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1. Escape vector characterizations

Theorem 1.1. Fix an amenable measure µ on a smoothly stratified metric space M,

a sequence of measures ∆n sampled from Tµ̄M converging weakly to ∆ ⋐ Tµ̄M, and a

sequence of positive real numbers tn → 0. The escape vector E = E (∆) is well defined

and confined to the escape cone Eµ in the sense that

E (∆) = lim
t→0

1

t
argmin
X∈Ee

µ

(
F (expµ̄ X) + Ftδ(expµ̄ X)

)

= lim
t→0

1

t
argmin
X∈Ee

µ

(
F (expµ̄ X)− t〈∆, X〉

)

= lim
n→∞

1

tn
argmin
X∈Ee

µ

(
F (expµ̄ X)− tn〈∆n, X〉

)

Remark 1.2. The top line in the display from Theorem 1.1 comes directly from
the definition of escape vector, which thinks of escape as minimizing a Fréchet func-
tion. Note that the Fréchet function Ftδ is essentially the square distance to δ, so
∇µFtδ(X) = −〈∆, X〉 by [MMT23b, Proposition 2.5]. The transition from the top line
in the display to the middle line therefore replaces Ftδ(expµ̄ X) with its linear approxi-
mation −t〈∆, X〉. The transition to the bottom line in the display replaces −t〈∆, X〉,
which has a continuously decreasing parameter t and a fixed discrete measure ∆, with
a version tn〈∆n, X〉 that has a discrete sequence of parameters decreasing to 0 and
varying discrete measures ∆n converging to ∆.

Remark 1.3. The term tn〈∆n, X〉 morally wants to be the average random tangent
field gn(X). The goal is indeed to make that substitution, and also then substitute the
Gaussian random tangent field G(X) for −t〈∆, X〉.
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Remark 1.4. Theorem 1.1 implies continuity of the escape map E as a function
on measures sampled from Tµ̄M; see [MMT23d, Corollary 4.32]. More importantly,
Theorem 1.1 asserts a family-of-functions continuity: if positive real numbers tn → 0
are given and

En(∆) =
1

tn
argmin
X∈Ee

µ

(
F (expµ̄X)− tn〈∆, X〉

)

is the nth escape approximation of any measure ∆ sampled from Tµ̄M, then Theo-
rem 1.1 asserts that En(∆n) → E (∆) when ∆n → ∆. A functional version of this
convergence is one of the main goals of this lecture, tailored to fit the hypotheses of
a particular form of the continuous mapping theorem [VW13, Theorem 1.11.1], for
application in the proof of Theorem 2.1.

2. Perturbative CLT

Theorem 2.1 (Perturbative CLT). Fix a localized immured amenable measure µ on

a smoothly stratified metric space M. The empirical Fréchet mean µ̄n, empirical and

Gaussian tangent perturbations Hn and H(t), and escape vector E (Γµ) of any Gaussian

mass Γµ satisfy

lim
n→∞

√
n logµ̄ µ̄n

d
= lim

n→∞

√
n argmin

X∈T e
µ̄
M

(
F (expµ̄X)− gn(X)

)

d
= lim

t→0

1

t
argmin
X∈C e

µ

(
F (expµ̄ X)− tG(X)

)

= E (Γµ).

Proof. The top equality is the logarithm of [MMT23d, Proposition 4.24]. It is a direct,
hand-dirty calculation via a uniform law of large numbers, which uses amenability for
Taylor expansion.
For the bottom equality, by the last line of Theorem 1.1,

E (Γµ) = lim
t→0

1

t
argmin
X∈C e

µ

(
F (expµ̄ X)− t〈Γµ, X〉

)

= lim
t→0

1

t
argmin
X∈C e

µ

(
F (expµ̄ X)− tG(X)

)
.

where the substitution to reach the second equality is G(X) = 〈Γµ, X〉 (which uses the
localized hypothesis). In particular, the limit in the top line exists and is independent of
the choice of measurable selection for the Gaussian tangent mass Γµ; indeed, already the
angular pairing with X does not depend on that selection by [MMT23d, Lemma 6.9].
Consequently, the limit in the bottom line exists and is independent of the path of
minimizers represented by the argmin there.
...pause the proof here to introduce representability... �
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3. Representable functions and limits

Definition 3.1. Equip the set C(Tµ̄M,R) of continuous, positively homogeneous (com-
muting with nonnegative scaling), real-valued functions on Tµ̄M with the sup norm

‖f‖∞ = sup
Y ∈Sµ̄M

‖f(Y )‖.

