Richard Hain

November 8, 2017

Math 625 **RIEMANN SURFACES** Assignment 5

Due: November 16, 2017.

1. Show that if D is a divisor on a compact Riemann surface X and $p \in X$, then

$$\ell(D) \le \ell(D+p) \le \ell(D) + 1.$$

2. Show that if D is a divisor on a compact Riemann surface X of positive genus, then $\ell(D) \leq 1 + \deg D$. Hint: Write $D = D_0 + p_1 + p_2$ $\cdots + p_d$, where D_0 has degree 0. Prove the result for D_0 and then use the previous result.

3. Suppose that X is hyperelliptic. (In particular, X is compact and has genus ≥ 2 .) Suppose that $x: X \to \mathbb{P}^1$ is a double covering, which we assume to be branched over $\infty \in \mathbb{P}^1$. Let $p \in X$ be the unique point lying over ∞ and $\sigma: X \to X$ the involution of the double covering.

- (a) How many critical values does $x: X \to \mathbb{P}^1$ have?
- (b) Compute the divisor of the meromorphic 1-form dx on X.
- (c) Show that $\sigma^* \omega = -\omega$ for all $\omega \in H^0(\Omega^1_X)$. Hint: use a trace argument.
- (d) Show that there is a meromorphic function $y \in L((2g+1)p)$ such that $\sigma^* y = -y$ and dx/y is holomorphic. Show that it vanishes at the critical points $\neq p$.
- (e) Suppose that a_0, \ldots, a_N are the critical values of x that lie in
- (c) Suppose that a₀,..., a_N are the critical values of x that lie in C. Show that y² = c ∏_{j=0}^N(x a_j) in M(X), where c ∈ C*.
 (f) Show that (x, y) : X {p} → C² maps X {p} isomorphically onto the smooth plane curve y² = ∏_{j=0}^N(x a_j).