figure 2. Schematic representation of the hybrid model. The circle shows an enlarged portion of the network where a series
of compartments for the capillaries (C), small venules (SV), and large venules (LV) are attached to each terminal arteriole in
the heterogenous model.

2.2. Blood Flow

The arteriolar network of the hybrid model was represented as a large, directed graph,
whereby each vessel with a particular diameter and length was represented by an edge
and each junction was represented by a node. Pressure-driven flow through each segment
in the network was modeled using Poiseuille’s Law:

Q =
π∆PD4

128 µL
(1)

where Q is the volumetric blood flow rate in an individual vessel segment, ∆P is the
pressure drop along the vessel, D is the diameter of the blood vessel, L is the vessel length,
and µ is the apparent viscosity, which was assumed dependent on the diameter and
hematocrit of the blood vessel based on the diameter-dependent relationship previously
established by Pries et al. [18].

Conservation of mass was imposed at every junction in the network, which allows for
the flow rate, hematocrit, and apparent viscosity to be calculated in each arteriole using an
iterative scheme [19], described in detail in [7]. Initial pressure and flow conditions for the
capillary compartment were obtained from the predictions in the terminal arterioles of the
heterogeneous arteriolar network. Poiseuille’s Law and conservation of mass were then
used to compute flows in the downstream compartmental network.

2.3. Oxygen Transport

The governing equation for steady-state diffusion with oxygen consumption in the
tissue was given by

Ddi f f α∇PO2 = M(PO2) (2)

where PO2 is the tissue partial pressure of oxygen, M(PO2) is the tissue oxygen consumption
rate, and Ddiff and α are the diffusivity and solubility of oxygen in the tissue, respectively.
Here, Ddiffα = 6 × 10−10 cm3 O2/cm/s/mmHg [20,21]. The consumption rate in the tissue
region was assumed to depend on PO2 following Michaelis–Menten oxygen utilization
kinetics, so that

M(PO2) = M0
PO2

P0 + PO2
(3)
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where M0 is the tissue oxygen demand, and P0 is the Michaelis constant at which the
consumption rate is half maximal (taken here to be 10 mmHg [22]).

In the spatially heterogeneous arteriolar network, a Green’s function method [23,24]
was used to solve Equation (2), where the vessels were modeled as discrete oxygen sources,
and the tissue points were represented as oxygen sinks [7,23–25]. The resulting PO2 at
a tissue point was then calculated as the superposition of the oxygen fields (Green’s
functions) produced by each of the surrounding sources and sinks. This method accounted
for diffusive interactions between all vessels and tissue points in the network and was
computationally efficient, as it reduced the problem to solving for the strengths of the
sources and sinks.

By conservation of mass, in each arteriole,

d f (Pb)

ds
= −q(s) (4)

where f (Pb) = Q(HDC0S(Pb) + αbPb) is the rate of convective oxygen transport along a vessel
segment, Q is the blood flow rate, HD is the discharge hematocrit, C0 is the concentration of
hemoglobin-bound oxygen in a fully saturated red blood cell, Pb is the blood PO2, s is the
distance along the vessel segment, q(s) is the rate of diffusive oxygen efflux per unit vessel
length, and S(Pb) is the oxyhemoglobin saturation, which was assumed to be a function of
the blood PO2 via a Hill equation:

S(Pb) =
Pn

b
Pn

b + Pn
50

(5)

where P50 is the vessel PO2 at which hemoglobin is half-saturated, and n is the Hill
coefficient. Here, P50 = 26 mmHg and n = 2.7 (based on [26]).

Similar to Equation (4), by conservation of mass, the rate of change in oxygen flux in
the capillary and venous compartments was given by

d
(
Qj HDC0S(Pb(s))

)
ds

= −q(s) (6)

where index j denotes compartment, and s is distance along the compartment.
In the capillary compartments, oxygen consumption was calculated using a Krogh

cylinder model [27], in which each capillary was assumed to provide oxygen via diffusion
to a surrounding tissue cylinder according to:

Ddi f f α

[
1
r

d
dr

(
r

dPO2(s, r)
dr

)]
= M(PO2) (7)

where r is the radial distance within the tissue cylinder. The tissue oxygen consumption
per vessel length was computed as:

rt∫
rv

M(PO2)2πr dr (8)

where rt denotes the radius of the tissue and rv denotes the radius of the vessel (capillary).
The width of tissue surrounding each capillary was defined as d = rt − rv. Since oxygen
is exchanged primarily in the arterioles and capillaries, oxygen exchange in the venular
compartments was neglected (and hence tissue width in the venules was set to zero).
Assuming a fixed capillary density of N = 50,000/cm2, the value for tissue depth d = 22 µm
was determined by solving Equation (9):

