
Richard Hain April 20, 2023

Math 612
Final Problem Set

Due: 5 pm., Thursday May 4, 2023

1. The goal of this problem is to define the Euler class and to construct
the Gysin sequence of a sphere bundle. Suppose that π : S → X is a
locally trivial sphere bundle whose fiber is Sn.

(i) Set
B = (S × [0, 1])/ ∼

where (u, s) ∼ (v, t) if and only if either u = v and s = t,
or s = t = 0 and π(u) = π(v). Show that B → X is a ball
bundle whose associated sphere bundle is S → X. Show that
the “zero section” ζ : X → B of and π : B → X are homotopy
equivalences.

(ii) Suppose that S → X isR-oriented in the obvious sense. (Equiv-
alently, assume that B → X is R-oriented.) Define the Euler
class e(S) ∈ Hn+1(X;R) of the sphere bundle by

e(S) := ζ∗τB.

Show that any two sections of B are homotopic. Deduce that
for all sections s of B we have e(S) = s∗τB.

(iii) Show that the Euler class of a trivial sphere bundle vanishes.

A (real or complex) vector bundle V → X is R-orientable if the associ-
ated ball bundle is R-orientable. An orientation of V is, by definition,
an orientation of the associated ball bundle. The Euler class e(V ) of
an R-oriented vector bundle V is defined to be the Euler class of the
associated sphere bundle.

(iv) Construct and prove the exactness of the (period 3) long exact
sequence

· · · → Hn+j(X;R)
π∗
→ Hn+j(S;R)

r→ Hj(X;R)

⌣e(S)−→ Hn+j+1(X;R)
π∗
→ Hn+j+1(S;R)

r→ Hj+1(X;R) → · · ·
Hint: Apply the Thom isomorphism to the cohomology LES
of the pair (B, S).

In the de Rham version, r is integration over the fiber — see Bott and
Tu for details. In general, r is Kronecker dual to the “tube map”, which
is the map Hj(X) → Hn+j(X) that takes a cycle z to its inverse image



π−1(z) in S. One can use the Künneth theorem to show that it is well
defined.

2. Prove that complex vector bundles (and their associated ball and
sphere bundles) have a natural orientation. (Hint: show that the orien-
tation indz1∧dz1∧· · ·∧dzn∧dzn of Cn is invariant under GLn(C). Alter-
natively, show that GLn(C) is connected so that GLn(C) ⊂ GL2n(R)+.)
3. Suppose that L→ X is a complex line bundle. Show that the Euler
class of the dual line bundle Ľ is −e(L).
4. (The tautological line bundle over projective space) Suppose that F
is a field and that V is a non-zero finite dimensional vector space over
F . Define

L = {(ℓ, v) ∈ P(V )× V : v ∈ ℓ}.

Denote the projection onto the first factor by π : L→ P(V ).

(i) Show that the fiber of L over ℓ is the corresponding 1-dimensional
subspace of V .

(ii) Each non-zero linear functional ϕ : V → F defines a Zariski
open subset Uϕ := P(V )−P(kerϕ). Show that there is a unique
section sϕ of L over Uϕ with the property that

sϕ(ℓ) = (ℓ, v)

where ϕ(v) = 1. Show that if ϕ, ψ ∈ V ∗ are non-zero linear
functionals on V , then

sψ = ϕψ−1sϕ.

Deduce that L is an algebraic line bundle over P(V ) and that
sϕ has a “simple pole” along the hyperplane P(kerϕ).

(iii) Deduce that when F = R or C that L is a C∞ line bundle. (It
is a holomorphic line bundle when F = C.)

When F = R or C a norm on V induces a natural metric on L — i.e.,
a way of measuring length of vectors in each fiber. Namely

∥(ℓ, v)∥ = ∥v∥.

(iv) Show that, when F = R or C, the total space of the sphere
bundle of L→ P(V ) is the unit sphere in V .

(v) Show that when F = R and V = Rn+1 with its euclidean
standard metric, the sphere bundle is the universal covering
Sn → P(V ) = RPn.
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(vi) Show that when F = C and V = Cn+1 with its hermitian
standard metric, the sphere bundle is a circle bundle

S2n+1 → P(V ) = CPn.

This is called the Hopf fibration. The complex structure of L
gives it a natural orientation.

(vii) Show that the Euler class e ∈ H1(RPn;F2) of the double cov-
ering Sn → RPn is the generator of H1(RPn;F2). Hint: use
the Gysin sequence.

(viii) Show that the Euler class e of the Hopf fibration S2n+1 → CPn
is a generator of H2(CPn;Z). Hint: use the Gysin sequence.

