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Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

• predict stroke tendency

• screen for loci of pathology, such as tumors

• explore how age affects vascularization
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Magnetic Resonance Angiography (MRA)
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[Bullitt and Aylward, 2002]
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Topological space X  homology HiX for each dimension i .

• vector space that measures “i-dimensional holes” in X
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Persistent homology

Build X step by step
• measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing

sequence of subspaces: ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

• The persistent homology of this filtration is HiX1 → HiX2 → · · · → HiXm,

a sequence of vector space homomorphisms.

• A feature persists from j to k if it appears first in HiXj and last in HiXk .

Examples:

1. Given a function f : X → R, let Xt = {x ∈ X | f (x) ≤ t}. Good choice of

t0, . . . , tm ∈ R: the values of t across which HiXt changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[Knudson and many others]: further theoretical developments, applications
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Persistent homology

Build X step by step
• measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing

sequence of subspaces: ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

• The persistent homology of this filtration is HiX1 → HiX2 → · · · → HiXm,

a sequence of vector space homomorphisms.

• A feature persists from j to k if it appears first in HiXj and last in HiXk .

Examples:

1. Given a function f : X → R, let Xt = {x ∈ X | f (x) ≤ t}. Good choice of
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Data structure: 3D tree bar code / lace array / persistence diagram:

• multiset of (vertical) line segments [t , t ′] (plotted at x-coordinate t)
• one for each class with birth time t and death time t ′.
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Sweep filtration

Goal: statistical analysis taking into account

• 3D structure, in particular
• “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:

• birth time of each new component
• death of each component (when it joins to an older component)

Easily computable (if dim X is low; ambient space dim irrelevant).
9
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Statistical analysis

Reduce to linear methods. 3D tree bar code vector in R
100:

• top 100 bar lengths, in decreasing order, log scale

• correlate first principal component score vs. age

Conclusions. [Bendich, Marron, M.—, Pieloch, Skwerer 2014]

Longest bars in older brains tend to be shorter and later.

• Pearson correlation 0.52663

• p-value 3.0127 × 10−8 strongly significant

Remarks. Results essentially unchanged after

• rescaling to account for natural variation in overall brain size (force

standard deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2005] (divide by L,
√

L, or
3
√

L)

• repeating the analysis with residuals from regression between feature

vector and total length.

Moral. Persistent homology can topologically detect statistically significant

geometric motifs.
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Reflections on persistent homology

Where did the best correlation occur?
• How did we choose top 100 bar lengths?
• What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

• are “biggest”
• live “far from the diagonal” in bar codes.

For brain artery trees.
• Not surprising that very short bars ↔ noise,

although in future studies they might not.
• While biggest features are important,
• they hinder strength of correlation.

Morals.
• Importance 6⇒ significance for geometric features.
• Persistent homology can detect significant features lying between

important and noise.
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Persistent homology mantra: most significant features

• are “biggest”
• live “far from the diagonal” in bar codes.

For brain artery trees.
• Not surprising that very short bars ↔ noise,

although in future studies they might not.
• While biggest features are important,
• they hinder strength of correlation.

Morals.
• Importance 6⇒ significance for geometric features.
• Persistent homology can detect significant features lying between

important and noise.

Lesson for students. Integration of biology, math, stat, and computation in

research and application.
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Future directions

• fruit fly wings (with Houle, Thomas, Curry, Beriwal)

• lung arteries (with McLean et al., Marron)

• fMRI (with Lazar et al.)
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Future directions
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• lung arteries (with McLean et al., Marron)
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Thank You
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