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Persistent homology over arbitrary posets

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q .

Def. Q-module over the poset Q

• Q-graded vector space M =
⊕

q∈Q Mq over the field k with
• homomorphism Mq → Mq′ whenever q ≺ q′ in Q such that
• Mq → Mq′′ equals the composite Mq → Mq′ → Mq′′ whenever q ≺ q′ ≺ q′′

Essentially equivalent
• representation of Q [Nazarova–Rŏıter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Curry’s thesis 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])
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Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M ⇒ M ∼=
⊕

I∈I

k[I ] with I a set of intervals

Consequence over R: M  bar code / lace array / persistence diagram
• reinvented a number of times
• earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]

• explicitly drawn bars
• Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: a, b ∈ I ⇒
• q ∈ I whenever a � q � b and
• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k[S ] =
⊕

s∈S ks be its indicator module.

Examples. In R
2, intervals can look like

Def. Q-module has interval decomposition M ∼=
⊕

I∈I

k[I ] with I a set of intervals

3
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Old bar codes

[. . . ]

[Abeasis–Del Fra–Kraft 1981, Abeasis–Del Fra 1985]
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Old bar codes

[Knutson–M.–Shimozono 2005]

4



Persistence modules Intervals Filtration HN Lifetime filtration Tameness Lifetime modules Stability Erosion Future directions

Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M ⇒ M ∼=
⊕

I∈I

k[I ] with I a set of intervals

Consequence over R: M  bar code / lace array / persistence diagram
• reinvented a number of times
• earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]

• explicitly drawn bars
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Decomposition over arbitrary posets

Thm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Rŏıter 1992]. Over arbitrary poset Q,
M has indecomposable decomposition: M ∼=

⊕

α∈A

Mα with Mα indecomposable.

Essentially unique: multiset {Mα}α∈A of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but
they can’t tell the full decomposition story, even over Zn

[Carlsson–Zomorodian 2009].

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable Z
n-modules are big.

1. Every finitely supported Zn-module is a hyperplane section of some
indecomposable finitely supported Z

n+1-module.

2. A single indecomposable Z
2-module (not finitely supported) contains every

finitely supported Z-module, up to translation, as a hyperplane section.

Thm [Bauer–Scoccola 2022]. Over Zn,

1. Indecomposables are dense in interleaving distance.

2. The set of modules ∼= (ε-trivial ⊕ indecomposable) is interleaving-open.

So . . . where are the interval (decomposable) modules?
How is an arbitrary module to be compared with a set of intervals?
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Past avenues

Divergence of interval vs. indecomposable ⇒ two avenues:

1. study indecomposables and decomposition into direct sums thereof
2. relate indicator modules to arbitrary modules in some way

• homologically (using resolutions, complexes or invariants from there)
• virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed
• algorithms [QPA 2022, Dey–Xin 2022]

• bottleneck distances from ε-matching between decompositions

Avenue 2. So many options! E.g.,
• Betti numbers from free resolutions [Carlsson–Zomorodian 2009],

[Cerri–DiFabio–Ferri–Frosini–Landi 2013], [Oudot–Scoccola 2023]

• modules  resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–],

[Scolamiero–Chachólski–Lundman–Ramanujam–Öberg 2017]

• virtual or signed K -theoretic images of resolutions [Kim–Mémoli 2021],

[Botnan–Oppermann–Oudot 2021], [McCleary–Patel 2022]

• relative homological algebra [Blanchette–Brüstle–Hanson 2021],

[Chacholski–Guidolin–Ren–Scolamiero–Tombari 2023], [Asashiba–Escolar–Nakashima–Yoshiwaki 2023]

Key observation: free and injective objects are indicator modules.
6
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Current and future avenue: filtration

Positivity. M =
⊕

α∈AMα expresses M positively in term of the Mα. Choose:

1. retain positivity or

2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles

Solution. Answer filtration with filtration! filtered space X  filtered module
• M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0
• with all Mi/Mi−1 “nice”

Pipeline

data  filtered topological spaces  algebraic objects

 

“nice” algebraic objects  invariants  statistics
Need
• Filtration method
• Stability
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Example: Harder–Narasimhan filtration

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:
• vector bundle is “nice” if semistable for group action on moduli space
• semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
• no

⊕
decomposition into semistables, but

• ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism Z : K (Q-mods)→ C

• think: ImZ ↔ deg and ReZ ↔ dim

• M is semistable if slopes decrease: ImZ(M)
ReZ(M) ≥

ImZ(M′)
ReZ(M′) whenever M ⊇ M ′

Output. unique filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 semistable and decreasing slopes

Central charge. Choose ReZ = 1 and ImZ to be, e.g.,
• dim at some fixed vertex x — finer than rank invariant!
• more generally: anything factoring through dim : K (Q-mods)→ Z

vertices(Q)

Thm [Fersztand 2024]. HN filtration  HN filtered rank functions.
Under erosion distance, these are interleaving-stable.
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Lifetime filtration

Idea [M.–Zhang 2024]. Filter using indicator modules k[S ]:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k[L] ⊆ M
• replace M with M/k[L]
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ⊕

i=1

Mi/Mi−1

Prop. M tame ⇒ M has finite lifetime filtration.

