Rough Notes on Real Analysis

A very quick and dirty construction of the real numbers is that a real number is a decimal expression

\[\pm a_k a_{k-1} \ldots a_0 a_{-1} b_1 b_2 b_3 \ldots \]

where each \(a_j, b_m \in \{0, 1, \ldots, 9\} \).

This is to be thought of as

\[\pm a_k 10^k + a_{k-1} 10^{k-1} + \ldots + a_0 + b_1/10 + b_2/10^2 + b_3/10^3 + \ldots \]

One has to introduce relations such as

not 9

\[a_k \ldots a_0 \cdot b_1 \ldots b_k \ 9 \ 9 \ 9 \ldots \]

\[= a_k \ldots a_0 \cdot b_1 \ldots (b_k+1) 0 \ 0 \ 0 \ldots \]

Equivalently

\[0.9999\ldots = 1.0 \]

2.

The important property of the real numbers \(\mathbb{R} \) is that every Cauchy sequence in \(\mathbb{R} \) converges. This has many consequences, such as the "least upper bound property".

Least upper bounds:

An upper bound of a subset \(A \) of \(\mathbb{R} \) is a real number \(M \) such that

\[a < M \quad \text{all} \ a \in A. \]

Not every subset \(A \) of \(\mathbb{R} \) has an upper bound.

Definition: A real number \(M \) is a least upper bound of a subset \(A \) of \(\mathbb{R} \) if:

(i) \(M \) is an upper bound of \(A \);
(2) No smaller $m \in \mathbb{R}$ is an upper bound of A. This means that if $m < M$, then there exists $a \in A$ such that $m < a \leq M$.

Note that if M is a least upper bound of A, then M may or may not be in A.

Eq: (i) $A = \{ x \in \mathbb{R} : x < 0 \}$

$M = 0$, $M \not\in A$

(ii) $A = \{ x \in \mathbb{R} : x \leq 0 \}$

$M = 0$, $M \in A$.

A fundamental property of \mathbb{R} is:

$\forall^{\text{non-empty}} A \in \mathbb{R}$ is bounded above, then it has a least upper bound in \mathbb{R}.

Proof (Sketch).

Let x_0 be the smallest integer that is an upper bound of A. This exists as:

(i) There is certainly an integer upper bound N of A.

(ii) If $a \in A$ (A is non-empty!)
there is only a finite number of integers n satisfying $a \leq n \leq N$.

Let $x_1 =$ smallest integer multiple of $\frac{1}{2}$ that is an upper bound of A.

It exists by a similar argument.

Note that $x_0 \geq x_1$.

Continue in this way:

$x_k =$ smallest integer multiple of $\frac{1}{2^k}$ that is an upper bound of A.
5. Then

\[x_0 \geq x_1 \geq x_2 \geq \cdots \]

and \[|x_k - x_{k+1}| \leq \frac{1}{2^{k+1}} \]

This implies that \(k \geq 0 \)

\[|x_k - x_{k+1}| \leq \frac{1}{2^{k+1}} + \cdots + \frac{1}{2^{k+1}} \]

\[< \frac{1}{2^{k+1}} \]

\[< \frac{1}{2^k} \quad \text{geometric series} \]

It follows that \(\{x_k\} \) is a Cauchy sequence, and therefore converges.

Let \(M = \lim_{k \to \infty} x_k \).

Then \(M \) is a least upper bound of \(A \).

Exercise: Prove this.

6. Similarly, every non-empty subset \(B \) of \(\mathbb{R} \) that is bounded below has a "greatest lower bound."

Remark: The set of rational numbers \(\mathbb{Q} \) does not have the least upper bound property.

\[A = \{ y \in \mathbb{Q} : y^2 < 2 \} \]

This does not have a least upper bound in \(\mathbb{Q} \). Its least upper bound in \(\mathbb{R} \) is \(\sqrt{2} \), which is irrational.

\textit{Nested interval property}

Suppose that

\[I_n = [a_n, b_n] = \{ x \in \mathbb{R} : a_n \leq x \leq b_n \} \]

and that \(I_0 \supset I_1 \supset I_2 \supset \cdots \)
That is, for all \(n \geq 0 \)
\[
\alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_n \leq \beta_n \leq \cdots \leq \beta_2 \leq \beta_1.
\]

Proposition: \(\bigcap_{n=0}^{\infty} I_n \neq \emptyset \)

That is, there is an \(x \in \mathbb{R} \) that is in every \(I_n \).

proof. The set \(A = \{a_n\} \) is bounded above by all \(\beta_m \). It therefore has a least upper bound \(a \in \mathbb{R} \). It has to be smaller than each \(\beta_m \), as each \(\beta_m \) is an upper bound.

The set \(B \) is bounded below by \(a \). It therefore has a greatest lower bound \(b \), which satisfies \(a \leq b \).

Exercise:
\[
\bigcap_{n=1}^{\infty} I_n = [a, b].
\]

This is non-empty as \(a \leq b \). \(\square \)

This generalizes to the "nested rectangle theorem" in \(\mathbb{C} \) (or \(\mathbb{R}^2 \)) and the "nested box theorem" in \(\mathbb{R}^n \).

Limit points

Suppose that \(A \subseteq \mathbb{R} \). A limit point (or point of accumulation) of \(A \) is a real number \(p \) (which may or may not be in \(A \)) such that all neighbourhoods
\[
\{x : \varepsilon < x < \varepsilon + 2\}
\]
contain an infinite number of elements of \(A \).

