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What kinds of data?

Shapes
• 1D: curves (in R

2 or R3, say)
• 2D: photographs
• 3D: MRI, DTI, SPECT, PET, CAT, integrated photo

– cricket sclerites
– brain arteries
– lung airways
– fiber tracts

• (2+1)D: video (.mp4, .mov, ...)
• 4D: fMRI, or any time series of spatial 3D
• arbitrary D: abstract geometric structures from data

– any bunch of isolated points in R
n (!), especially for n ≫ 0

– any reasonable probability distribution

Networks
• neurological
• metabolic
• regulatory (genetic)
• phylogenetic
• physical: road maps, plant roots, neuronal (dendritic), . . .
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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A. apoplanos

courtesy Elen Oneal
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Magnetic Resonance Angiography (MRA)

courtesy Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
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Brain arteries

[Bullitt and Aylward, 2002]
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Lung airways (COPD study)

[Belchi, Pirashvili, Conway, Bennett, Djukanovic, Brodzki 2018]
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Lung vessels (CDH study)

courtesy Sean McLean
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Streamlines from Diffusion Tensor Imaging

courtesy Zhengwu Zhang
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fMRI

courtesy Nicole Lazar
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Amphiacusta phylogeny
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q .

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

11
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Example: expanding balls
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Example: expanding balls

dim(H0) = 26
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Example: expanding balls
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Example: expanding balls

dim(H0) = 12
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Example: expanding balls

dim(H0) = 6

12



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Example: expanding balls
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

11’
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

2’



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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Fruit fly wings

photographic image
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Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields

• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes
continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• “plot” wings in “form space”
• determine whether topological variants lie “in the direction of” continuous
shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving
appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects  statistics with
multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
15
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Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

16
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.– 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if Q is partitioned into

• constant regions A, each with vector space MA−→∼ Ma for all a ∈ A, having

• no monodromy: all comparable pairs a � b with a ∈ A and b ∈ B induce the
same composite MA → Ma → Mb → MB .

M is tame if it admits a finite constant subdivision and dimk Mq < ∞ for all q.

Example. k0 ⊕ k[R2] admits constant regions {0} and R
2
r {0}
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Encoding persistence modules

Def. A module M over a poset Q has finite encoding π : Q → P if
• P is a finite poset,
• π is a poset morphism, and
• M ∼= π∗N =

⊕
q∈Q Nπ(q), the pullback of P-module N.

 

An R
2-module finitely encoded

Thm [M.– 2017, see arXiv:math.AT/2008.00063]. tame ⇔ finitely encodable
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

11’’’
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Topology of probability distributions

[surface images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.]
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History of persistent homology

Ordinary persistence
• traces back to [Morse 1940s]

• bar codes [Abeasis–Del Fra 1980], rediscovered many times
• formally defined [Frosini, Landi 1999], [Robins 1999]

• efficient computation [Edelsbrunner, Letscher, Zomorodian 2002]

• applications [too many to list; a few early ones, but most roughly 2013– ]

Multiparameter persistence
• introduced [Carlsson, Zomorodian 2009]

• algorithms, presentations, visualizations, notions of noise, distance, . . .
[Bubenik, Carlsson, Chachólski, Lesnick, Scolamiero, Vaccarino, Wright, Zomorodian,. . . ]

+ usually assume finitely presented, even if over Rn

Essentially equivalent
• representation of Q [Nazarova–Roiter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Yuzvinsky 1987], [Yanagawa 2001], [Curry 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])
20
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Brain artery analysis

Goal: statistical analysis, correlate with age or sex, taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Discrete methods [Aydin, et al. 2009]

• disregard metric and embedding
• compare combinatorial structures
• no correlations detected

Phylogenetic trees [SAMSI WG 2013]

• connect cortical surface landmarks to nearest leaves
• use averages [M.–Owen–Provan; Bačák 2012] in tree space [Billera–Holmes–Vogtmann 2001]

• too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Shen & Marron, et al. 2014]

• pay attention to edge lengths but disregard 3D embedding
• complicated tree pruning
• Pearson correlation ∼ .25 with age

