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Syllabus

1. overview (today)
2. geometry and measure on CAT(κ) spaces [arXiv:...3, §1-§2]

• CAT(κ) spaces
• angles and angular pairing
• tangent cones
• localized measures
• escape and fluctuating cones
• hulls

3. shadows and tangential collapse [arXiv:...1]
• shadows [arXiv:...3, §3-§4]
• radial transport
• limit log
• tangential collapse

4. convergence to Gaussian objects [arXiv:...4], [arXiv:...5, §6.1]
• random tangent fields and their CLT
• stratified Gaussians

5. central limit theorems via escape [arXiv:...5, §4-§6]
• escape vectors
• continuous mapping theorem
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Outline

1. Linear Central Limit Theorem

2. Nonlinear data

3. History

4. Fréchet means

5. Logarithm maps

6. Smooth manifold CLT

7. Singular CLT

8. Singular distortion

9. New interpretations of CLTs

10. Overview

11. Future directions
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Linear Central Limit Theorem

Input
• vector space R

d

• independent random variables X1,X2, . . .

• distributed according to µ

Compare empirical mean µ̄n =
1

n

n
∑

i=1

Xi

to population mean µ̄ =

∫

x µ(dx)

Law of Large Numbers (LLN): µ̄n
n→∞−−−−→ µ̄ almost surely.

Central Limit Theorem (CLT):
√
n (µ̄n − µ̄)

n→∞−−−−→ N(0,Σ) in distribution,
for random variable N(0,Σ)

• Gaussian

• centered at 0

• same covariance Σ as µ.

1
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Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Linear Central Limit Theorem

Input
• vector space R

d

• independent random variables X1,X2, . . .

• distributed according to µ

Compare empirical mean µ̄n =
1

n

n
∑

i=1

Xi

µ̄

µ̄n

to population mean µ̄ =

∫

x µ(dx)

Law of Large Numbers (LLN): µ̄n
n→∞−−−−→ µ̄ almost surely.

Central Limit Theorem (CLT):
√
n (µ̄n − µ̄)

n→∞−−−−→ N(0,Σ) in distribution,
for random variable N(0,Σ)

• Gaussian

• centered at 0

• same covariance Σ as µ.

1
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Nonlinear data

Initial rationale: “Big Data” often sampled from nonlinear spaces.

Examples
• angles: points on a circle

+ wind direction
+ knee or elbow motion

• directions: points on a sphere
+ wrist or ankle motion
+ surface unit normal (e.g., medical imaging)

• shapes: points on a quotient of d × n matrices
• diffusion tensors: positive semidefinite matrices
• trees, e.g.: + phylogenetic tree space [Billera–Holmes–Vogtmann 2001],

+ phylogenetic orange [Kim 2000],
+ tropical grassmannian [Speyer–Sturmfels 2004],
+ wald space [Lueg–Garba–Nye–Huckemann 2021], . . .

• products and mixtures of these: unions of subspaces, spheres, tori, . . .
+ e.g., the digit “1”

• persistence diagrams: topological summaries of
+ datasets
+ data objects

2
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Hippocampus surfaces

Skeletal representation

Fletcher, Pizer, and Joshi 2006

Dataset
276 skeleta of hippocampus surfaces:

courtesy S. Pizer

each datapoint ∈ R
67
+ × S68 × (S2)66, dim 267 in R

334.
3
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Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Nonlinear data

Initial rationale: “Big Data” often sampled from nonlinear spaces.

Examples
• angles: points on a circle

+ wind direction
+ knee or elbow motion

• directions: points on a sphere
+ wrist or ankle motion
+ surface unit normal (e.g., medical imaging)

• shapes: points on a quotient of d × n matrices
• diffusion tensors: positive semidefinite matrices
• trees, e.g.: + phylogenetic tree space [Billera–Holmes–Vogtmann 2001],

+ phylogenetic orange [Kim 2000],
+ tropical grassmannian [Speyer–Sturmfels 2004],
+ wald space [Lueg–Garba–Nye–Huckemann 2021], . . .