Remark: algebraic geometers denote the line bundle L → P(V ) by
OP(V )(−1) and its dual byOP(V )(1). The line bundleOP(V )(d) is defined
to be the dth tensor power of OP(V )(1) when d > 0 and the −dth power
of OP(V )(−1) when d < 0.

5. The goal of the problem is to understand the normal bundle of a
hyperplane in P(V ). Suppose that F is a field and that V = W ⊕ Fe,
where e ∈ V , where V is finite dimensional and W is non-zero. Set

N := {[w, λe] ∈ P(V ) : λ ∈ F, w ∈ W, w ̸= 0}

and define π : N → P(W ) by π([w, λe]) = [w].

(i) Suppose that ϕ ∈ W ∗ is non-zero. Define sϕ : P(W ) → N by

sϕ([w]) = [w, ϕ(w)e].

Show that sϕ is a well-defined section of N → P(W ) which
vanishes on the hyperplane P(kerϕ) in P(W ).

(ii) Prove that N → P(W ) is an algebraic line bundle over P(W ).
It is the normal bundle of P(W ) in P(V ).

(iii) Prove that it is dual to OP(W )(−1) and is therefore isomorphic
to OP(W )(1).

(iv) Suppose that F = C. Show that when dimP(W ) > 0, the
Euler class e(N) ∈ H2(P(W );Z) of N is the positive generator
[H] of H2(P(W );Z).

6. The goal of this problem is to understand the normal bundle of a
linear subspace of P(V ). Suppose that F is a field and that V is a
non-zero finite dimensional vector space over F . Suppose that W is a
non-zero proper subspace of V . Choose a complement T of W in V :

V = W ⊕ T.
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(i) Set N = P(V )− P(T ). Show that

N = {[w, t] : w ∈ W, t ∈ T ;w ̸= 0}.
(ii) Define a projection π : N → P(W ) by π([w, t]) = [w].
(iii) Choose a basis e1, . . . , eq of T . For j = 1, . . . , q, set

Lj = {[w, λej] : w ∈ W, w ̸= 0, λ ∈ F}.
Show that Lj → P(W ) is a line bundle isomorphic to OP(W )(1).

(iv) Show that N is isomorphic to the vector bundle
q⊕
j=1

Lj

and is therefore a vector bundle over P(W ) isomorphic to
OP (W )(1)

⊕q.

7. (Construction and basic properties of the first Chern class of a com-
plex line bundle.) Every complex line bundle L → X has a natural
orientation, and therefore an Euler class e(L) ∈ H2(X;Z). Define the
first Chern class of the complex line bundle L→ X by c1(L) = e(L).

(i) Show that if f : Y → X, then c1(f
∗L) = f ∗c1(L).

(ii) Show that c1(Ľ) = −c1(L).
(iii) Show that the first Chern class of the tautological line bundle

L → CPn is −[H], where H is a hyperplane in CPn. Hint:
(1) what is the normal bundle of H in CPn? (2) What is the
restriction of L to H?

Remark: it is true that if L1 and L2 are complex line bundles over X,
then c1(L1 ⊗ L2) = c1(L1) + c1(L2). I could not think of a simple way
for you to prove this using the construction of c1 above.

8. (Construction and basic properties of the first Stiefel-Whitney class
of a real line bundle.) Every real line bundle L → X has a natural F2

orientation, and therefore an Euler class e(L) ∈ H1(X;F2). Define the
first Stiefel-Whitney class of the real line bundle L → X by w1(L) =
e(L).

(i) Show that if f : Y → X, then w1(f
∗L) = f ∗w1(L).

(ii) Show that L → X is trivial if and only if w1(L) = 0. Hint:
Reduced to the case when X is path connected. Then use the
Gysin sequence — start from the degree 0 terms.

(iii) Show that the first Stiefel-Whitney class of the tautological
line bundle L → RPn is [H], where H is a hyperplane. (Hint:
What is the restriction of L to H?
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(iv) The S0-bundle B associated to L → X is a double covering.
It therefore determines a homomorphism ϕL : π1(X, x) → F2.
Show that ϕL can be viewed as an element of H1(X;F2). Show
that L is trivial if and only ϕL = 0 provided that X is path
connected.

(v) Denote the S0 bundle associated to the real line bundle L→ X
by π : S → L. Show that the map Hj(S;F2) → Hj(X;F2) in
the Gysin sequence is the pushforward π∗.

(vi) Show that w1(L) = ϕL when X is path connected. Hint: Use
the Gysin sequence to show that both span the kernel of π∗ :
H1(X;F2) → H1(S;F2).

(vii) Show that if L1 and L2 are real line bundles over X, then
w1(L⊗L′) = w1(L)+w1(L

′). Hint: reduce to the case X path
connected and then show that ϕL1⊗L2 = ϕL1 + ϕL2 .
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