Topology for statistical analysis of brain artery images

Ezra Miller

Duke University, Department of Mathematics
ezra@math.duke.edu

joint with

Paul Bendich & Alex Pieloch (Duke Math)
J.S. Marron & Sean Skwerer (Chapel Hill Stat/Oper.Res.)

Summer Workshop in Math (SWiM)
Duke University
23 June 2017
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Tube tracking

[Bullitt and Aylward, 2002]
 Tube tracking

[Bullitt and Aylward, 2002]
Tube tracking

[Bullitt and Aylward, 2002]
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

• predict stroke tendency
• screen for loci of pathology, such as tumors
• explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 - predict stroke tendency
 - screen for loci of pathology, such as tumors
 - explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

• predict stroke tendency
• screen for loci of pathology, such as tumors
• explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

• predict stroke tendency
• screen for loci of pathology, such as tumors
• explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X
Homology

Topological space $X \leadsto \text{homology } H_i X$ for each dimension i.

- set of “i-dimensional holes” in X
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\# H_1 = 1$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1 \quad \#H_1 = 0$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$#H_1 = 1$ \hspace{1cm} $#H_1 = 0$ \hspace{1cm} $#H_2 = 1$
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\# H_1 = 1$

$\# H_1 = 0$

$\# H_2 = 1$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

\[
\#H_1 = 1 \quad \#H_1 = 0 \quad \#H_2 = 1
\]
Homology

Topological space $X \rightsquigarrow$ homology H_iX for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$
$\#H_1 = 0$
$\#H_2 = 1$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$
$\#H_2 = 1$
$\#H_1 = 0$
$\#H_1 = 2$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$

$\#H_1 = 0$

$\#H_2 = 1$

$\#H_1 = 2$

$\#H_2 = 1$
Homology

Topological space $X \leadsto$ homology H_iX for each dimension i.
- set of “i-dimensional holes” in X

\[
\begin{align*}
\#H_1 &= 1 \\
\#H_1 &= 0 \\
\#H_2 &= 1 \\
\#H_1 &= 2 \\
\#H_2 &= 1
\end{align*}
\]

- $i = 0$ case: H_0 is the set of connected components of X
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

\[
\begin{align*}
\#H_0 &= 1 \\
\#H_1 &= 1 \\
\#H_2 &= 1 \\
\end{align*}
\]

- $i = 0$ case: H_0 is the set of connected components of X
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

Formally: homology $H_i X$ is a vector space for each dimension i.

\[
\begin{align*}
\#H_0 &= 1 \\
\#H_1 &= 1 \\
\#H_2 &= 1
\end{align*}
\]

\[
\begin{align*}
\#H_0 &= 1 \\
\#H_1 &= 0 \\
\#H_2 &= 1
\end{align*}
\]

\[
\begin{align*}
\#H_0 &= 1 \\
\#H_1 &= 2 \\
\#H_2 &= 1
\end{align*}
\]

- $i = 0$ case: H_0 is the set of connected components of X
Build X step by step

- measure evolving topology.

Def. Suppose X is a *filtered space*, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The *persistent homology* of this filtration is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of sets.
- A feature *persists* from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \to \mathbb{R}$, let $X_t = \{ x \in X \mid f(x) \leq t \}$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a **filtered space**, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The **persistent homology** of this filtration is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of sets.

- A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \rightarrow \mathbb{R}$, let $X_t = \{x \in X \mid f(x) \leq t\}$.

Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications.
Example: expanding balls
Persistent homology

Build X step by step
- measure evolving topology.

Def. Suppose X is a **filtered space**, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.
 - The **persistent homology** of this filtration is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of sets.
 - A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \rightarrow \mathbb{R}$, let $X_t = \{ x \in X \mid f(x) \leq t \}$.
Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The persistent homology of this filtration is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of sets.

- A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \rightarrow \mathbb{R}$, let $X_t = \{ x \in X \mid f(x) \leq t \}$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The persistent homology of this filtration is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of sets.
- A feature persists from j to k if it appears first in H_iX_j and last in H_iX_k.