• products and mixtures of these: unions of subspaces, spheres, tori, . . .
+ e.g., the digit “1”

• persistence diagrams: topological summaries of
+ datasets
+ data objects

2’
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Streamlines from Diffusion Tensor Imaging

courtesy Zhengwu Zhang
4
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Lung vessels (CDH study)

courtesy Sean McLean

5
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Brain arteries

[Bullitt and Aylward, 2002]

6
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Amphiacusta phylogeny

7
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Phylogenetic trees

Def. A phylogenetic tree is a rooted metric tree with n labeled leaves

Distributions of trees come from
• tree reconstruction algorithms: LLN ⇒ sample mean → true tree
• evolutionary biology: “gene trees” from a “species tree”
• medical imaging: blood vessels, lungs, nerve cells, ...

Sample space Tn = {phylogenetic n-trees} is a union of polyhedral cones
(orthants) [Billera–Holmes–Vogtmann 2001]

• Oτ = trees with fixed topology τ ↔ {lists of edge lengths for τ}
= orthant R

E(τ)
≥0

AAA AAA BBB BBB CCC CCC DDD DDD

R
5
≥0 R

6
≥0R

6
≥0

ττ ′ τ ′′

• Oτ ⊆ Oτ ′ ⇔ τ is a contraction of τ ′

• Oτ = Oτ ′ ∩ Oτ ′′ ⇔ τ = biggest common contraction of τ ′ and τ ′′
8
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Motivation and history

Mimic ordinary statistics: assume nonlinear M given; want
• averages
• variance, PCA
• Law of Large Numbers (LLN), confidence intervals
• Central Limit Theorem (CLT)

History
• for smooth M

+ CLT [Bhattacharya and Patrangenaru 2003, 2005]

+ “omnibus CLT” [Bhattacharya and Lin 2017]

+ smeary phenomena [Eltzner and Huckemann 2018]

• for singular M
+ open books [SAMSI Working Group 2013]

+ isolated planar singularity [Huckemann, Mattingly, M–, Nolen 2015]

+ phylogenetic tree spaces [Barden, Le 2018, w/Owen 2013, 2014]

Goals for minicourse
• What is an appropriate notion of stratified space?
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Fréchet means

Sample space: Riemannian manifold M

What fails
1. sum or average of

+ points in M

+ random variables in M

2. “Gaussian” on M

Workarounds
1. Def. Probability distribution µ on any metric space M has Fréchet function

Fµ(y) =
1

2

∫

M

d(x , y)2µ(dx)
↑ ↑

square
distance

measure
induced
by µ

and Fréchet mean µ̄ = argmin
y∈M

Fµ(y).

• “least squares approximation”
• empirical mean µ̄n from empirical measure µn = 1

n
(δX1 + · · ·+ δXn )

• LLN unaffected: µ̄n
n→∞
−−−−→ µ̄ almost surely.

2. Reduce to linear case
11
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Fréchet means

Sample space: Riemannian manifold M

What fails
1. sum or average of

+ points in M

+ random variables in M

2. “Gaussian” on M

Workarounds
1. Def. Probability distribution µ on any metric space M has Fréchet function

Fµ(y) =
1

2

∫

M

d(x , y)2µ(dx)
↑ ↑

square
distance

measure
induced
by µ
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Logarithm maps

Recast CLT on manifold M

• variation of rescaled differences
√
n (µ̄n − µ̄)

• as (moving) empirical mean converges

• to (fixed) population mean

⇒ limit is a random tangent vector
in tangent space Tµ̄

Def. The logarithm map is

logµ̄ : M → Tµ̄M

x 7→ d(µ̄, x)V ,

where V = unit tangent to geodesic from µ̄ to x .

Back to linear setting
• µ on M  ν on Tµ̄M for ν = µ ◦ logµ̄−1 Def. pushforward of µ to Tµ̄M

• linear CLT:
√
n ν̄n

n→∞−−−−→ N(0,Σ) in distribution

Question: Is this the manifold CLT? Not quite. . . .