N =
∑i nC,iLC,i

AVOL + ∑i

[
nC,iLC,iπ(rC,i + d)2 + nSV,iLSV,iπr2

SV,i + nLV,iLLV,iπr2
LV,i

] (9)
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where AVOL = 0.0025 cm3 is the total volume of the arteriolar network vessels and tissues,
and index i denotes each vascular pathway. A fourth-order BVP solver in MATLAB was
used to calculate the partial pressure of oxygen in the radial direction while iterating down
the vessel segments. If PO2 decreased to zero, all subsequent values of PO2 along the
capillary were also set to zero.

2.4. Metabolic Signal Calculation

Regulation of blood flow in the microcirculation depends, in part, upon metabolic
signals generated and conducted upstream throughout the entire microvascular network.
The model developed in this study allowed for the prediction of conducted metabolic sig-
nals along all vascular pathways; this algorithm for determining the conducted metabolic
signal will be utilized in future work to predict flow regulation within the hybrid model.

The metabolic response in a given vessel, Smeta, was defined as the average value of
the metabolic wall signal generated along the length of the vessel [25]. This signal was
composed of two exponentially decaying terms: one from the downstream outflow node of
the vessel (Smeta,out) that was decayed upstream along the length of the vessel, and one from
the local signal rate (Sloc) generated at every point along the vessel and decayed upstream
along the remaining length of the vessel. The local metabolic signal, Sloc, generated at each
point along the vessel was inversely related to the local vessel PO2:

Sloc =
P0

P0 + PO2
(10)

Thus, in a particular vessel, the metabolic response was given by

Smeta =
1
L

L∫
0

Smeta,oute−x/L0 dx +
1
L

L∫
0

 x∫
0

Sloce−(x−y)/L0 dy

dx (11)

where L0 is the exponential decay constant, assumed here to be 1 cm, as in [2].

2.5. Control State for the Hybrid Model

A control (or reference) state was established in this model to represent baseline
geometric and hemodynamic conditions corresponding to a healthy human retina. An in-
coming pressure (Pa) of 40 mmHg was assumed at the beginning of the arteriolar network
(i.e., the downstream end of the central retinal artery), and an overall pressure drop of
16 mmHg was assumed across the arterioles (consistent with [2]).

Capillary diameter was assumed to be DC = 6 microns, and shear stress (τ) in the
capillaries was assumed to be τC = 15 dyn/cm2. Viscosity in the capillaries (µC) was given
as a function of capillary diameter obtained from an empirical fit to experimental data [18].

Given these values, flow in a capillary was calculated as QC = πτC DC
3

32µC
.

A loose symmetry assumption was implemented in this study to define geometric
components of the venous compartments; the symmetry assumptions (based on those
outlined in [2]) required the heterogeneous arteriolar network to be classified in terms
of large arterioles (LA) and small arterioles (SA) so that analogous definitions between
arterioles and venules could be established. In the heterogeneous arteriolar network,
terminal arterioles (i.e., the final small arteriolar segments that connect directly to a capillary
compartment) were defined as small arterioles. The entire arteriolar pathway upstream
of the terminal arteriole was classified as a large arteriole. Diameters and lengths of all
arterioles in the hybrid model were obtained from a scaling of the confocal microscopy
images of the murine retina (Section 2.1.1). Since the large arteriole classification contains
vessels of many different diameters, DLA was defined as the diameter of the first (i.e., most
upstream) vessel for a particular pathway; the diameter of the SA (DSA) was the diameter
of the terminal arteriole (all diameters of terminal arterioles were the same). Flow and
pressure drop in the LA and SA were obtained from the heterogeneous model calculations.
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Specifically, in any given pathway, the flow in the LA (QLA) was taken as the incoming flow
to the first vessel (main branch) of that pathway, and flow in the SA (QSA) was taken as the
flow calculated in the terminal arteriole, which also corresponded to the flow that would
enter the downstream compartments. The pressure drop in the LA (∆PLA) was calculated
as the entire pressure drop from the incoming point of the pathway to the upstream end of
the terminal arteriole. The pressure drop along the SA (∆PSA) was the pressure drop in
the terminal arteriole. The first symmetry assumption required that the number of vessels
(n) in corresponding compartments be equal (as in [17]). That is, nSA = nSV and nLA = nLV.
Since all pathways contain only a single terminal arteriole, nSA = nSV = 1. Conservation of
flow along a pathway required that nLAQLA = nSAQSA = nCQC = nSVQSV = nLVQLV. As a
result, nLA = QSA/QLA = nLV and nC = QSA/QC.