Example: Given a function $f : X \to \mathbb{R}$, let $X_t = \{ x \in X \mid f(x) \leq t \}$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Example: expanding balls
Example: expanding balls

\[\# H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 26 \]
Example: expanding balls

#H₀ = 21
Example: expanding balls

$#H_0 = 12$
Example: expanding balls

\[\#H_0 = 6 \]
Example: expanding balls

\[\#H_0 = 2 \]
Example: expanding balls

\[#H_0 = 2 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 2 \]
Example: expanding balls

\[\# H_0 = 1 \quad \# H_1 = 1 \]
Example: expanding balls

\[#H_0 = 1\] \[#H_1 = 1\]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 3 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[
\#H_0 = 1 \quad \#H_1 = 1
\]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\#H_0 = 1 \quad \#H_1 = 1
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 0 \]
Example: expanding balls

\#H_0 = 1 \quad \#H_1 = 1
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 0 \]
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The persistent homology of this filtration is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of sets.
- A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \to \mathbb{R}$, let $X_t = \{x \in X \mid f(x) \leq t\}$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The persistent homology of this filtration is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of sets.
- A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \to \mathbb{R}$, let $X_t = \{x \in X \mid f(x) \leq t\}$.

Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Example: filling brains

[Image of a network of red lines]
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a filtered space, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The persistent homology of this filtration is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of sets.

- A feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \to \mathbb{R}$, let $X_t = \{x \in X \mid f(x) \leq t\}$.

Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X is a **filtered space**, meaning X is a union of an increasing sequence of subspaces: $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$.

- The **persistent homology** of this filtration is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of sets.

- A feature **persists** from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$.

Example: Given a function $f : X \rightarrow \mathbb{R}$, let $X_t = \{ x \in X | f(x) \leq t \}$.

Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments, applications
Bar codes

Data structure: 3D tree \leadsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 34, Age = 23, Sex = M, Hand = R
Bar codes

Data structure: 3D tree \leadsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 71, Age = 32, Sex = F, Hand = R
Bar codes

Data structure: 3D tree \rightsquigarrow bar code

- Multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- One for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \mapsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 73, Age = 64, Sex = F, Hand = R
Bar codes

Data structure: 3D tree \leadsto bar code

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”
Sweep filtration

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

![Diagram of sweep filtration](image-url)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 - birth time of each new component
 - death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 - birth time of each new component
 - death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)

Easily computable (if dim X is low; ambient space dim irrelevant).
Statistical analysis

Reduce to linear methods. 3D tree \rightarrow bar code \rightarrow vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Top 100 bars

Run7: Quantiles, top 100 Data Objects
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Top 100 bars: log scale
Statistical analysis

Reduce to linear methods. 3D tree \rightarrow bar code \rightarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Age vs. PC1

Raw Data

Mean

Center Resid.

PC1 Proj.

PC1 Resid.

PC1 Scores
Age vs. PC1

Pearson Correlation = 0.52663
p-val = 3.0127e-08
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2016]

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663: linear correlation markedly present
- p-value 3.0127×10^{-8} strongly significant

Similar results after accounting for

- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral. Persistent homology can topologically detect statistically significant geometric motifs.

Lesson for students. Integration of biology, math, stat, and computation in research and application.
Future directions

- fruit fly wings (with Houle, Thomas, Curry, Beriwal)

- lung arteries (with McLean et al., Marron)

- fMRI (with Lazar et al.)
Future directions

- fruit fly wings (with Houle, Thomas, Curry, Beriwal)
- lung arteries (with McLean et al., Marron)
- fMRI (with Lazar et al.)
Future directions

- fruit fly wings (with Houle, Thomas, Curry, Beriwal)

- lung arteries (with McLean et al., Marron)

- fMRI (with Lazar et al.)
Future directions

- fruit fly wings (with Houle, Thomas, Curry, Beriwal)
- lung arteries (with McLean et al., Marron)
- fMRI (with Lazar et al.)
Future directions

- fruit fly wings (with Houle, Thomas, Curry, Beriwal)

- lung arteries (with McLean et al., Marron)

- fMRI (with Lazar et al.)

Thank You