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Biology

What kinds of biology?

Geometric datasets and data objects arise naturally in biological sciences:
e medicine
e neuroscience
e botany

e ecology

e systems biology: organisms as collections of interacting units
— metabolic pathways
— cell signaling networks

e systematics: history of speciation

e evolutionary biology: mechanisms of selection and speciation
e developmental biology: embryology, cell differentiation, growth
e behavior
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Geometric datasets and data objects arise naturally in biological sciences:

medicine

neuroscience

botany

ecology

systems biology: organisms as collections of interacting units
— metabolic pathways
— cell signaling networks

systematics: history of speciation

evolutionary biology: mechanisms of selection and speciation
developmental biology: embryology, cell differentiation, growth
behavior

[. .. others I've missed: tell me what to add for next time!...]

Note. We guide biologists to relevant techniques for their data and questions
= crucial to

understand data on biologists’ terms
be aware of available statistical or mathematical methods



Data

What kinds of data?

Shapes
« 1D: curves (in R? or R3, say)
e 2D: photographs
e 3D: MRI, DTI, SPECT, PET, CAT, integrated photo
— cricket sclerites
— brain arteries
— lung vessels
— fiber tracts
(2+1)D: video (.mp4, .mov, ...)
4D: fMRI, or any time series of spatial 3D
arbitrary D: abstract geometric structures from data
— principal bundles to model aperiodicity of time series
— any bunch of isolated points in R” (!), especially for n > 0
Networks

¢ neurological

metabolic

regulatory (genetic)

phylogenetic

ecological

physical: plant roots, neuronal (dendritic)

Points in high dimension, e.g. genetic SNP profiles for personalized medicine
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:
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A. apoplanos

courtesy Elen Oneal
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Brain arteries
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Streamlines from Diffusion Tensor Imaging
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Questions

What kinds of questions?

Discover statistical trends in geometric structures

plant roots, neurons: classification
phylogenetic trees: reconstruct, estimate

biochemical networks:
— parameter estimation (rate constants)
— stability or (multi)stationarity, especially when independent of parameters

points in R”: ordinary statistics, or any invariant, e.g., homology
principal bundles to explain aperiodicity: model selection

fMRI: classification

fiber tracts: network estimation or model selection

brain arteries: age, sex, handedness; eventually: stroke tendency, tumor
sclerites (or any morphometric data): phylogenetic relationships

lung vessels: well, anything [currently in conversation]

fly wings: we’ll get to that

Geometric reconstruction

of space from neural codes
of 3D images from 2D



Statistcs

What kinds of statisticians?

Those who deal with

e geometric data, such as brain scans—either 3D or 4D

e graph-theoretical data

¢ high-dimensional data, particularly with low sample size

e data from nonlinear spaces: angles, shapes, phylogenetic trees, . ..
Standard tools

e lots of highly (spatially or temporally) correlated variables
(# variables can be in the millions or higher order of magnitude for fMRI)

e linear regression: PCA = best-fit linear subspace

e classification schemes: k-nearest neighbor, support vector machines, . ..
Newer tools

e manifold learning

e persistent homology

e nested spheres
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What kinds of algebra?

Methods based on
e algebraic and differential geometry
— spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)
+ moduli spaces of modules
— grassmannians
— model parameters satisfying given constraints [Conradi]
e polyhedral or tropical geometry
— spaces of trees [Bernstein]
— -opes and -hedra of various sorts (e.g. genotope)
e monomial and binomial algebra
— neural rings [Lienkaemper]
related to [Martini]: realizability of combinatorial configurations
— toric dynamical systems
— probability simplices and subvarieties [Kubjas]
e topology and combinatorics
— trees and partial orders [Gavryushkin]
— simplicial complexes and homology
— (multi)graded modules over polynomial rings [this talk]

Probability

Future
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:




Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Fruit fly wings

Normal fly wings [images from David Houle’s lab]:



