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What kinds of biology?

Geometric datasets and data objects arise naturally in biological sciences:

• medicine

• neuroscience

• botany

• ecology
• systems biology: organisms as collections of interacting units

– metabolic pathways

– cell signaling networks

• systematics: history of speciation

• evolutionary biology: mechanisms of selection and speciation

• developmental biology: embryology, cell differentiation, growth

• behavior
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What kinds of biology?

Geometric datasets and data objects arise naturally in biological sciences:

• medicine

• neuroscience

• botany

• ecology
• systems biology: organisms as collections of interacting units

– metabolic pathways

– cell signaling networks

• systematics: history of speciation

• evolutionary biology: mechanisms of selection and speciation

• developmental biology: embryology, cell differentiation, growth

• behavior

• [. . . others I’ve missed: tell me what to add for next time!. . . ]

Note. We guide biologists to relevant techniques for their data and questions

⇒ crucial to

• understand data on biologists’ terms

• be aware of available statistical or mathematical methods
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What kinds of data?
Shapes
• 1D: curves (in R

2 or R3, say)
• 2D: photographs
• 3D: MRI, DTI, SPECT, PET, CAT, integrated photo

– cricket sclerites

– brain arteries

– lung vessels

– fiber tracts

• (2+1)D: video (.mp4, .mov, ...)
• 4D: fMRI, or any time series of spatial 3D
• arbitrary D: abstract geometric structures from data

– principal bundles to model aperiodicity of time series

– any bunch of isolated points in R
n (!), especially for n≫ 0

Networks
• neurological
• metabolic
• regulatory (genetic)
• phylogenetic
• ecological
• physical: plant roots, neuronal (dendritic)

Points in high dimension, e.g. genetic SNP profiles for personalized medicine
2
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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A. apoplanos

courtesy Elen Oneal
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Brain arteries

[Bullitt and Aylward, 2002]
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Lung vessels (CDH study)

courtesy Sean McLean
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Streamlines from Diffusion Tensor Imaging

courtesy Zhengwu Zhang
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fMRI

courtesy Nicole Lazar
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Amphiacusta phylogeny
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What kinds of questions?

Discover statistical trends in geometric structures

• plant roots, neurons: classification
• phylogenetic trees: reconstruct, estimate

• biochemical networks:
– parameter estimation (rate constants)

– stability or (multi)stationarity, especially when independent of parameters

• points in R
n: ordinary statistics, or any invariant, e.g., homology

• principal bundles to explain aperiodicity: model selection

• fMRI: classification

• fiber tracts: network estimation or model selection

• brain arteries: age, sex, handedness; eventually: stroke tendency, tumor

• sclerites (or any morphometric data): phylogenetic relationships

• lung vessels: well, anything [currently in conversation]

• fly wings: we’ll get to that

Geometric reconstruction

• of space from neural codes

• of 3D images from 2D
10
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What kinds of statisticians?

Those who deal with

• geometric data, such as brain scans—either 3D or 4D

• graph-theoretical data

• high-dimensional data, particularly with low sample size

• data from nonlinear spaces: angles, shapes, phylogenetic trees, . . .

Standard tools

• lots of highly (spatially or temporally) correlated variables

(# variables can be in the millions or higher order of magnitude for fMRI)

• linear regression: PCA = best-fit linear subspace

• classification schemes: k-nearest neighbor, support vector machines, . . .

Newer tools

• manifold learning

• persistent homology

• nested spheres

11
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What kinds of algebra?

Methods based on
• algebraic and differential geometry

– spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)

+ moduli spaces of modules
– grassmannians

– model parameters satisfying given constraints [Conradi]

• polyhedral or tropical geometry
– spaces of trees [Bernstein]

– -opes and -hedra of various sorts (e.g. genotope)

• monomial and binomial algebra
– neural rings [Lienkaemper]

related to [Martini]: realizability of combinatorial configurations

– toric dynamical systems

– probability simplices and subvarieties [Kubjas]

• topology and combinatorics
– trees and partial orders [Gavryushkin]

– simplicial complexes and homology

– (multi)graded modules over polynomial rings [this talk]

12
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Pictures of tree spaces

T3 T4

from [BHV 2001]

13



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

What kinds of algebra?

Methods based on
• algebraic and differential geometry

– spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)

+ moduli spaces of modules
– grassmannians

– model parameters satisfying given constraints [Conradi]

• polyhedral or tropical geometry
– spaces of trees [Bernstein]

– -opes and -hedra of various sorts (e.g. genotope)

• monomial and binomial algebra
– neural rings [Lienkaemper]

related to [Martini]: realizability of combinatorial configurations

– toric dynamical systems

– probability simplices and subvarieties [Kubjas]

• topology and combinatorics
– trees and partial orders [Gavryushkin]

– simplicial complexes and homology

– (multi)graded modules over polynomial rings [this talk]

12’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

What kinds of algebra?

