Math 625 Riemann Surfaces Problem Set 3

Due: Thursday, October 12, 2017

1. Suppose that a group Γ acts on a space (or set, Riemann surface, etc) X on the left. Suppose that V is another space (or set, Riemann surface, etc). Suppose that for each $\gamma \in \Gamma$ and $x \in X$, one has $M_{\gamma}(x) \in \operatorname{Aut} V$. Show that the function $\Gamma \to \operatorname{Aut}(X \times V)$ defined by

$$\gamma:(x,v)\mapsto (\gamma x,M_{\gamma}(x)v)$$

defines an action $\Gamma \to \operatorname{Aut}(X \times V)$ if and only if

$$M_{\gamma_1\gamma_2}(x) = M_{\gamma_1}(\gamma_2 x) M_{\gamma_2}(x).$$

A function $M: \Gamma \times X \to \operatorname{Aut} V$ satisfying this condition is called a factor of automorphy.

2. Suppose that X is a Riemann surface and that Γ acts fixed point freely and properly discontinuously on X. Show that if $M_{\gamma}(x)$ is a factor of automorphy with values in \mathbb{C}^* , then the quotient

$$\Gamma \backslash (X \times \mathbb{C}) \to \Gamma \backslash X$$

is a complex line bundle over the Riemann surface $\Gamma \backslash X$. A function $f: X \to \mathbb{C}$ corresponds to the section $x \mapsto (x, f(x))$ of $X \times \mathbb{C} \to \mathbb{C}$. Show that f descends to a section of the line bundle $\Gamma \backslash (X \times \mathbb{C}) \to \Gamma \backslash X$ if and only if

$$f(\gamma x) = M_{\gamma}(x)f(x).$$

3. Now suppose that $X = \mathbb{C}$ and $\Gamma = \mathbb{Z}^2$. Fix τ in the upper half plane \mathfrak{h} and let Γ act on \mathbb{C} by $(m,n): z \mapsto z + m\tau + n$. Show that

$$M_{(m,n)}(z) = \exp(-2\pi i mz - \pi i m^2 \tau) \in \mathbb{C}^*$$

is a factor of automorphy. Let $E_{\tau} = \Gamma \backslash \mathbb{C}$ and $L \to E_{\tau}$ be the line bundle $\Gamma \backslash (\mathbb{C} \times \mathbb{C}) \to E_{\tau}$. Show that an entire function $f : \mathbb{C} \to \mathbb{C}$ defines a section of $L \to E$ if and only if

(1)
$$f(z+1) = f(z) \text{ and } f(z+\tau) = \exp(-2\pi i z - \pi i \tau) f(z)$$

for all $z \in \mathbb{C}$. Hint: it might be helpful to set $q = e^{\pi i \tau}$ and $w = e^{2\pi i z}$.

4. Fix $\tau \in \mathfrak{h}$. Show that the series

$$\vartheta_{\tau}(z) = \sum_{n=-\infty}^{\infty} \exp(\pi i n^2 \tau + 2\pi i n z)$$

converges to a holomorphic function $\mathbb{C} \to \mathbb{C}$ that satisfies the conditions in (1) and thus defines a section of the line bundle $L \to E_{\tau}$.

5. Compute the number of zeros of ϑ_{τ} in the fundamental domain

$$F=\{t+s\tau:0\leq s\leq 1,\ 0\leq t\leq 1\}.$$

Hint: Compute

$$\int_{\partial F} \frac{d\vartheta_{\tau}}{\vartheta_{\tau}}.$$

 $\int_{\partial F} \frac{d\vartheta_\tau}{\vartheta_\tau}.$ Compute the degree of the line bundle L. Locate the zeros by computing

$$\int_{\partial F} z \frac{d\vartheta_{\tau}}{\vartheta_{\tau}}.$$