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Shadows

Def. Sµ̄M = unit sphere in Tµ̄M has metric ds . Vectors U,V ∈ Sµ̄M have

• angle ∠(U,V ) =

{

ds(U,V ) if < π

π otherwise

• angular pairing 〈U,V 〉µ̄ = ‖U‖‖V ‖ cos
(

∠(U,V )
)

.

Example.

Example.
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Shadows Fréchet means and log maps Radial transport Tangential collapse

Shadows

Def. Sµ̄M = unit sphere in Tµ̄M has metric ds . Vectors U,V ∈ Sµ̄M have

• angle ∠(U,V ) =

{

ds(U,V ) if < π

π otherwise

• angular pairing 〈U,V 〉µ̄ = ‖U‖‖V ‖ cos
(

∠(U,V )
)

.

Example.
U

shadow(U) = {V ∈ Sµ̄M | ∠(U,V ) ≥ π}

Example.

open book

U

open book

U

open book

U

shadow(U)

1



Shadows Fréchet means and log maps Radial transport Tangential collapse

Fréchet means

Def. Probability distribution µ on any metric space M has Fréchet function

Fµ(y) =
1

2

∫

M

d(x , y)2µ(dx)
↑ ↑

square
distance

measure
induced
by µ

and Fréchet mean µ̄ = argmin
y∈M

Fµ(y).

Prop. M is CAT(κ)
⇒ M has tangent spaces (cones)

Def. The logarithm map is

logµ̄ : M → Tµ̄M

x 7→ d(µ̄, x)V ,

where V = unit tangent to geodesic from µ̄ to x .

Note. M singular at µ̄ ⇔ Tµ̄M 6∼= R
d

Prop. M smoothly stratified
⇒ Tµ̄M is a smoothly stratified CAT(0) cone.

2



Shadows Fréchet means and log maps Radial transport Tangential collapse
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Shadows Fréchet means and log maps Radial transport Tangential collapse
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Fréchet means

Def. Probability distribution µ on any metric space M has Fréchet function
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Radial transport

Prop. Set X = Tµ̄M with apex O. Fix
• Z = logO z ∈ TOX
• q ∈ [O, z ]
• q′ ∈ (O, z ]

Then radial transport TqX → Tq′X is isometry if q 6= O.

Idea. Z points out of stratum containing O
⇒ q ∈ (O, z ] is strictly less singular than O
⇒ T

→

ZX is strictly less singular than X

Def [Mattingly, M–, Tran & Barden, Le]. The limit tangent cone along Z is

T
→

ZX = lim
−→

q∈(O,z]

TqX

The limit log map along Z is induced by TOX → TqX for any q ∈ (O, z ]:

LZ : TOX → T
→

ZX

Iterate to get Tµ̄M → R
m = tangent space to some smooth stratum

• choose resolving vectors Z appropriately
• to ensure µ pushes forward appropriately, assume µ is localized:
unique µ̄, locally convex Fµ, and µ(cut locus) = 0

3
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Shadows Fréchet means and log maps Radial transport Tangential collapse

Tangential collapse

Def. Localized µ on smoothly stratified M has fluctuating cone

Cµ =
{

X ∈ Tµ̄M | ∇µ̄F (X ) = 0 and
X ∈ convex cone generated by supp(µ ◦ log−1

µ̄
)
}

Lemma. Adding mass to µ can only cause µ̄ to move into Cµ

Thm [Mattingly, M–, Tran 2023]. M smoothly stratified ⇒ some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map L : Tµ̄M → R

m that is
• injective on Cµ and
• preserves angles with vectors in Cµ

Examples

• kale:
L

−→

• nonconvex quadrants:
L

−→

4
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• open book:

open book

L
−→

open book

Examples

• kale:
L

−→

• nonconvex quadrants:
L

−→

4
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Next lecture: convergence to Gaussian objects
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