Math 612

Worksheet 1
The 3-dimensional (real) Heisenberg group is the group

$$
G=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} .
$$

Fix an integer $d \geq 1$ and set

$$
\Gamma_{d}=\left\{\left(\begin{array}{ccc}
1 & m & k \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right): m, n, d k \in \mathbb{Z}\right\}
$$

This acts on G by left translation. Set $M=\Gamma_{d} \backslash G$.
(1) Show that M is a smooth 3-manifold. What is its fundamental group?
(2) Show that the map $G \rightarrow \mathbb{R}^{2}$ defined by

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \mapsto(x, y)
$$

is a group homomorphism and that it induces a smooth map $p: M \rightarrow T$, where T is the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Show that each fiber of p is a circle.
(3) Compute $H_{1}(M ; \mathbb{Z})$.
(4) Show that the 3-form $d x \wedge d y \wedge d z$ on G is left invariant. Deduce that M is orientable.
(5) Compute the integral cohomology groups of M.
(6) Compute the cup product on $H^{\bullet}(M ; \mathbb{Z})$. This is harder!

Some help in how to proceed:
(7) Denote the Lie algebra of G by \mathfrak{g}. Identify the left-invariant forms on G with $\Lambda^{\bullet} \mathfrak{g}^{\vee}$.
(8) Construct a DG algebra homomorphism $\Lambda^{\bullet} \mathfrak{g}^{\vee} \rightarrow E^{\bullet}(M)$.
(9) Set

$$
\gamma=\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

Compute

$$
\gamma^{*} x, \gamma^{*} y, \gamma^{*} z, \gamma^{*} d x, \gamma^{*} d y, \gamma^{*} d z
$$

(10) Find a basis of the left-invariant 1-forms on G.
(11) Find a basis of the closed left-invariant 2-forms on M. Which of these represent non-zero cohomology classes? Why?
(12) Compute the cup product $H^{1}(M ; \mathbb{R})^{\otimes 2} \rightarrow H^{2}(M ; \mathbb{R})$.
(13) Fix the isomorphism of $\pi_{1}\left(M, x_{o}\right)$ with Γ_{d} by taking id to be the basepoint of G and the identity coset x_{o} to be the base point of M. Set

$$
\alpha:=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \beta:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \text { and } \gamma:=\left(\begin{array}{ccc}
1 & 0 & 1 / d \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What loops represent $\alpha \beta \alpha^{-1} \beta^{-1}$ and γ ?
(14) What loop represents a generator of the torsion subgroup of $H_{1}(M ; \mathbb{Z})$?
(15) Find transversally intersecting 2-cycles in M that represent a basis of $H_{1}(M ; \mathbb{Z})$. What does this tell you about the cup product $H^{1}(M ; \mathbb{Z})^{\otimes 2} \rightarrow H^{2}(M ; \mathbb{Z})$?