Methods based on
• algebraic and differential geometry

– spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)

+ moduli spaces of modules
– grassmannians

– model parameters satisfying given constraints [Conradi]

• polyhedral or tropical geometry
– spaces of trees [Bernstein]

– -opes and -hedra of various sorts (e.g. genotope)

• monomial and binomial algebra
– neural rings [Lienkaemper]

related to [Martini]: realizability of combinatorial configurations

– toric dynamical systems

– probability simplices and subvarieties [Kubjas]

• topology and combinatorics
– trees and partial orders [Gavryushkin]

– simplicial complexes and homology

– (multi)graded modules over polynomial rings [this talk]

12’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

What kinds of algebra?

Methods based on
• algebraic and differential geometry

– spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)

+ moduli spaces of modules
– grassmannians

– model parameters satisfying given constraints [Conradi]

• polyhedral or tropical geometry
– spaces of trees [Bernstein]

– -opes and -hedra of various sorts (e.g. genotope)

• monomial and binomial algebra
– neural rings [Lienkaemper]

related to [Martini]: realizability of combinatorial configurations

– toric dynamical systems

– probability simplices and subvarieties [Kubjas]

• topology and combinatorics
– trees and partial orders [Gavryushkin]

– simplicial complexes and homology

– (multi)graded modules over polynomial rings [this talk]

12’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

What kinds of algebra?

Methods based on
• algebraic and differential geometry

– spaces of phenotypes or phenotype summaries
+ configuration spaces of points (“shape spaces”)

+ moduli spaces of modules
– grassmannians

– model parameters satisfying given constraints [Conradi]

• polyhedral or tropical geometry
– spaces of trees [Bernstein]

– -opes and -hedra of various sorts (e.g. genotope)

• monomial and binomial algebra
– neural rings [Lienkaemper]

related to [Martini]: realizability of combinatorial configurations

– toric dynamical systems

– probability simplices and subvarieties [Kubjas]

• topology and combinatorics
– trees and partial orders [Gavryushkin]

– simplicial complexes and homology

– (multi)graded modules over polynomial rings [this talk]

especially computational aspects
12’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

3’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:

3’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Fruit fly wings

photographic image
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Fruit fly wings

spline
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Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields

• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes

continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous

shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving

appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects statistics with

multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
15
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Choose t0, . . . , tm ∈ R

so HiXt changes from tk to tk+1

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[Cagliari, Harer, Knudson, Mukherjee,. . . ]: developments in theory, applications

16
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Example: expanding balls
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Choose t0, . . . , tm ∈ R

so HiXt changes from tk to tk+1

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[Cagliari, Harer, Knudson, Mukherjee,. . . ]: developments in theory, applications

16’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Choose t0, . . . , tm ∈ R

so HiXt changes from tk to tk+1

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[Cagliari, Harer, Knudson, Mukherjee,. . . ]: developments in theory, applications

16’



Biology Data Questions Statistcs Algebra Fly wings Biology Persistence Poset modules Encoding Fringe presentation Probability Future

Example: filling brains [w/Bendich, Marron, Pieloch, Skwerer]
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Choose t0, . . . , tm ∈ R

so HiXt changes from tk to tk+1

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[Cagliari, Harer, Knudson, Mukherjee,. . . ]: developments in theory, applications
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Multiparameter persistence

Plan. (with Houle, Curry, Thomas, +. . . ) Encode with 2-parameter persistence

• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

• models intersection homology [Bendich, Harer 2011] at undetermined scale:
• disallow interaction of larger strata with smaller ones
• diminutive features can represent new strata at appropriate scales

Z
2-module:

↑ ↑ ↑

→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑

→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑

→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
19
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Examples

 

A piece of fly wing vein The (r , s)-plane R
2

Observations

• stratification alters persistence module

• discretization approximates something algebraic

20
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Modules over posets

Filter X by poset Q of subspaces: Xq ⊆ X for q ∈ Q ⇒ persistent homology is a

Def. Q-module:

• Q-graded vector space H =
⊕

q∈Q Hq with

• homomorphism Hq → Hq′ whenever q � q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Examples

• brain arteries: Q = {0, . . . ,m}

• brain arteries: Q = R

• wing veins: Q = Z
2

• wing veins: Q = R
2

• multifiltration n real filtrations of any topological space: Q = R
n

• Q = Z
n implies H = Z

n-graded k[x1, . . . , xn]-module

– standard combinatorial commutative algebra

– many proofs proceed by reducing to this case

21
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Encoding persistence modules

Finiteness conditions: • Zn-modules: finitely generated⇔ noetherian

• Rn-modules from data analysis↔ ??