Wall shear rates (ω) in the retinal microcirculation were given as a function of arterial
and venous diameter in [28]. In the present study, wall shear rates were interpolated from
the values provided in [28] for capillary, small (terminal) arteriole, and large arteriole
diameters. If the large arteriole diameter was outside the range of interpolation, the
maximum possible interpolated value was used, which was reasonable, since the wall
shear rates were nearly constant for large diameter values. Control state diameter values
for the small and large venule from [2] (i.e., DSV = 69 µm and DLV = 140 µm) were used
here to interpolate for the wall shear rate in the SV and LV compartments. Upon obtaining
the wall shear rate for all vessel types, symmetry assumptions and flow conservation

were used to calculate venular diameters used in the hybrid model: DSV = DSA

(
ωSA
ωSV

)1/3

and DLV = DLA

(
ωLA
ωLV

)1/3
. With all control state diameter values defined, viscosity in all

vessels was obtained from an empirical relationship [18]. Then, wall shear stress in all
compartments was calculated according to ω = τ/µ.

Another symmetry assumption dictated that the lengths of corresponding vessel
compartments were equal, i.e., LSA = LSV and LLA = LLV. Pressure drops in the small and
large venule compartments were obtained using Poiseuille’s Law (Equation (1)). Since a
total pressure drop across the entire microcirculation is assumed to be Pa—IOP, where IOP
is the intraocular pressure and was assumed to be 15 mmHg, the remaining pressure drop in
the capillary compartment was calculated. Then, the length of the capillary compartment
was obtained using Poiseuille’s Law. Table 1 provides the diameter, wall shear stress,
pressure drop, number of segments, length, viscosity, and flow averaged over all pathways
in the control state for the C, SV, and LV compartments.

Table 1. Control state values for capillary, small venule, and large venules compartments averaged
over all pathways.

Description C SV LV
Diameter, D (µm) 6 29.5 137.3
Wall shear stress, τ (dyn/cm2) 15 15.6 14.7
Pressure Drop, ∆P (mmHg) 6 0.3 2.7
Number of segments, n 340 1 0.008
Length, L (cm) 0.080 0.032 0.854
Viscosity, µ (cP) 9.05 2.28 2.39
Flow, Q (cm3/s) 3.51×10−9 1.19×10−6 1.52×10−4

2.6. Model Algorithm and Simulations

The heterogenous arteriolar network was programmed using C++, and the com-
partmental model was programmed in MATLAB. Figure 3 summarizes the numerical
procedure implemented in this study (as described in detail in Sections 2.1–2.4); computa-
tions using C++ are labeled in blue, and those using MATLAB are labeled in purple. First,
as described in Section 2.1.1, the position and diameter of every arteriole were defined.
Then, boundary conditions for the heterogeneous network were defined. Here, the in-
coming arterial pressure was set to 40 mmHg, and the outgoing terminal arterial pressure
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was set to 24 mmHg, yielding a fixed pressure drop of 16 mmHg along the arterioles,
consistent with [2]. The arterioles were assumed to be well oxygenated with an inflow
PO2 of 84.4 mmHg and saturation of 0.96. Blood flow was calculated within each arteriole,
and the Green’s function method was implemented to calculate PO2 in tissue points and
all arterioles. Values of blood flow, PO2, diameter, vessel length, and pressure drop in
the terminal arterioles were then sent to MATLAB for use in the compartmental model.
In the capillaries, a Krogh cylinder model was used to calculate PO2 along the vessel
compartment. Using these PO2 values, the wall-derived metabolic signal was calculated in
the capillaries and venules (see Section 2.4), assuming zero signal at the downstream end of
the large venule compartment. The value of the signal at the upstream end of the capillaries
was transmitted back to C++ so that the metabolic signal could be calculated throughout the
entire arteriolar network. Blood flow, oxygenation, and metabolic signals were predicted
as oxygen demand was varied between M0 = 1 and 4 cm3 O2/100 cm3/min. Although the
current study ends with the calculation of this signal, ultimately, the metabolic signal will
be used to simulate flow regulation using a previously established vessel wall mechanics
model [2,17,25] to obtain more accurate predictions of diameter changes as pressure or
metabolic demand are varied. The two programming languages will be dynamically linked
to exchange data until a steady state is reached, at which point flows and oxygenation
levels will be obtained for the hybrid model (future work, shaded in Figure 3).

