Due: 5 pm., Thursday May 4, 2023

1. The goal of this problem is to define the Euler class and to construct the Gysin sequence of a sphere bundle. Suppose that $\pi: S \rightarrow X$ is a locally trivial sphere bundle whose fiber is S^{n}.
(i) Set

$$
B=(S \times[0,1]) / \sim
$$

where $(u, s) \sim(v, t)$ if and only if either $u=v$ and $s=t$, or $s=t=0$ and $\pi(u)=\pi(v)$. Show that $B \rightarrow X$ is a ball bundle whose associated sphere bundle is $S \rightarrow X$. Show that the "zero section" $\zeta: X \rightarrow B$ of and $\pi: B \rightarrow X$ are homotopy equivalences.
(ii) Suppose that $S \rightarrow X$ is R-oriented in the obvious sense. (Equivalently, assume that $B \rightarrow X$ is R-oriented.) Define the Euler class $e(S) \in H^{n+1}(X ; R)$ of the sphere bundle by

$$
e(S):=\zeta^{*} \tau_{B}
$$

Show that any two sections of B are homotopic. Deduce that for all sections s of B we have $e(S)=s^{*} \tau_{B}$.
(iii) Show that the Euler class of a trivial sphere bundle vanishes.

A (real or complex) vector bundle $V \rightarrow X$ is R-orientable if the associated ball bundle is R-orientable. An orientation of V is, by definition, an orientation of the associated ball bundle. The Euler class e (V) of an R-oriented vector bundle V is defined to be the Euler class of the associated sphere bundle.
(iv) Construct and prove the exactness of the (period 3) long exact sequence

$$
\begin{aligned}
& \cdots \rightarrow H^{n+j}(X ; R) \xrightarrow{\pi^{*}} H^{n+j}(S ; R) \xrightarrow{r} H^{j}(X ; R) \\
& \quad \xrightarrow{-e(S)} H^{n+j+1}(X ; R) \xrightarrow{\pi^{*}} H^{n+j+1}(S ; R) \xrightarrow{r} H^{j+1}(X ; R) \rightarrow \cdots
\end{aligned}
$$

Hint: Apply the Thom isomorphism to the cohomology LES of the pair (B, S).

In the de Rham version, r is integration over the fiber - see Bott and Tu for details. In general, r is Kronecker dual to the "tube map", which is the map $H_{j}(X) \rightarrow H_{n+j}(X)$ that takes a cycle z to its inverse image
$\pi^{-1}(z)$ in S. One can use the Künneth theorem to show that it is well defined.
2. Prove that complex vector bundles (and their associated ball and sphere bundles) have a natural orientation. (Hint: show that the orientation $i^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}$ of \mathbb{C}^{n} is invariant under $\mathrm{GL}_{n}(\mathbb{C})$. Alternatively, show that $\mathrm{GL}_{n}(\mathbb{C})$ is connected so that $\mathrm{GL}_{n}(\mathbb{C}) \subset \mathrm{GL}_{2 n}(\mathbb{R})^{+}$.)
3. Suppose that $L \rightarrow X$ is a complex line bundle. Show that the Euler class of the dual line bundle \check{L} is $-e(L)$.
4. (The tautological line bundle over projective space) Suppose that F is a field and that V is a non-zero finite dimensional vector space over F. Define

$$
L=\{(\ell, v) \in \mathbb{P}(V) \times V: v \in \ell\} .
$$

Denote the projection onto the first factor by $\pi: L \rightarrow \mathbb{P}(V)$.
(i) Show that the fiber of L over ℓ is the corresponding 1-dimensional subspace of V.
(ii) Each non-zero linear functional $\phi: V \rightarrow F$ defines a Zariski open subset $U_{\phi}:=\mathbb{P}(V)-\mathbb{P}(\operatorname{ker} \phi)$. Show that there is a unique section s_{ϕ} of L over U_{ϕ} with the property that

$$
s_{\phi}(\ell)=(\ell, v)
$$

where $\phi(v)=1$. Show that if $\phi, \psi \in V^{*}$ are non-zero linear functionals on V, then

$$
s_{\psi}=\phi \psi^{-1} s_{\phi} .
$$

Deduce that L is an algebraic line bundle over $\mathbb{P}(V)$ and that s_{ϕ} has a "simple pole" along the hyperplane $\mathbb{P}(\operatorname{ker} \phi)$.
(iii) Deduce that when $F=\mathbb{R}$ or \mathbb{C} that L is a C^{∞} line bundle. (It is a holomorphic line bundle when $F=\mathbb{C}$.)

