The ordered simples The vertices of
$$\Delta^{\circ}$$
 are the standard n-simplex:
The standard n-simplex:

$$\Delta^{\circ} = \left\{ (s_{0}, \dots, s_{n}) : (j \geq 0), \dots (j_{n}, 0), \dots (0) \right\}$$
The side and a simplex:

$$\Delta^{\circ} = \left\{ (s_{0}, \dots, s_{n}) : (j \geq 0), \dots (j_{n}, 0), \dots (0) \right\}$$
The side and orientation is the simplex of an equation ($s_{0}^{\circ} + \dots + s_{n}^{\circ}$) $\Delta^{\circ} + \dots + s_{n}^{\circ}$ and $s_{n}^{\circ} + \dots + s_{n}^{\circ}$) $\Delta^{\circ} + \dots + s_{n}^{\circ}$
The side and orientation is the side of the simplex of the side ($s_{0}^{\circ} + \dots + s_{n}^{\circ}$) $\Delta^{\circ} + \dots + s_{n}^{\circ}$ and $s_{n}^{\circ} + \dots + s_{n}^{\circ}$.
The side the volue \pm on $\delta^{\circ} + \dots + \delta^{\circ}$, $\delta^{\circ} + \dots + \delta^{\circ}$.
The orientation also equals $s_{n}^{\circ} + \dots + \delta^{\circ}$, $\delta^{\circ} + \dots + \delta^{\circ}$.
The orientation also equals $s_{n}^{\circ} + \dots + \delta^{\circ}$, $\delta^{\circ} + \dots + \delta^{$

$$S_{0} = \{c_{1}, \ldots, c_{n}\} = \{c_{1}, \ldots, c_{n}$$

sets up a bijection between the
standard n-simplex and the time
standard n-simplex and the time
ordened n-simplex. The inverse is

$$t_j = s_0 + \cdots + s_{j-1}$$

Orientations:
 $dt_1 \cdots + dt_n$
 $= ds_0 \wedge ds_1 \cdots + ds_{n-1}$
 $= ds_0 \wedge ds_1 \cdots + ds_{$

Hoducts of Simplices
Reducts of Simplices

$$p_{-f}$$
: A shuffle of type (r,s)
is a permutation σ of $\{z_i, z_{i-1}, z_{i-2}\}$ position of (r)
such that
 $such that
 $such that$
 $such that
 $\sigma^{-1}(z_i) < \sigma^{-1}(z_i) < \sigma^$$$

induces (-1)'r The standard orientation on its Jth tace.

Call $dt_{1} \wedge \dots \wedge dt_{n}$ the "natural orientation" of the time ordered Δ^{n} . Since the natural orientation of Δ^{n} is (-1)" times the standard orientation, we see that the natural orientation of Δ^{n} induces natural orientation of Δ^{n} induces $(-1)^{5+1}$ times the natural orientation on its J^{th} tace.

This can be proved divectly: $\frac{d}{dt} = \frac{d}{dt_{j+1}}$ is an outward normal to the jth tace $t_j = t_{j+1}$. So the induced orientation on the jth tace

= (-1)³⁺¹ dt, n... ndt n... Ndtn - and star atty and about

's'