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules

Fruit fly wings

photographic image

Encoding  Fringe presentation
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Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields
e skew toward more oddly shaped wings, but also
e much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes
continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
¢ "plot" wings in "form space"
e determine whether topological variants lie "in the direction of" continuous
shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving
appropriate weight to new singular points in addition to varying shape

e compare phenotypic distance to genotypic distance; needs

e metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects ~ statistics with
multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
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Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields
e skew toward more oddly shaped wings, but also
e much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes
continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
e "plot" wings in "form space”
e determine whether topological variants lie "in the direction of" continuous
shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving
appropriate weight to new singular points in addition to varying shape

e compare phenotypic distance to genotypic distance; needs

o metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects ~ statistics with
multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
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Persistent homology

Topological space X
e Fixed X ~~ homology H;X for each dimension i
e Build X step by step: measure evolving topology

Def. Let X, be a filtered space, meaning @ = Xo C Xy C --- C X = X.
The persistent homology H; X, is HX; — HiXo — --- — H;Xn, a sequence of
vector space homomorphisms.

Examples

1. Given a function f : X — R, let . Choose fy,...,th € R
S0 H;X; changes from t t0 fj 1

2. Any simplicial complex: build it simplex by simplex in some order
History. invented by [Frosini, Landi 1999], [Robins 1999];
[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;
[Cagliari, Harer, Knudson, Mukherijee,. . .]: developments in theory, applications
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Multiparameter persistence

Plan. (with Houle, Curry, Thomas, +...) Encode with 2-parameter persistence
o 1st parameter: distance from vertex set
e 2nd parameter: distance from edge set

W, is but far from vertices
models intersection homology [Bendich, Harer 2011] at undetermined scale:
disallow interaction of larger strata with smaller ones
diminutive features can represent new strata at appropriate scales
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Multiparameter persistence

Plan. (with Houle, Curry, Thomas, +...) Encode with 2-parameter persistence
o 1st parameter: distance from vertex set (require distance > —r)
e 2nd parameter: distance from edge set (require distance < s)

Sublevel set W, ; is near edges but far from vertices
models intersection homology [Bendich, Harer 2011] at undetermined scale:
disallow interaction of larger strata with smaller ones
diminutive features can represent new strata at appropriate scales
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A piece of fly wing vein The (r, s)-plane R?

stratification alters persistence module
discretization approximates something algebraic
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Modules over posets

Filter X by poset Q of subspaces: X, C X for g € Q = persistent homology is a
Def. Q-module:
* Q-graded vector space H = P, Hq With
e homomorphism Hy — Hy whenever g < @' in Q such that
Hqy — Hy equals the composite Hy — Hy — Hq whenever g < ¢’ < q”

brain arteries: Q = {0, ..., m}

brain arteries: Q =R

wing veins: Q = 72

wing veins: Q = R?

multifiltration ~~ n real filtrations of any topological space: Q = R”
Q = 7" implies H = Z"-graded k[x1, .. ., Xp]-module

standard combinatorial commutative algebra
many proofs proceed by reducing to this case
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Filter X by poset Q of subspaces: X, C X for g € Q = persistent homology is a

Def. Q-module:
e Q-graded vector space H = @qeo Hq with
e homomorphism Hy, — Hg whenever g < q' in Q such that
e Hy; — Hg» equals the composite Hy — Hy — Hy» whenever g < ¢’ < q”

Examples

e brain arteries: Q ={0,...,m}

e brain arteries: Q=R

e wing veins: Q = Z?

e wing veins: Q = R?
multifiltration ~~ n real filtrations of any topological space: Q = R”
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— many proofs proceed by reducing to this case
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Encoding persistence modules

Finiteness conditions: e Z"-modules: finitely generated < noetherian
e R™-modules from data analysis <> ??

Def. H induces isotypic regions in Q: equivalence classes for equivalence
relation generated by a ~ b whenever ¢ a <bin Q

and e H; = Hp.
His if dimy, Hy < oo and #isotypic regions < oco.