Proposition: \(p \in \mathbb{R} \) is a limit point of \(A \) if and only if there is a sequence \(\{a_n\} \) in \(A \), where \(an \neq p \).
That converges to \(a \).

Proof: If \(\{a_n\} \to p \) and no \(a_n = p \), then for all \(\varepsilon > 0 \)

\[
\{a_n\} \cap \{ x : p-\varepsilon \leq x \leq p+\varepsilon \}
\]

is infinite. So \(p \) is an accumulation point of \(A \).

Conversely, if \(p \) is an accumulation point of \(A \), for all \(n \geq 1 \), the set

\[
A \cap \{ p - n \leq x \leq p + n \}
\]

is infinite. Let \(a_n \) be an element, \(a_n \neq p \). Then \(a_n \to p \). \(\square \)

Boundedness Result

A subset \(B \) of \(\mathbb{R}^n \) is bounded if there are intervals \(I_1, \ldots, I_n \) in \(\mathbb{R} \):

\[
I_j = [a_j, b_j]
\]

Such that \(B \) is contained in the box

\[
I_1 \times \cdots \times I_n = \{ (x_1, \ldots, x_n) : a_j \leq x_j \leq b_j, 1 \leq j \leq n \}
\]

Proposition Every infinite subset of

\[
T = I_1 \times \cdots \times I_n
\]

has a point of accumulation.

Proof: Suppose that \(T \) is an infinite subset of \(T \). Cut each \(I_j \) into 2:

\[
I_j = I_j' \cup I_j''
\]

where

\[
I_j' = [a_j, a_j + b_j]
\]

\[
I_j'' = [a_j + b_j, b_j]
\]

This divides \(T \) into \(2^n \) boxes.

\(\text{E.g.} n = 2 \)

Label the pieces \(T_j^{(1)}, \ldots, T_2^{(n)} \).
At least one of these contains an infinite number of elements of \(A \). Choose one. Call it \(T^{(1)} \).

Divide \(T^{(1)} \) into \(2^n \) boxes

\[T^{(2)}, \ldots, T^{(2^n)} \]

At least one of these has to contain an infinite \# of elements of \(A \). Choose one. Call it \(T^{(2)} \).

Continue in this manner to obtain a nested sequence of boxes

\[T = T^{(2)} \supset T^{(3)} \supset T^{(4)} \supset \ldots \]

where \(T^{(k)} \) is \(\frac{1}{2^k} \times T \) (up to translation)

The nested interval implies that

\[\bigcap T^{(k)} \]

is non-empty. In fact it is one point as the side lengths of \(T^{(k)} \to 0 \). This point is a point of accumulation of \(A \) as every

\[T^{(k)} \] contains infinite \# of points of \(A \).

We can now show that continuous functions on closed bounded sets are bounded:

Proposition: Suppose that \(K \) is a closed and bounded subset of \(\mathbb{R}^n \). If \(f: K \to \mathbb{R} \) is continuous, then there are \(M_0, M_0 \in \mathbb{R} \) such that

1. \(M_0 \leq f(x) \leq M_0 \) all \(x \in K \)

2. There exist \(x_{\text{max}}, x_{\text{min}} \in K \) with

\[f(x_{\text{min}}) = M_0, \quad f(x_{\text{max}}) = M_0 \]

proof: If \(f \) is not bounded on \(K \), then for each \(n \), we can find \(x_n \in K \) such that \(f(x_n) \geq n \). Set

\[A = \{ x_n : n \geq 1 \} \]

This is infinite. Since \(K \) is bounded, \(A \in I, x \ldots \cdot I_n \)
It therefore has a point of accumulation a. But since $A \in K$ and since K is closed, $a \in K$.

Choose $\epsilon > 0$ such that:

$x \in K \quad |x - a| < \epsilon \Rightarrow |f(x) - f(a)| < \epsilon$

This is possible as f is continuous.

But since a is an accumulation point of A

$S := \{ x_n \in A : |x_n - a| < \epsilon \}$

is infinite. This implies that for all $n \geq 1$

$n < f(x_n) < f(a) + \epsilon$.

But this is impossible, so f is bounded above.

It is also bounded below — just apply the above argument to see that $-f$ is bounded above.

Our final task is to show that f has a maximum value. The argument above shows that the set

$\{ f(x) : x \in K \}$

is bounded above. It therefore has a least upper bound, M_0.

Claim: There is $x_0 \in K$ such that $f(x_0) = M_0$.

Proof: Since M_0 is a least upper bound, for all $n \geq 1$, there is $x_n \in K$ such that

$M_0 - \epsilon < f(x_n) \leq M_0$

If there is an N such that $f(x_N) = M_0$, we are done. If not, the set $\{x_n\}$ is infinite. Since K is closed and bounded, it has a point of accumulation x_0. This means that
\(\{x_n\}\) has a subsequence \(\{x_{k_n}\}\) that converges to \(x_0\). So

\[f(x_0) = \lim_{n \to \infty} f(x_{k_n}) = M_0 \]

as

(i) \(k_n \geq n\)

(ii) \(M_0 - y_n < f(x_{k_n}) \leq M_0\). \(\square\)

Applying the argument above to \(-f\) shows that there is \(x_{\min} \in K\) such that \(f(x) \geq f(x_{\min})\) all \(x \in K\). \(\square\)