Math 612
Problem Set 2
Due: Tuesday Februarty 28, 2023.

1. Denote the n-torus $\left(S^{1}\right)^{n}$ by T_{n}. Compute the action of the automorphism

$$
\sigma: T_{n} \rightarrow T_{n}, \quad \sigma: x \mapsto-x
$$

on $H_{\bullet}\left(T_{n} ; R\right)$ and $H^{\bullet}\left(T_{n} ; R\right)$ for all coefficient rings R.
2. Suppose that $\pi: Y \rightarrow X$ is a covering map of finite degree d. Fix a base ring R.
(i) Show that each singular simplex $\sigma: \Delta^{n} \rightarrow X$ has d lifts σ_{j} : $\Delta^{n} \rightarrow Y, j=1, \ldots, d$. (That is, $\pi \circ \sigma_{j}=\sigma$, each j.)
(ii) Define an R-module map $\pi^{*}: C_{\bullet}(X) \rightarrow C_{\bullet}(Y)$ by

$$
\pi^{*}(\sigma)=\sigma_{1}+\cdots+\sigma_{d}=\sum_{\substack{\tau: \Delta^{n} \rightarrow Y \\ \pi \circ \tau=\sigma}} \tau
$$

Show that π^{*} is a chain map and that $\pi_{*} \circ \pi^{*}$ is multiplication by d.
(iii) Deduce that for all R-modules M, there are maps
$\pi^{*}: H_{\bullet}(X ; M) \rightarrow H_{\bullet}(Y ; M)$ and $\pi_{*}: H^{\bullet}(Y ; M) \rightarrow H^{\bullet}(X ; M)$
such that the composites

$$
\begin{aligned}
& H_{\bullet}(X ; M) \xrightarrow{\pi^{*}} H_{\bullet}(Y ; M) \xrightarrow{\pi_{*}} H_{\bullet}(X ; M) \\
& H^{\bullet}(X ; M) \xrightarrow{\pi^{*}} H^{\bullet}(Y ; M) \xrightarrow{\pi_{*}} H^{\bullet}(X ; M)
\end{aligned}
$$

are multiplication by d. Deduce that if $H^{j}(Y ; M)=0$ (resp. $\left.H_{j}(Y ; M)=0\right)$, then d annihilates $H^{j}(X ; M)\left(\right.$ resp. $\left.H_{j}(X ; M)\right)$.
(iv) Deduce that if $\pi: S^{n} \rightarrow X$ is a d-fold covering map, then $H_{j}(X ; \mathbb{Z})$ is annhilated by d when $0<j<n$.
(v) Regard $S^{2 m-1}$ as the unit sphere in \mathbb{C}^{n}. Show that the group $\boldsymbol{\mu}_{d}$ of d th roots of unity acts fixed point freely on $S^{2 m-1}$ by multiplication. Deduce that $H_{j}\left(S^{2 m-1} / \boldsymbol{\mu}_{d} ; \mathbb{Z}\right)$ is annhilated by d when $0<j<2 m-1$. (We'll see that these groups are cyclic.)
3. Assume now that the covering in the previous problem is Galois with Galois group G. (This is finite of order d.) Suppose that $d \in R^{\times}$.
(i) Show that if V is an $R[G]$-module, then there is a unique G submodule V^{\prime} of V such that

$$
V=V^{G} \oplus V^{\prime}
$$

where $V^{G}=\{v \in V: g v=v$ all $g \in G\}$. Hint: Take $V^{\prime}=$ $\left\{v \in V: \sum_{g \in G} g v=0\right\}$.
(ii) Show that the singular chain complex of Y decomposes

$$
C_{\bullet}(Y)=C_{\bullet}(Y)^{G} \oplus C_{\bullet}(Y)^{\prime}
$$

(Here, coefficients R are understood.)
(iii) Show that the restriction of π_{*} to $C_{\bullet}(Y)^{G}$ is an isomorphism with inverse $d^{-1} \pi^{*}$.
(iv) Deduce that for all R-modules M, $\pi^{*}: H^{\bullet}(X ; M) \rightarrow H^{\bullet}(Y ; M)^{G}$ and $\pi_{*}: H_{\bullet}(Y ; M)^{G} \rightarrow H_{\bullet}(X ; M)$ are isomorphisms.