12
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Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Logarithm maps

Recast CLT on manifold M

• variation of rescaled differences
√
n (µ̄n − µ̄)

• as (moving) empirical mean converges

• to (fixed) population mean

⇒ limit is a random tangent vector

Tµ̄

M

µ̄
logµ̄x

xin tangent space Tµ̄

Def. The logarithm map is

logµ̄ : M → Tµ̄M

x 7→ d(µ̄, x)V ,

where V = unit tangent to geodesic from µ̄ to x .

Back to linear setting
• µ on M  ν on Tµ̄M for ν = µ ◦ logµ̄−1 Def. pushforward of µ to Tµ̄M

• linear CLT:
√
n ν̄n

n→∞−−−−→ N(0,Σ) in distribution

Question: Is this the manifold CLT? Not quite. . . .

12
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Smooth manifold CLT

Def. The distortion map
H : Tµ̄M → Tµ̄M

is the inverse of the Hessian at µ̄ of the Fréchet function Fµ:

H = (∇∇µ̄ Fµ)
−1.

• (M, µ) (Tµ̄M, ν) forgets curvature of M

• e.g., rapidly spreading geodesics exiting µ̄
tug covariance of µ toward µ̄ as compared with ν around 0 ∈ Tµ̄M

Def. Any Tµ̄M-valued random variable N has pushforward H♯N = H ◦ N.

Manifold CLT:
√
n logµ̄ µ̄n

n→∞−−−−→ H♯N(0,Σ) in distribution,

where N(0,Σ) is the limit law for ν = µ ◦ logµ̄−1.

Linear CLT:
√
n (µ̄n − µ̄)

n→∞−−−−→ N(0,Σ) in distribution

Differences: • LHS logµ̄ pushes to linear setting
• RHS H accounts for curvature lost by M  Tµ̄M

13
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H = (∇∇µ̄ Fµ)
−1.

• (M, µ) (Tµ̄M, ν) forgets curvature of M

• e.g., rapidly spreading geodesics exiting µ̄

⇒ H
 

tug covariance of µ toward µ̄ as compared with ν around 0 ∈ Tµ̄M

Def. Any Tµ̄M-valued random variable N has pushforward H♯N = H ◦ N.

Manifold CLT:
√
n logµ̄ µ̄n

n→∞−−−−→ H♯N(0,Σ) in distribution,

where N(0,Σ) is the limit law for ν = µ ◦ logµ̄−1.

Linear CLT:
√
n (µ̄n − µ̄)

n→∞−−−−→ N(0,Σ) in distribution

Differences: • LHS logµ̄ pushes to linear setting
• RHS H accounts for curvature lost by M  Tµ̄M

13
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Singular CLT

Problems: need appropriate

1. classes of spaces M and measures µ

2. analogues of Gaussian random variables as limiting distributions N

3. reflection of geometry (“curvature”) of M in N

Solutions
1. • smoothly stratified metric space M of curvature bounded above
• localized immured amenable probability measure µ on M

2. • reduce to linear case using extra step: tangential collapse

L : Tµ̄M → R
m

so M
log

µ̄−−−→

tangent cone: singular!
↓

Tµ̄M
L−→ R

m

• N(0,Σ) = Gaussian random vector supported on R
ℓ ⊆ R

m with
same covariance Σ as pushforward of µ under the composite L ◦ logµ̄

3. distortion map H : Rℓ → Tµ̄M

Singluar CLT [Mattingly, M–, Tran 2023]:
√
n logµ̄ µ̄n

n→∞−−−→ H♯N(0,Σ) in distribution.

Note: same expression as Manifold CLT!
L is hiding in N and H
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Hypotheses

Hypotheses on M

• “nice” union of finitely many manifolds (strata)
• locally well defined exponential maps that are local homeomorphisms

+ essential for bringing asymptotics of sampling to Tµ̄M and back to M
• curvature bounded above by κ: M is CAT(κ)

+ only really needed at µ̄
+ morally won’t be infinitely curved anyway: Fréchet means would flee

Hypotheses on µ

• amenable: d(x ,−)2 has finite µ-expectation directional 2nd derivatives at µ̄
+ standard, mild, analytic sort of hypothesis on µ
+ allows differential and Taylor expansion techniques for optimization

