1. Expand
\[f(z) = \frac{1}{z^3} \]
as a power series about \(z = -2 \). What is the radius of convergence of this power series?

2. For what integers \(n \geq 0 \) (if any) is
\[\frac{z^n}{z - \sin z} \]
analytic at \(z = 0 \)?

3. (i) Show that \(\cos z = 0 \) if and only if \(z \) is an odd multiple of \(\pi/2 \).
(ii) Compute
\[\int_{|z-z_0|=1} \frac{\cos z}{z - \pi} \, dz \]
when (a) \(z_0 = 0 \); (b) \(z_0 = \pi \), and (c) \(z_0 = 3 \).

4. Suppose that \(S \) is an open set that contains the closed unit disk \(|z| \leq 1 \). Show that if \(f : S \to \mathbb{C} \) an analytic function that maps the unit disk into itself and if \(f(z) = \sum_{n=0}^{\infty} c_n z^n \), then \(|c_n| \leq 1 \) for all \(n \). Hint: use the formula for \(c_n \).

5. (i) Let \(S \) be the upper half plane \(\text{Im}(z) > 0 \). Show that the exponential function \(z \mapsto e^{iz} \) maps \(S \) into the unit disk.
(ii) Show that if \(f \) is an entire function whose image lies in any half plane, then \(f \) is constant. Hint: Use the first part and Liouville’s Theorem.