Thm [M.–Zhang 2024]. Lifetime filtrations  lifetime-bottleneck distance dL,
which is interleaving-stable: tame M and N admit lifetime filtrations verifying

dL(M,N) ≤ dI (M,N).
9
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Tameness

Def [M.– 2017]. A module M over an arbitrary poset Q admits a constant
subdivision if Q is partitioned into

• constant regions A, each with vector space MA−→∼ Ma for all a ∈ A, having

• no monodromy: all comparable pairs a � b with a ∈ A and b ∈ B induce the
same composite MA → Ma → Mb → MB .

M is tame if it admits a finite constant subdivision and dimk Mq <∞ for all q.

Example. k0 ⊕ k[R2] admits constant regions {0} and R
2
r {0}
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Encoding persistence modules

Def. Q-module M has finite encoding π : Q → P if
• P is a finite poset,
• π is a poset morphism, and
• M ∼= π∗N =

⊕
q∈Q Nπ(q), the pullback of some P-module N.

 

An R
2-module finitely encoded

Thm [M.– 2017]. tame ⇔ finitely encodable

Cor. Much can be done over finite Q or Zn (e.g., lifetime filtration existence)
11
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Lifetime modules

Def. lifetime module is ∼= k[U ∩ D] for an upset U and downset D.

Example. fringe presentation of a lifetime module:

In general, lifetime = antichain of intervals

Example.

Lemma. Submodules, quotients, and (hence) images and subquotients of
lifetime modules are lifetime modules.

12
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Distances

Def [Lesnick 2015]. An ε-interleaving between R
n-modules M and N is a pair of

homomorphisms f : M → N(ε) and g : N → M(ε) whose composites induce
g(ε) ◦ f : Mq → Mq+2ε and
f (ε) ◦ g : Nq → Nq+2ε, natural maps ∀q ∈ R

n. The interleaving distance is

dI (M,N) = inf{ε | M and N are ε-interleaved}

Def. Direct sums
⊕

α∈A

Mα and
⊕

α∈A

Nα are ε-matched if Mα and Nα are

ε-interleaved for all α ∈ A.

Def. Let D : Q-mods→ families of finitely decomposed Q-modules with ordered
summands, so each element of D(M) is a direct sum K = K1 ⊕ · · · ⊕ Kℓ. The
bottleneck distance determined by D is

dD(M,N) = inf{ε | K and L are ε-matched with K ∈ D(M) and L ∈ D(N)}.

Note. Summands can be 0, and L ∈ D(M) 6⇒ L ∼= M.

Examples. various distances from different choices of D:

1. bottleneck distance dB from D(M) = {indecomposable decompositions of M}
2. lifetime distance dL from D(M) = {grF

•
M | F

•
is a lifetime filtration of M}

13
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dI (M,N) = inf{ε | M and N are ε-interleaved}

Def. Direct sums
⊕

α∈A

Mα and
⊕

α∈A

Nα are ε-matched if Mα and Nα are

ε-interleaved for all α ∈ A.

Def. Let D : Q-mods→ families of finitely decomposed Q-modules with ordered
summands, so each element of D(M) is a direct sum K = K1 ⊕ · · · ⊕ Kℓ. The
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Note. Summands can be 0, and L ∈ D(M) 6⇒ L ∼= M.

Examples. various distances from different choices of D:

1. bottleneck distance dB from D(M) = {indecomposable decompositions of M}
2. lifetime distance dL from D(M) = {grF
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•
is a lifetime filtration of M}
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Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration.

Proof sketch.
1. Reduce to Q = Zn by finite encoding.

2. Use primary decomposition.

Lemma. Any homomorphism f : M → N takes any lifetime filtration of M, say
F

•
M : Mℓ ⊇ · · · ⊇ M0, to a lifetime filtration F

•
N, where Ni = FiN = f (Mi ).

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Thm [M.–Zhang 2024]. Fix tame R
n-modules M and N plus a lifetime filtration of M.

Any ε-interleaving morphisms f : M → N(ε) and g : N → M(ε) induce a lifetime
filtration of N such that grM and grN are ε-matched.

Proof sketch. The filtration of N is the shift up by ε of the image in N(ε),
under the interleaving map f : M → N(ε), of the filtration of M. That is,

F
•
N = f (F

•
M)(−ε).

Cor. dL(M,N) ≤ dI (M,N).
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Example: erosion neighborhoods

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first.
How to perturb? Filter! More precisely, take a big filtered piece by pruning:
• M ⊇ Mε ⊇ Mε ⊇ 0
• with small successive quotients Mε/0 and M/Mε

• take subquotients before decomposing and comparing

Rephrase.
• Two modules are close if they have big filtered pieces that are close.
• Big filtered pieces can decompose more readily than the given modules.

Compare.
1. one parameter: ignore short bars by summing only the bigger ones
2. multiple parameters: ignore “short bars” by filtering them away

Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm [Bjerkevik 2023]. Pruning of M is stable, in the sense that it detects all
indecomposables appearing in modules within ε of M.

Conj [Bjerkevik 2023]. Pruning distance is interleaving stable and Lipschitz.

15
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Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

• Locate “maximally persistent” elements

• ⇒ Conj: dL ≥ cdI for some constant c , independent of # parameters
• What is meant by “maximally persistent”?

• length, width, area, volume
• “size” is crucial when parameters have incomparable scientific meanings
• primary distances: separate classes according to birth and death types
• note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture

• Must an indecomposable possess a big individual element?

• Is every indecomposable close to interval decomposing? If not, how likely is it?

• How likely is M to break into interpretable small pieces by perturbation?

Implementation
• Locate maximally persistent elements algorithmically

• Certify lower bounds for approximating dL

16
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