Figure 3. Flowchart of the hybrid model programmed in C++ (blue) and MATLAB (purple). The heterogeneous arteriolar
model is programmed in C++ and the compartmental capillary and venular model is in MATLAB. The two programming
languages will be dynamically linked to exchange information repeatedly until a steady state of blood flow and diameter
activation is achieved (future work, shaded gray).

3. Results

Figure 4 shows the model predicted levels of tissue PO2 in the arterioles for three values of
oxygen demand. As oxygen demand (M0) is increased from 1 to 4 cm3 O2/100 cm3/min, there
is a nonuniform reduction in PO2 throughout the tissue indicated by the blue, green, yellow,
and red regions in the contour plots shown in Figure 4A–C. In addition, multiple regions
are consistently predicted to exhibit low PO2 at each oxygen demand level. Such spatial
variance in oxygen distribution could not be predicted without utilizing this heterogeneous
description of the arterioles. The histograms in Figure 4D–F quantify the distribution of
PO2 in the retinal tissue and indicate an increase in the spread of PO2 values as oxygen
demand is increased.

Figure 5A,B shows the mean and standard deviation, respectively, of PO2 at the
upstream (blue curve) and downstream (green curve) end of the capillary compartment as
oxygen demand increases. As expected, both curves in Figure 5A decrease monotonically
with oxygen demand. Since the majority of oxygen extraction occurs in capillaries, the
PO2 at the upstream end of the capillaries remains relatively high and decreases slightly
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with increased oxygen demand. The vertical distance between the blue and green curves
indicates that oxygen extraction increases in the capillaries as oxygen demand is increased.
Unlike the predicted mean PO2 values, the standard deviation in PO2 is predicted to
increase in almost all cases when M0 is increased from 0.5 to 4 cm3 O2/100 cm3/min
(Figure 5B). The decrease in the standard deviation of PO2 at high oxygen demand resulted
from PO2 values equal to zero in multiple vascular pathways.

Figure 4. Contour plots (panels (A–C)) and histograms (panels (D–F)) of tissue PO2 in the arteriolar network for varying
levels of oxygen demand (M0) prior to the calculation of the conducted metabolic response. Three levels of oxygen demand
were simulated: low (M0 = 1 cm3 O2/100 cm3/min, panels (A,D)), moderate (M0 = 2 cm3 O2/100 cm3/min, panels (B,E)),
and high (M0 = 4 cm3 O2/100 cm3/min, panels (C,F)). As M0 is increased, a nonuniform decrease in tissue PO2 was predicted.

Figure 5. Mean PO2 (panel (A)) and standard deviation of PO2 (panel (B)) at the upstream (blue) and
downstream (green) end of the capillary compartment as oxygen demand is varied from M0 = 0.5
to 4 O2/100 cm3/min. Mean (panel (C)) and standard deviation (panel (D)) of the metabolic signal
(Smeta) calculated at the upstream end of the capillaries as oxygen demand is varied.
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Figure 5C,D shows the mean and standard deviation, respectively, of the metabolic
signal (Smeta) at the upstream end of the capillaries as oxygen demand increases. The mean
and standard deviation of the signal at the downstream end of the capillaries are not shown
since only minimal differences in the signal are generated along the small length of the
capillaries (please see Figure 6 for signal values along each point of each pathway). The
signal increases with oxygen demand (Figure 5C). As the PO2 in the blood approaches zero
along a pathway, the local metabolic signal (Sloc, see Equation (6)) approaches one. This
explains the steep increase in both the mean and standard deviation of metabolic signals
for high levels of oxygen demand. Figure 5D indicates that the model predicts not only an
increase in the values of the signal but also an increase in the spread of the metabolic signal
values (i.e., standard deviation) with high oxygen demand.