• immured: logµ̄ µ̄n ∈ convex cone generated by suppµ when µ̄n is near µ̄
+ always if M is CAT(0) (e.g., M = Tµ̄M, such as M = Tn or open book)
+ always if suppµ contains a neighborhood of µ̄
+ maybe always no matter what

• localized: unique Fréchet mean, locally convex Fµ, and logµ̄ defined a.s.
+ always if suppµ ⊆ B(µ̄, π/

√
κ)

+ avoids cut locus and smeary issues
+ ensures pushforward of µ to Tµ̄M is defined

15



Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Stratified spaces

Def [Mattingly, M–, Tran 2023]. M is smoothly stratified with distance d if

• M is a complete, locally compact, geodesic space

• M =
⊔d

j=0 M
j has disjoint locally closed strata M j

• each stratum M j

+ is a manifold with geodesic distance d|M j

+ has closure M j =
⋃

k≤j M
k

• locally well defined exponential maps that are local homeomorphisms

• curvature bounded above by κ: M is CAT(κ)

Examples
• graph (or network): strata are vertices and edges

• polyhedron: strata are (relatively open) faces

• real (semi)algebraic variety: strata ↔ equisingular loci

Actual examples
• fruit fly wings

• tree spaces

• shape spaces
16
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Hypotheses

Hypotheses on M

• “nice” union of finitely many manifolds (strata)
• locally well defined exponential maps that are local homeomorphisms

+ essential for bringing asymptotics of sampling to Tµ̄M and back to M
• curvature bounded above by κ: M is CAT(κ)

+ only really needed at µ̄
+ morally won’t be infinitely curved anyway: Fréchet means would flee

Hypotheses on µ

• amenable: d(x ,−)2 has finite µ-expectation directional 2nd derivatives at µ̄
+ standard, mild, analytic sort of hypothesis on µ
+ allows differential and Taylor expansion techniques for optimization

• immured: logµ̄ µ̄n ∈ convex cone generated by suppµ when µ̄n is near µ̄
+ always if M is CAT(0) (e.g., M = Tµ̄M, such as M = Tn or open book)
+ always if suppµ contains a neighborhood of µ̄
+ maybe always no matter what

• localized: unique Fréchet mean, locally convex Fµ, and logµ̄ defined a.s.
+ always if suppµ ⊆ B(µ̄, π/

√
κ)

+ avoids cut locus and smeary issues
+ ensures pushforward of µ to Tµ̄M is defined

15’
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Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Hypotheses

Hypotheses on M

• “nice” union of finitely many manifolds (strata)
• locally well defined exponential maps that are local homeomorphisms

+ essential for bringing asymptotics of sampling to Tµ̄M and back to M
• curvature bounded above by κ: M is CAT(κ)

+ only really needed at µ̄
+ morally won’t be infinitely curved anyway: Fréchet means would flee
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Singular distortion

What can limiting distribution H♯N(0,Σ) look like?

Example [Huckemann, Mattingly, M–, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at
apex is α > 2π (that is, circumference at radius 1 is α)

embedded in R
3:

• Note: singularity of M is geometric, not topological

• Pushforward under distortion map H♯ is convex projection
from tangent cone Tµ̄M to fluctuating cone K .

• limiting measure H♯N(0,Σ) on
isolated hyperbolic planar singularity
for µ =

∑

atoms at 0, ± 2π
5 , ± 4π

5

17
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New interpretations of CLTs

Fundamental shifts in perspective via random fields or directional derivatives

CLT 2 [Mattingly, M–, Tran 2023]. Intrinsic, with Gaussian random field as limit:

lim
n→∞

√
n logµ̄ µ̄n

d
= lim

t→0

1

t
argmin
V∈Tµ̄M

(

Fµ(expµ̄ V )− tG (V )
)

• G = real-valued Gaussian random field indexed by unit tangent sphere Sµ̄M
• spatial variation in Tµ̄M  radial variation in Sµ̄M

• CLT proved via convergence of random fields: sidesteps nonlinearity of Tµ̄M!

