Topological brain statistics

Ezra Miller

Duke University, Department of Mathematics
ezra@math.duke.edu

joint with

Paul Bendich & Alex Pieloch (Duke Math)
J.S. Marron & Sean Skwerer (Chapel Hill Stat/Oper.Res.)

Summer STEM Academy
School of Medicine Office of Clinical Research
Duke University

20 June 2019
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Tube tracking

[Bullitt and Aylward, 2002]
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects blood vessels
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects blood vessels

The data structure:
Topological space $X \rightsquigarrow$ homology H_iX for each dimension i.

- set of “i-dimensional holes” in X
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X
Topological space $X \rightsquigarrow$ homology H_iX for each dimension i.

- set of “i-dimensional holes” in X
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\# H_1 = 1$
Homology

Topological space $X \leadsto$ homology H_iX for each dimension i.

- set of “i-dimensional holes” in X

![Diagram showing a circle and a sphere with points to illustrate H_1]

$\#H_1 = 1$
Topological space $X \rightsquigarrow$ homology H_iX for each dimension i.

- set of “i-dimensional holes” in X

\[\#H_1 = 1 \quad \#H_1 = 0 \]
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

![Diagram showing topological spaces and their homology]

- $\# H_1 = 1$
- $\# H_1 = 0$
- $\# H_2 = 1$
Homology

Topological space $X \xrightarrow{\sim} \text{homology } H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$

$\#H_1 = 0$

$\#H_2 = 1$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\#H_1 = 1$
$\#H_1 = 0$
$\#H_2 = 1$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\# H_1 = 1$

$\# H_1 = 0$

$\# H_2 = 1$
Homology

Topological space $X \rightarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\# H_1 = 1$
$\# H_1 = 0$
$\# H_2 = 1$
$\# H_1 = 2$
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

\[
\begin{align*}
\#H_1 &= 1 \\
\#H_1 &= 0 \\
\#H_2 &= 1 \\
\#H_1 &= 2 \\
\#H_2 &= 1
\end{align*}
\]
Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

\[
\begin{align*}
\#H_1 &= 1 \\
\#H_1 &= 0 \\
\#H_2 &= 1 \\
\#H_1 &= 2 \\
\#H_2 &= 1
\end{align*}
\]

- $i = 0$ case: H_0 is the set of connected components of X
Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

$\begin{align*}
\# H_0 &= 1 \\
\# H_1 &= 1 \\
\# H_2 &= 1 \\
\# H_0 &= 1 \\
\# H_1 &= 0 \\
\# H_2 &= 1 \\
\# H_0 &= 1 \\
\# H_1 &= 2 \\
\# H_2 &= 1
\end{align*}$

- $i = 0$ case: H_0 is the set of connected components of X
Homology

Topological space X maps to homology $H_i X$ for each dimension i.

- set of “i-dimensional holes” in X

\[
\begin{align*}
\# H_0 &= 1 \\
\# H_1 &= 1 \\
\# H_2 &= 1
\end{align*}
\]

- $i = 0$ case: H_0 is the set of connected components of X

Formally: homology $H_i X$ is a vector space for each dimension i.
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$

- a feature persists from j to k if it appears first in H_iX_j and last in H_iX_k

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$
- a feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$

Example: For X in 3D, let $X_k = \text{the part of } X \text{ below a plane } H_k$

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- **persistent homology**, a sequence of sets: $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$

- a feature **persists** from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Example: expanding balls
Example: expanding balls
Example: expanding balls

\[\#H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 31 \]
Example: expanding balls

\[\#H_0 = 26 \]
Example: expanding balls

$\#H_0 = 21$
Example: expanding balls

\[\#H_0 = 12 \]
Example: expanding balls

$\# H_0 = 6$
Example: expanding balls

\[\#H_0 = 2 \]
Example: expanding balls

$\#H_0 = 2$
Example: expanding balls

$\# H_0 = 1 \quad \# H_1 = 2$
Example: expanding balls

\#H_0 = 1 \quad \#H_1 = 1
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 3 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 0 \]
Example: expanding balls

\[\#H_0 = 1 \quad \#H_1 = 1 \]
Example: expanding balls

\#H_0 = 1 \quad \#H_1 = 0
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$

- a feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- **persistent homology**, a sequence of sets: $H_iX_1 \rightarrow H_iX_2 \rightarrow \cdots \rightarrow H_iX_m$

- a feature **persists** from j to k if it appears first in H_iX_j and last in H_iX_k

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Persistency homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$

- a feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Example: filling brains
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$

- a feature **persists** from j to k if it appears first in H_iX_j and last in H_iX_k

Example: For X in 3D, let $X_k =$ the part of X below a plane H_k

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Persistent homology

Build X step by step

- measure evolving topology.

Def. Suppose X has increasing subspaces $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$

- persistent homology, a sequence of sets: $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$

- a feature persists from j to k if it appears first in $H_i X_j$ and last in $H_i X_k$

Example: For X in 3D, let $X_k = \text{the part of } X \text{ below a plane } H_k$

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [Carlsson, Scolamiero, Turner, many others]: additional theory, applications
Bar codes

Data structure: 3D tree \leadsto bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \rightsquigarrow bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 71, Age = 32, Sex = F, Hand = R
Bar codes

Data structure: 3D tree \rightsquigarrow bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \(\leadsto\) bar code

- vertical line segments \([t, t']\) (each plotted at \(x\)-coordinate \(t\))
- one for each feature with birth time \(t\) and death time \(t'\).
Bar codes

Data structure: 3D tree \leadsto bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code

- vertical line segments $[t, t']$ (each plotted at x-coordinate t)
- one for each feature with birth time t and death time t'.
Sweeping geometry

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account

 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:

 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
• birth time of each new component
• death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
• birth time of each new component
• death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
 - 3D structure, in particular
 - “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
 - birth time of each new component
 - death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

![Graph showing sweeping geometry]

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweeping geometry

Goal: statistical analysis taking into account
- 3D structure, in particular
- "bendiness", or "tortuosity"

Sweep across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
 top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:
 top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:
 - top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.
Statistics

Reduce to linear methods

- 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.

Lesson for students
Integration of biology, math, stat, and computation in research and application.
Statistics

Reduce to linear methods
- 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}: top 100 bar lengths, in decreasing order
- correlate with age

Conclusions [with Bendich, Marron, Pieloch, Skwerer 2016]
Longest bars in older brains tend to be shorter and later.

Similar results after accounting for
- natural variation in overall brain size or
- known correlation of age vs. total vessel length [Bullitt, et al. 2005].

Moral
Topology can detect statistically significant geometric motifs.

Lesson for students
Integration of biology, math, stat, and computation in research and application.

Thank You