Figure 6. Panels (A,C,E): Histograms giving the percent distribution of the metabolic signal (Smeta) in every arteriole for
M0 = 1, 2, and 4 cm3 O2/100 cm3/min, respectively. Panels (B,D,F): Metabolic signal calculated at each point in the capillaries
(C, blue), small venules (SV, brown), and large venules (LV, green) for M0 = 1, 2, and 4 cm3 O2/100 cm3/min, respectively.
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Figure 6 depicts the metabolic signal calculated for each pathway in the arteriolar
network (Column 1) and capillary and venous compartments (Column 2). The metabolic
signal is initiated in the retinal venules and is conducted upstream to the arteriolar network,
where it will eventually contribute to the model’s prediction of flow regulation (future
study). A minimal spread in the signal generated for M0 = 1 and M0 = 2 is observed, but
a significant increase in the compartmental signal values and variability in the arteriole
signal values are predicted for M0 = 4 (Figure 6E,F).

Figure 7A,B shows the variance in the metabolic signal reaching the arterioles as a
function of flow or PO2 at the upstream end of the capillaries, respectively (similar results
are obtained at the downstream end of the capillaries but are not shown). Pathways with
the lowest flow typically have branched numerous times and contain terminal arterioles
located far from the central retinal artery. These pathways tend to generate higher levels of
metabolic signal, indicating a possible oxygen deficit in the network periphery. However,
this general trend of increased signal with decreased flow is not very pronounced, since
many pathways with high flow yield similar predictions of the metabolic signal as pathways
with low flow (Figure 7A). An expected increase in metabolic signal with decreasing levels
of PO2 is shown in Figure 7B, although several pathways generate the same level of signal
for a wide range of PO2.

Figure 7. Metabolic signal (Smeta) calculated at the upstream end of the capillaries as a function of
flow (panel (A)) or partial pressure of oxygen (panel (B)) at the upstream end of the capillaries for
three levels of oxygen demand: M0 = 1 (blue), 2 (red), and 4 (green) cm3 O2/100 cm3/min.
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4. Discussion

A healthy vascular network within the retina is a critical element for preserving
visual function in health and disease. The present study adapted previous models of the
retinal microcirculation [2,7,25] to create a more realistic “hybrid” representation of the
retinal microvasculature. An image-based murine retinal arteriolar network was translated
into a heterogeneous description of a human retinal arteriolar network using scaling
factors and geometric properties obtained from retinal oximetry maps. A compartmental
description of the human retinal capillaries and venules [2] was connected in series to each
terminal arteriole in the heterogeneous network to create a full “hybrid” description of the
human retinal microcirculation. The addition of downstream vessels to the heterogeneous
arteriolar network allowed for more realistic predictions of tissue and blood PO2, and,
most importantly, allowed for the computation of metabolic signals that are conducted
upstream to the arterioles.

The model predicted an expected decrease in PO2 (Figures 4 and 5A) throughout the
human retinal microvasculature as oxygen demand (M0) was increased. In addition to a
steady decrease in PO2 in the arterioles, a very large decrease was predicted in venular
PO2 as M0 was increased; specifically, a decrease was predicted from mean PO2 values of
44 mmHg (M0 = 0.5 cm3 O2/100 cm3/min) to 4 mmHg (M0 = 4 cm3 O2/100 cm3/min).
Figure 5A shows that the difference between the arteriolar and venular PO2 grew as the
oxygen demand was increased, and Figure 5B demonstrates that the spread (as measured
by the standard deviation) in PO2 also grew as M0 was increased. Taken together, these
model predictions revealed that an increase in oxygen demand not only led to lower
overall network PO2, but also to a larger spread in PO2. Thus, different regions of the
retina experience vastly different oxygenation, which can lead to vastly different metabolic
responses. To regulate blood flow, arterioles constrict and dilate in response to local and
conducted metabolic signals. The current study demonstrated the interconnection of
all vessels in an arteriolar network such that the metabolic signal (and eventual flow
regulation) in a given vessel is dependent upon all other vessels in the network.

An important component of this study was the assessment of the metabolic status
throughout the retina, as indicated by the metabolic responses generated in the retinal
vessels. As expected, the model predicted an increase in the average metabolic signal
(Smeta) as the oxygen demand was increased (Figure 5C). However, more interestingly,
the model also predicted a large increase in the spread of the metabolic signal throughout
the network (Figures 5D and 6), similarly to the effect seen with PO2. While this is not
surprising, given the relationship between Smeta and PO2, it is important to note that the
metabolic signal varied widely throughout the network, especially for higher oxygen
demand, which indicates that the metabolic signal is most sensitive at high levels of
oxygen demand. As seen in Figure 6C, the value of the metabolic signal varied over an
order of magnitude among the terminal arterioles of the network. This result could not
be seen in a nonheterogeneous description of the retinal vasculature and demonstrates
that an averaged description of the metabolic response does not adequately describe the
metabolic status throughout the retina, potentially missing extreme regions at the tails of
the signal distribution.