CLT 3 [Mattingly, M–, Tran 2023]. lim
n→∞

√
n logµ̄ µ̄n = ∇µb(Γµ),

• the directional derivative at µ, in the space P2M of L2 measures on M,
• of the barycenter map b : P2M → M sending µ 7→ µ̄
• along any Gaussian tangent mass Γµ

CLT 4 [Mattingly, M–, Tran 2023]. lim
n→∞

√
n logµ̄ µ̄n

d
= ∇Fµ◦expµ̄B(G ),

• the directional derivative, in the space of continuous maps C(Tµ̄M,R),
• of the minimizer map B : C(Tµ̄M,R)→ Tµ̄M that sends f 7→ argmin

X∈Cµ

f (X )
• at Fµ ◦ expµ̄
• along the Gaussian tangent field G = G ( · ) = 〈Γµ, · 〉µ̄ induced by µ

18
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Summary of singular setting

1. shadow geometry at singular points of CAT(κ) spaces [arXiv:2311.09451]

• CLT ↔ variation of Fréchet means Lec 1
• µ̄ can only escape in certain directions Z Lec 2
• “shadow” directions beyond opposite Z , at angle ≥ π, collapse to a ray Lec 3
• directions within π of Z remain metrically intact

...

2. geometry of measures on smoothly stratified spaces [arXiv:2311.09453]

• smooth setting: reduce to linear via logµ̄ Lec 1
• singular setting: take log from infinitesimally nearby µ̄ Lec 3
• miracle: this “limit log” isometrically preserves all escape directions

...
• carefully iterating yields tangential collapse L : Tµ̄M → R

m
...

3. CLT for random tangent fields [arXiv:2311.09454]

• spatial variation of µ̄n around µ̄ is too much to handle Lec 4
• ask about variation along each ray separately

...
• → Gaussian on that ray

...
• multivariate Gaussian on any finite set of rays

...

4. escape vectors and stratified Gaussians [arXiv:2311.09455]

• singular analogue of N(0,Σ): Gaussian random mass Γµ Lec 4
• E (x): where does µ̄ go when mass is added at x? Lec 5
• E linearizes #3

...
• CLT ↔ where does µ̄ go when Gaussian random mass Γµ is added?

...
19
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• ask about variation along each ray separately

...
• → Gaussian on that ray

...
• multivariate Gaussian on any finite set of rays

...

4. escape vectors and stratified Gaussians [arXiv:2311.09455]

• singular analogue of N(0,Σ): Gaussian random mass Γµ Lec 4
• E (x): where does µ̄ go when mass is added at x? Lec 5
• E linearizes #3

...
• CLT ↔ where does µ̄ go when Gaussian random mass Γµ is added?

...
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Linear CLT Nonlinear data History Fréchet means Log maps Smooth CLT Singular CLT Distortion Interpretations Overview Future directions

Summary of singular setting

1. shadow geometry at singular points of CAT(κ) spaces [arXiv:2311.09451]

• CLT ↔ variation of Fréchet means Lec 1
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Looking forward

Interpretations of Gaussian objects on singular spaces

• heat dissipation

• random walks

• infinite divisibility of probability distributions

Statistical developments
• convergence rates

• confidence regions

• geometric PCA, e.g., in the sense of [Marron, et al. since 2010s]

• smoothness/singularity testing

• learning stratified spaces

• singular influence functions

Infinite-dimensional singular settings
• persistence diagrams [Mileyko, Mukherjee, Harer 2011]

• spaces of measures [Lott 2006]
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Looking forward

Curvature invariants from distortion maps and tangential collapse
• generalize 2D angle deficit
• variation from point to point in M

• integrate to reflect topology of singular spaces?
• compare with singular homology or intersection cohomology
• how to construct measures with given Fréchet mean?

Functoriality and moduli
• distortion ↔ how CLT transforms under morphism
• proposal for real or complex variety X :

+ take resolution of singularities X̃ → X

+ push CLT on X̃ forward to X

+ correction terms should involve local sheaf-theoretic data around µ̄

+ conj: results in well defined CLT on X

+ e.g.: compare pushforward CLT with singular CLT in smoothly stratified case
+ analogy: multiplier ideals

• asymptotics of sampling from moduli spaces
+ statistical invariants ↔ typical or expected variation of algebraic structures
+ in neighborhoods of a fixed degeneration
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