Example. ko @ k[R?] induces isotypic regions {0} and R? . {0}

Def [w/Curry & Thomas]. H has if
e Pis a finite poset,
e 7 is a poset morphism, and
e H= "M = Dycq Mr(q), the of some P-module M along .
For Q = R”, encoding is if its fibers are semialgebraic varieties.

Thm. Every tame Q-module admits a finite encoding. If Q = R”, the encoding
can be chosen semialgebraic if the isotypic regions are semialgebraic.
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An R2-module finitely encoded
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Fringe presentation

Def. Fix a poset Q.
e upset UC Qif U=,y Qu
e downset D C Qif D = Uyep Q<a
For any subset S C Q, set k[S] = P, sks.

Def [w/Curry & Thomas]. A fringe presentation of H is a monomial matrix

U en 0 pu

UcL okt e
kUil @ - - @ k[Ux] = F E=K[Di]®---®k[D/]
with image(F — E) = H.
e subordinate to encoding 7 : Q — P if all U; and D; are unions of fibers of =
Compare. [Chacholski, Patriarca, Scolamiero, Vaccarino] “monomial presentation”
but fringe presentation is new even for finitely generated Z?-modules

Thm [w/Curry & Thomas]. finitely encoded < admits fringe presentation:
¢ A fringe presentation exists subordinate to any given finite encoding.
e Any given fringe presentation is subordinate to some finite encoding.
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Fringe presentation

Examples
e InR?;

and

e InR3:

semialgebraic piecewise linear

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187-216]
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Topology of probability distributions

Approximation by bandwidth r expansion of size n sample
e geometry: sample S, from space M = M ~ B,(S) = U,.s Br(X)
o statistics: sample 1, from measure o = i~ Uy (pn) = 23 s ﬁ(r)u,(x)
U;(x) = uniform measure on B,(x) and vol(r) = volume of ball of radius r
In general: U, ~ K; arbitrary kernel and p, ~ v arbitrary measure
Def. pu has density F = B,(u) has density K, = F(x) = [,, K/(y — X)du(y).

Def. support at
e v has density F =

e expansion of p to bandwidth r and i.s Br(p)>1/s € M.
Note: {B(p)sra/s | r € R>o and } € M nested as r and s increase
Def. u has H* (1) = Hi(Br(1£)>ra/5), an invariant of
Conj. If uis —a mixture of smooth measures supported on the strata

of a Whitney stratification—then its bipersistent homology is finitely encoded.
algebra, geometry, combinatorics of H.°(u) < statistics of .
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Bandwidth r expansion / kernel density estimation

images taken from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301-2339.
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fringe presentation, primary decomposition, finite encoding
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Future directions

Algebra
¢ QR codes: (co)generator functors and primary decomp. of R"-modules
e Syzygy conj: R"-modules have indicator-homological dimension < n
Geometric statistics
e geometric probability/statistics on stratified spaces
e No-moduli conj: rank function R” x R” — N determines Hy and H,_1
modules for objects in R"” (a X b) — rank(Ha — Hbp)
e Local statistical sufficiency conj: Different fly wings yield nonisomorphic
modules locally; i.e., deformation of fly wing splines = QR code changes

Computation

e calculate encoding / fringe presentation from vertices and Bézier curves
e homological algebra with semialgebraic indicator modules
e data structures for rank functions; computation for statistics

Topology. Biparameter persistence as persistent intersection homology

Biology. The topological novelty hypothesis
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e No-moduli conj: rank function R” x R” —+ N determines Hy and H,_1
modules for objects in R” (a = b) — rank(Ha — Hbp)
e Local statistical sufficiency conj: Different fly wings yield nonisomorphic
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Computation
e calculate encoding / fringe presentation from vertices and Bézier curves
e homological algebra with semialgebraic indicator modules
e data structures for rank functions; computation for statistics

Topology. Biparameter persistence as persistent intersection homology

Biology. The topological novelty hypothesis
Thank You
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