Premise
• combinatorics and branch length not enough
• location and twist are crucial

21
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:

• birth time of each new component

• death of each component (when it joins to an older component)

Easily computable (if dimX is low; ambient space dim irrelevant).
22
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Bar codes

Data structure: 3D tree  bar code / lace array / persistence diagram:

• multiset of (vertical) line segments [t, t ′] (plotted at x-coordinate t)
• one for each class with birth time t and death time t ′.
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Statistical analysis

Reduce to linear methods. 3D tree  bar code  vector in R
100:

• top 100 bar lengths, in decreasing order, log scale
• correlate first principal component score vs. age

Conclusions [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Longest bars in older brains tend to be shorter and later.
• Pearson correlation 0.52663
• p-value 3.0127× 10−8 strongly significant

Remarks. Results essentially unchanged after
• rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2005] (divide by L,
√
L, or 3

√
L)

• repeating the analysis with residuals from regression between feature vector
and total length.

Moral. Persistent homology can topologically detect statistically significant
geometric motifs

24



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Top 100 bars

25



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Statistical analysis

Reduce to linear methods. 3D tree  bar code  vector in R
100:

• top 100 bar lengths, in decreasing order, log scale
• correlate first principal component score vs. age

Conclusions [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Longest bars in older brains tend to be shorter and later.
• Pearson correlation 0.52663
• p-value 3.0127× 10−8 strongly significant

Remarks. Results essentially unchanged after
• rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2005] (divide by L,
√
L, or 3

√
L)

• repeating the analysis with residuals from regression between feature vector
and total length.

Moral. Persistent homology can topologically detect statistically significant
geometric motifs

24’



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Statistical analysis

Reduce to linear methods. 3D tree  bar code  vector in R
100:

• top 100 bar lengths, in decreasing order, log scale
• correlate first principal component score vs. age

Conclusions [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Longest bars in older brains tend to be shorter and later.
• Pearson correlation 0.52663
• p-value 3.0127× 10−8 strongly significant

Remarks. Results essentially unchanged after
• rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2005] (divide by L,
√
L, or 3

√
L)

• repeating the analysis with residuals from regression between feature vector
and total length.

Moral. Persistent homology can topologically detect statistically significant
geometric motifs

24’



Data Persistent homology Ordinary persistence Multiple parameters Tameness History Bar codes Statistical analysis Lessons Future directions

Top 100 bars: log scale
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• rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2005] (divide by L,
√
L, or 3

√
L)

• repeating the analysis with residuals from regression between feature vector
and total length

Moral. Persistent homology can topologically detect statistically significant
geometric motifs
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Reflections on persistent homology

Where did the best correlation occur?
• How did we choose top 100 bar lengths?

• What choices yield the best correlation? Why?

Old persistent homology mantra: most significant features

• are “biggest”

• live “far from the diagonal” in bar codes.

For brain artery trees
• Not surprising that very short bars ↔ noise,
although in other studies they might not.

• While biggest features are important,

• they hinder strength of correlation.

Lessons
• Importance 6⇒ significance for geometric features.

• Persistent homology can detect significant features lying between important
and noise.
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Top 200 bars: heatmap
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Looking forward

Implementation
• single preprocessing step for many multiPH computations; e.g., fly wings
• Lebesgue distance computations: no sampling for Riemann integration

Invariants
• E.g., what could “top 100 bar lengths” mean in multipersistence?
• E.g., boundaries of up- or downsets  “highly persistent” elements

Real Lp distances [Bubenik–Scott–Stanley 2023], [Skraba–Turner 2023], [Bjerkevik–Lesnick 2021]

• integer parameters: match pairs of generators
• real parameters: sums → ∞ with finer discrete approximation
• instead: use Lp distances between boundaries of up- and downsets. . .
• . . . from corresponding associated primes (same history or mortality type)

Relative homological algebra
• resolve using upsets and/or downsets
• Conj: Rn-modules have upset resolutions of length at most n − 1.
• Compare [Geist–M.– 2023]: k[Rn

+] has global dimension n + 1.
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