Math 625 Riemann Surfaces Problem Set 2

Due: Tuesday, September 26, 2017.

1. The polygon P below lies in the complex plane. We have seen that the surface X obtained by identifying the opposite edges of P has a natural complex structure and that it has genus 2.

- (i) Show that there is a holomorphic differential ω on X whose pullback to P is dz.
- (ii) Find the zeros of ω and their orders.
- 2. Let Λ be a lattice in \mathbb{C} . Define

$$\wp_{\Lambda}(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda - \{0\}} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right).$$

(i) Show that \wp_{Λ} is a doubly periodic meromorphic function with period lattice Λ . Show that its poles are at the points of Λ . Hint: first prove that its 'formal derivative'

$$\wp'_{\Lambda}(z) = -2\sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^3},$$

converges almost uniformly on $\mathbb{C} - \Lambda$, then integrate.

- (ii) Deduce that $\wp_{\Lambda}: \mathbb{C}/\Lambda \to \mathbb{P}^1$ is a 2:1 holomorphic map which is branched at the four points of order two of \mathbb{C}/Λ . Deduce also that \wp'_{Λ} has only 3 zeros, counting multiplicity.
- (iii) Show that if $f:\mathbb{C}\to\mathbb{P}^1$ is a doubly periodic meromorphic function (with period lattice Λ) with a Laurent expansion of the form

$$f(z) = \sum_{k=-2}^{\infty} c_k z^k$$

with $c_{-2}=1$ and $c_{-1}=c_0=0$ about zero and poles only on Λ , then $f=\wp_{\Lambda}$.