Functions in C(Tµ̄M,R) may be considered as continuous functions on the unit tangent
sphere Sµ̄M without explicit notation to denote restriction to Sµ̄M.

Definition 3.2. A function R ∈ C(Tµ̄M,R) is representable if there is a measure ∆
sampled from the closure of R+ supp µ̂ with

R(X) = 〈∆, X〉 for all X ∈ Eµ.

A limit Rn → R in C(Tµ̄M,R) is representable if all Rn are representable.

Remark 3.3. The term “representable” in Definition 3.2 is meant to evoke the Riesz
representation theorem, wherein functionals are represented as inner products.

Example 3.4. The average empirical tangent field gn is representable essentially be-
cause m(µ,X) = 0 for X ∈ Eµ. The Gaussian tangent field G in principle might not be
representable, but G is almost surely a limit of representable functions by the CLT for
random tangent fields, which is all the extended continuous mapping theorem [VW13,
Theorem 1.11.1] needs for application in the proof of Theorem 1.1. Note that even if
G is not representable on Eµ as required by Definition 3.2, it is at least representable
on the closed fluctuating cone Cµ; this major result is the statement from Lecture 4
that G(X) = 〈Γµ, X〉 on the fluctuating cone Cµ.

4. Continuous mapping theorem

Proof of Theorem 1.1, cont’d. For the middle equality, write E0 : C(Tµ̄M,R) → Tµ̄M
for the map

E0 : R 7→ lim
t→0

1

t
argmin
X∈C e

µ

(
F (expµ̄ X)− tR(X)

)

defined on the space of functions from Definition 3.1. Denote by R ⊆ C(Tµ̄M,R) the
set of representable functions from Definition 3.2 to write En : R → Tµ̄M for the maps

En : R 7→ 1

tn
argmin
X∈T e

µ̄
M

(
F (expµ̄ X)− tnR(X)

)

for all n ≥ 1. Another omitted result [MMT23d, Corollary 5.29] says that whenever
Rn → R is a representable limit as in Definition 3.2, En(Rn) → E0(R), where En is
defined on R for n ≥ 1 and E0 is defined on C(Tµ̄M,R). Now applying the extended
continuous mapping theorem [VW13, Theorem 1.11.1] (an image of this reference is
included on the last page of these lecture notes) with the domains Dn = R and D0 =
C(Tµ̄M,R) to the limit Rn =

√
n ḡn → G = R from the random tangent field CLT,

which is representable by Example 3.4, yields the desired equality. �
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1.11 

Refinements 

The continuous mapping theorems for the three modes of stochastic conver­
gence considered so far can be refined to cover maps gn(Xn), rather than 
g(Xn), for a fixed g. Then the gn should have a property that might be 
called asymptotic equicontinuity almost everywhere under the limit mea­
sure. 

For simplicity, it will be assumed that the limit measure is separable, 
though this is not necessary for (iii) and can be replaced by other conditions 
for (i) and (ii) (Problem 1.11.1). 

1.11.1 Theorem (Extended continuous mapping). Let IDln C IDl and 
gn: IDln ~ IE satisfy the following statements: if Xn -+ x with Xn E IDln for 
every n and x E lDlo, then gn(xn) -+ g(x), where lDlo C IDl and g: lDlo ~ IE. Let 
Xn be maps with values in IDln' let X be Borel measurable and separable, 
and take values in lDlo. Then 

(i) Xn .",... X implies that gn(Xn) .",... g(X); 
(ii) Xn ~ X implies that gn(Xn) ~ g(X); 

(iii) Xn ~ X implies that gn(Xn) ~ g(X). 

Proof. Assume the weakest of the three assumptions: the one in (i) that 
Xn .",... X. Let lDloo be the set of all x for which there exists a sequence Xn with 
Xn E IDln and Xn -+ x. First, P*(X E lDloo ) = 1; second, the restriction of 9 
to lDlo n lDloo is continuous; and third, if some subsequence satisfies X n ' -+ x 
with Xn' E IDln, for every n' and x E lDlo n lDloo, then gn'(Xn') -+ g(x). 

To see the first, invoke the almost sure representation theorem. If 
Xn ~ X are representing versions, then the range of X is contained in 
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