Perhaps nonintuitively, the model also revealed that vessels with equivalent values
of PO2 exhibited differing levels of metabolic signal. For example, Figure 7B indicates an
approximately threefold range in Smeta at the terminal arterioles (M0 = 4) despite nearly
identical PO2 levels. This again demonstrates the importance of a whole-network approach
when assessing oxygenation and metabolic status of the retina. Every vessel depends on
every other vessel in the network; obtaining a measure of PO2 within a single vessel would
not be sufficient to analyze the effect of that vessel on flow and oxygenation in the network.

This has important clinical relevance, as retinal nerve fiber tissue loss and associated
visual function defects in glaucoma patients occur regionally rather than globally. Contrary
to diseases such as cataract and corneal opacification that cause diffuse visual field loss,
glaucomatous damage is characterized, at least in the early stages of the disease, by isolated
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visual field defects [29]. Importantly, glaucoma is an asymmetric disease that affects the
two hemifields differently, with more pronounced damage in the superior hemifield than
the inferior [30]. Little is still known about the relationship between the location of the
initial visual field damage and the rate and direction of the functional disease progression,
and their association with ocular and systemic factors [31]. Our comprehensive retinal
model allows for regional as well as global testing which is in alignment with sectorial
glaucomatous damage models and clinical presentations of the disease.

Limitations. The hybrid model presented here greatly improves upon retinal micro-
circulation models by incorporating heterogeneity within the arterioles, but it is limited
by a lack of heterogeneity in the network description of the venules. Unlike the arteriolar
network, which was based on confocal microscopy images, the venules were assumed to
be represented as downstream fixed resistances, as in [2]. As a result, the model does not
capture variation in PO2 or metabolic signal in the venules downstream of a given terminal
arteriole, which could potentially affect the spread in signal at the upstream arterioles.
However, the description of the downstream venular compartment of a given terminal
arteriole does differ from that of another terminal arteriole in that the venular compartment
parameters depend on the terminal arterioles. In this way, venular heterogeneity was rep-
resented between different pathways throughout the network. Eventually, a region-based
model could extend this hybrid model to create a heterogeneous description of both the
arterioles and venules for a single quadrant of the retina in hopes of obtaining even more
accurate predictions of the distribution of PO2 and metabolic signals in the venules in a
computationally tractable way.

The translation of the murine arteriolar network to the human arteriolar network also
introduces some limitations, since it is not fully known if the murine network structure is
identical to the human structure. Nonetheless, studies [14] indicate that the morphologies
of human and murine retinas are strikingly similar and thus the murine network structure
is used here as a best approximation.

Additionally, the model does not explicitly account for the intermediate and deep
layers in which retinal capillaries reside. The arterioles are assumed to be located in the
superficial layer of the retina, but the compartmental and Krogh model description of the
capillaries do not currently account for their arrangement in three-space. Thus, future
iterations of this model will establish a comprehensive multilayer heterogeneous network
model geometry to improve the accuracy of model predictions when simulating metabolic
requirements in the eye.

5. Conclusions

The current model provides predictions of metabolic signals throughout the retinal
arterioles, but it does not yet predict how the arterioles change in response to these sig-
nals (i.e., blood flow regulation). Nevertheless, the hybrid model provides the necessary
framework for assessing metabolic blood flow regulation in the retina and will be ex-
panded to include blood flow regulation mechanisms as described in previous modeling
work [2,17,25,32]. The ability to predict changes in arteriolar diameter and blood flow in a
heterogeneous retinal microvascular network in response to changes in blood pressure or
oxygen demand is critical for unraveling mechanisms involved in many ocular pathologies,
especially OAG. Although experimental observations of blood flow impairment and/or
biomarkers of altered retinal oxygenation in glaucoma patients have been observed for
many decades, the sequential physiological events involved in such processes remain
enigmatic. Our model provides a framework for predicting and interpreting hemodynamic
response to physiological challenge(s) and understanding the chemical mechanisms and as-
sociated cellular responses of the retinal vasculature to stress and during disease processes.
Ultimately, results of our model may allow for earlier detection and higher specificity of
prognosis of ocular pathologies involving retinal hemodynamics and help identify new
treatment targets for multiple eye diseases, including glaucoma.
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