When $F=\mathbb{R}$ or \mathbb{C} a norm on V induces a natural metric on L - i.e., a way of measuring length of vectors in each fiber. Namely

$$
\|(\ell, v)\|=\|v\| .
$$

(iv) Show that, when $F=\mathbb{R}$ or \mathbb{C}, the total space of the sphere bundle of $L \rightarrow \mathbb{P}(V)$ is the unit sphere in V.
(v) Show that when $F=\mathbb{R}$ and $V=\mathbb{R}^{n+1}$ with its euclidean standard metric, the sphere bundle is the universal covering $S^{n} \rightarrow \mathbb{P}(V)=\mathbb{R} \mathbb{P}^{n}$.
(vi) Show that when $F=\mathbb{C}$ and $V=\mathbb{C}^{n+1}$ with its hermitian standard metric, the sphere bundle is a circle bundle

$$
S^{2 n+1} \rightarrow \mathbb{P}(V)=\mathbb{C P}^{n}
$$

This is called the Hopf fibration. The complex structure of L gives it a natural orientation.
(vii) Show that the Euler class $e \in H^{1}\left(\mathbb{R}^{n} ; \mathbb{F}_{2}\right)$ of the double covering $S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is the generator of $H^{1}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{F}_{2}\right)$. Hint: use the Gysin sequence.
(viii) Show that the Euler class e of the Hopf fibration $S^{2 n+1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ is a generator of $H^{2}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$. Hint: use the Gysin sequence.

Remark: algebraic geometers denote the line bundle $L \rightarrow \mathbb{P}(V)$ by $\mathcal{O}_{\mathbb{P}(V)}(-1)$ and its dual by $\mathcal{O}_{\mathbb{P}(V)}(1)$. The line bundle $\mathcal{O}_{\mathbb{P}(V)}(d)$ is defined to be the d th tensor power of $\mathcal{O}_{\mathbb{P}(V)}(1)$ when $d>0$ and the $-d$ th power of $\mathcal{O}_{\mathbb{P}(V)}(-1)$ when $d<0$.
5. The goal of the problem is to understand the normal bundle of a hyperplane in $\mathbb{P}(V)$. Suppose that F is a field and that $V=W \oplus F e$, where $e \in V$, where V is finite dimensional and W is non-zero. Set

$$
N:=\{[w, \lambda e] \in \mathbb{P}(V): \lambda \in F, w \in W, w \neq 0\}
$$

and define $\pi: N \rightarrow \mathbb{P}(W)$ by $\pi([w, \lambda e])=[w]$.
(i) Suppose that $\phi \in W^{*}$ is non-zero. Define $s_{\phi}: \mathbb{P}(W) \rightarrow N$ by

$$
s_{\phi}([w])=[w, \phi(w) e] .
$$

Show that s_{ϕ} is a well-defined section of $N \rightarrow \mathbb{P}(W)$ which vanishes on the hyperplane $\mathbb{P}(\operatorname{ker} \phi)$ in $\mathbb{P}(W)$.
(ii) Prove that $N \rightarrow \mathbb{P}(W)$ is an algebraic line bundle over $\mathbb{P}(W)$. It is the normal bundle of $\mathbb{P}(W)$ in $\mathbb{P}(V)$.
(iii) Prove that it is dual to $\mathcal{O}_{\mathbb{P}(W)}(-1)$ and is therefore isomorphic to $\mathcal{O}_{\mathbb{P}(W)}(1)$.
(iv) Suppose that $F=\mathbb{C}$. Show that when $\operatorname{dim} \mathbb{P}(W)>0$, the Euler class $e(N) \in H^{2}(\mathbb{P}(W) ; \mathbb{Z})$ of N is the positive generator $[\mathrm{H}]$ of $H^{2}(\mathbb{P}(W) ; \mathbb{Z})$.
6. The goal of this problem is to understand the normal bundle of a linear subspace of $\mathbb{P}(V)$. Suppose that F is a field and that V is a non-zero finite dimensional vector space over F. Suppose that W is a non-zero proper subspace of V. Choose a complement T of W in V :

$$
V=\underset{3}{W} \oplus T
$$

(i) Set $N=\mathbb{P}(V)-\mathbb{P}(T)$. Show that

$$
N=\{[w, t]: w \in W, t \in T ; w \neq 0\} .
$$

(ii) Define a projection $\pi: N \rightarrow \mathbb{P}(W)$ by $\pi([w, t])=[w]$.
(iii) Choose a basis e_{1}, \ldots, e_{q} of T. For $j=1, \ldots, q$, set

$$
L_{j}=\left\{\left[w, \lambda e_{j}\right]: w \in W, w \neq 0, \lambda \in F\right\}
$$

