MATH 272 RIEMANN SURFACES PROBLEM SET 6

Due: Thursday, December 14, 2017.

- 1. Show that if X is a compact Riemann surface and if $P \in X$, then there is a meromorphic function $t \in \mathcal{M}(X)$ that vanishes to order 1 at P. (This is an algebraic local parameter at $P \in X$, which is defined on the Zariski neighbourhood $X t^{-1}(\infty)$ of P in X.) Hint: use Riemann-Roch to prove the existence of 1/t.
- 2. Suppose that X is a compact Riemann surface. Show that the pairing

$$w \otimes \xi \mapsto i \int_X w \wedge \bar{\xi}$$

defines a positive definite Hermitian form on $H^0(X, \Omega_X^1)$. Show that if $\phi \in \text{Aut } X$, then $\phi^* : H^0(X, \Omega_X^1) \to H^0(X, \Omega_X^1)$ is an isometry.

3. Show that if X is a compact Riemann surface of genus $g \ge 2$, then the natural homomorphism

$$\operatorname{Aut}(X) \to \operatorname{Aut} H^0(X, \Omega^1_X)$$

is injective. Hints:

- (i) Show that if X is not hyperelliptic and P, Q are distinct points of X, then there is a holomorphic differential on X that vanishes at P, but not at Q.
- (ii) Show that if X is hyperelliptic, then the "hyperelliptic involution" acts as -1 on $H^0(X, \Omega_X^1)$. Show that if P and Q are distinct points of X, then either $\sigma(P) = Q$ or there is a holomorphic differential that vanishes at P and not at Q.
- 4. Show that if X is a compact Riemann surface of genus $g \geq 2$, then Aut X is finite. Hints:
 - (i) Show that there is a homomorphism

$$U(H^0(X,\Omega^1_X)) \hookrightarrow \operatorname{Aut} H^1(X;\mathbb{C})$$

defined by

$$A \mapsto (A, \overline{A}) \in \operatorname{Aut} \Omega^1(X) \times \operatorname{Aut} \overline{\Omega}^1(X) \subset \operatorname{Aut} (\Omega^1(X) \oplus \overline{\Omega}^1(X)).$$

Observe that this has compact image as unitary groups are compact.

- (ii) Show that if $\phi: X \to X$ is a homeomorphism, then $\phi^* \in \operatorname{Aut} H^1(X; \mathbb{Z})$
- which is a discrete subgroup of $\operatorname{Aut} H^1(X;\mathbb{C})$. (iii) Show that $U(H^0(X,\Omega^1_X)) \cap \operatorname{Aut} H^1(X;\mathbb{Z})$ is finite, where the intersection is taken inside $\operatorname{Aut} H^1(X;\mathbb{C})$.