Def. H induces isotypic regions in Q: equivalence classes for equivalence

relation generated by a ∼ b whenever • a � b in Q

and • Ha
∼−→ Hb.

H is tame if dimk Hq <∞ and #isotypic regions <∞.

Example. k0 ⊕ k[R2] induces isotypic regions {0} and R
2
r {0}

Def [w/Curry & Thomas]. H has finite encoding π : Q → P if

• P is a finite poset,
• π is a poset morphism, and
• H ∼= π∗M =

⊕

q∈Q Mπ(q), the pullback of some P-module M along π.

For Q = R
n, encoding is semialgebraic if its fibers are semialgebraic varieties.

Thm. Every tame Q-module admits a finite encoding. If Q = R
n, the encoding

can be chosen semialgebraic if the isotypic regions are semialgebraic.
22
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relation generated by a ∼ b whenever • a � b in Q

and • Ha
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Fringe presentation

Def. Fix a poset Q.

• upset U ⊆ Q if U =
⋃

u∈U Q�u

• downset D ⊆ Q if D =
⋃

d∈D Q�d

For any subset S ⊆ Q, set k[S] =
⊕

s∈S ks.

Def [w/Curry & Thomas]. A fringe presentation of H is a monomial matrix

U1

...

Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...

ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] = F −−−−−−−−−−−−−−−−→ E = k[D1]⊕ · · · ⊕ k[Dℓ]

with image(F → E) ∼= H.

• subordinate to encoding π : Q → P if all Ui and Dj are unions of fibers of π

Compare. [Chachólski, Patriarca, Scolamiero, Vaccarino] “monomial presentation”

but fringe presentation is new even for finitely generated Z
2-modules

Thm [w/Curry & Thomas]. finitely encoded⇔ admits fringe presentation:

• A fringe presentation exists subordinate to any given finite encoding.
• Any given fringe presentation is subordinate to some finite encoding.
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Fringe presentation

Examples
• In R

2:

U = and = D

• In R
3:

U =

semialgebraic

or

piecewise linear

= D

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187–216]
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• subordinate to encoding π : Q → P if all Ui and Dj are unions of fibers of π
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but fringe presentation is new even for finitely generated Z
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Thm [w/Curry & Thomas]. finitely encoded⇔ admits fringe presentation:
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Topology of probability distributions

Approximation by bandwidth r expansion of size n sample

• geometry: sample Sn from space M ⇒ M ≈ Br (S) =
⋃

x∈S Br (x)

• statistics: sample µn from measure µ⇒ µ ≈ Ur (µn) =
1
n

∑

x∈S
1

vol(r)Ur (x)

Ur (x) = uniform measure on Br (x) and vol(r) = volume of ball of radius r

In general: Ur  Kr arbitrary kernel and µn  ν arbitrary measure

Def. µ has density F ⇒ Br (µ) has density Kr ∗ F (x) =
∫

M
Kr (y − x)dµ(y).

Def. support at sensitivity s:

• ν has density F ⇒ ν≥1/s =
{

x ∈ M | F (x) ≥ 1
s

}
.

• expansion of µ to bandwidth r and sensitivity s is Br (µ)≥1/s ⊆ M.

Note:
{

Br (µ)≥rd/s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)≥rd/s

)
, an invariant of µ

Conj. If µ is stratified—a mixture of smooth measures supported on the strata

of a Whitney stratification—then its bipersistent homology is finitely encoded.

algebra, geometry, combinatorics of H rs
∗ (µ)↔ statistics of µ.
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of H rs
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fringe presentation, primary decomposition, finite encoding
26’’
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Future directions

Algebra
• QR codes: (co)generator functors and primary decomp. of Rn-modules

• Syzygy conj: Rn-modules have indicator-homological dimension ≤ n

Geometric statistics
• geometric probability/statistics on stratified spaces

• No-moduli conj: rank function R
n × R

n → N

(a � b) 7→ rank(Ha → Hb)
determines H0 and Hn−1

modules for objects in R
n

• Local statistical sufficiency conj: Different fly wings yield nonisomorphic

modules locally; i.e., deformation of fly wing splines⇒ QR code changes

Computation
• calculate encoding / fringe presentation from vertices and Bézier curves

• homological algebra with semialgebraic indicator modules

• data structures for rank functions; computation for statistics

Topology. Biparameter persistence as persistent intersection homology

Biology. The topological novelty hypothesis

28
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Thank You
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