Show that $L_{j} \rightarrow \mathbb{P}(W)$ is a line bundle isomorphic to $\mathcal{O}_{\mathbb{P}(W)}(1)$. (iv) Show that N is isomorphic to the vector bundle

$$
\bigoplus_{j=1}^{q} L_{j}
$$

and is therefore a vector bundle over $\mathbb{P}(W)$ isomorphic to $\mathcal{O}_{P(W)}(1)^{\oplus q}$.
7. (Construction and basic properties of the first Chern class of a complex line bundle.) Every complex line bundle $L \rightarrow X$ has a natural orientation, and therefore an Euler class $e(L) \in H^{2}(X ; \mathbb{Z})$. Define the first Chern class of the complex line bundle $L \rightarrow X$ by $c_{1}(L)=e(L)$.
(i) Show that if $f: Y \rightarrow X$, then $c_{1}\left(f^{*} L\right)=f^{*} c_{1}(L)$.
(ii) Show that $c_{1}(\check{L})=-c_{1}(L)$.
(iii) Show that the first Chern class of the tautological line bundle $L \rightarrow \mathbb{C P}^{n}$ is $-[H]$, where H is a hyperplane in $\mathbb{C P}^{n}$. Hint: (1) what is the normal bundle of H in $\mathbb{C P}^{n}$? (2) What is the restriction of L to H ?

Remark: it is true that if L_{1} and L_{2} are complex line bundles over X, then $c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)$. I could not think of a simple way for you to prove this using the construction of c_{1} above.
8. (Construction and basic properties of the first Stiefel-Whitney class of a real line bundle.) Every real line bundle $L \rightarrow X$ has a natural \mathbb{F}_{2} orientation, and therefore an Euler class $e(L) \in H^{1}\left(X ; \mathbb{F}_{2}\right)$. Define the first Stiefel-Whitney class of the real line bundle $L \rightarrow X$ by $w_{1}(L)=$ $e(L)$.
(i) Show that if $f: Y \rightarrow X$, then $w_{1}\left(f^{*} L\right)=f^{*} w_{1}(L)$.
(ii) Show that $L \rightarrow X$ is trivial if and only if $w_{1}(L)=0$. Hint: Reduced to the case when X is path connected. Then use the Gysin sequence - start from the degree 0 terms.
(iii) Show that the first Stiefel-Whitney class of the tautological line bundle $L \rightarrow \mathbb{R} \mathbb{P}^{n}$ is $[H]$, where H is a hyperplane. (Hint: What is the restriction of L to H ?
(iv) The S^{0}-bundle B associated to $L \rightarrow X$ is a double covering. It therefore determines a homomorphism $\phi_{L}: \pi_{1}(X, x) \rightarrow \mathbb{F}_{2}$. Show that ϕ_{L} can be viewed as an element of $H^{1}\left(X ; \mathbb{F}_{2}\right)$. Show that L is trivial if and only $\phi_{L}=0$ provided that X is path connected.
(v) Denote the S^{0} bundle associated to the real line bundle $L \rightarrow X$ by $\pi: S \rightarrow L$. Show that the map $H^{j}\left(S ; \mathbb{F}_{2}\right) \rightarrow H^{j}\left(X ; \mathbb{F}_{2}\right)$ in the Gysin sequence is the pushforward π_{*}.
(vi) Show that $w_{1}(L)=\phi_{L}$ when X is path connected. Hint: Use the Gysin sequence to show that both span the kernel of π^{*} : $H^{1}\left(X ; \mathbb{F}_{2}\right) \rightarrow H^{1}\left(S ; \mathbb{F}_{2}\right)$.
(vii) Show that if L_{1} and L_{2} are real line bundles over X, then $w_{1}\left(L \otimes L^{\prime}\right)=w_{1}(L)+w_{1}\left(L^{\prime}\right)$. Hint: reduce to the case X path connected and then show that $\phi_{L_{1} \otimes L_{2}}=\phi_{L_{1}}+\phi_{L_{2}}$.

