New horizons in algebra for multiparameter persistence

Ezra Miller

Duke University, Department of Mathematics and Department of Statistical Science

ezra@math.duke.edu

Spires 2024

Centre for Topological Data Analysis

University of Oxford, UK

8 August 2024

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime](#page-90-0) modules [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0)

Outline

- 1. [Persistence modules](#page-2-0)
- 2. [Interval decomposition](#page-34-0)
- 3. [Filtration](#page-54-0)
- 4. [Harder–Narasimhan filtration](#page-64-0)
- 5. [Lifetime filtration](#page-71-0)
- 6. [Tameness](#page-76-0)
- 7. [Lifetime modules](#page-90-0)
- 8. [Stability of lifetime distance](#page-95-0)
- 9. [Erosion neighborhoods](#page-107-0)
- 10. [Future directions](#page-114-0)

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$

- Def. $\{X_a\}_{a\in Q}$ has persistent homology $\{H_a = H(X_a; \mathbb{k})\}_{a\in Q}$.
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	-
	-

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

- Def. $\{X_a\}_{a\in Q}$ has persistent homology $\{H_a = H(X_a; \mathbb{k})\}_{a\in Q}$.
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	-
	-

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

- Def. $\{X_a\}_{a\in Q}$ has persistent homology $\{H_a = H(X_a; \&)\}_{a\in Q}$.
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	-
	-

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

- Def. $\{X_{\alpha}\}_{{\alpha}\in{O}}$ has persistent homology $\{H_{\alpha} = H(X_{\alpha}, \mathbb{k})\}_{{\alpha}\in{O}}$. This is a
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	- \bullet homomorphism $M_q \to M_{q'}$ whenever $q \prec q'$ in Q such that
	-

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

- Def. $\{X_{a}\}_{{a}\in Q}$ has persistent homology $\{H_{a} = H(X_{a}, \overline{\mathbb{k}})\}_{{a}\in Q}$. This is a
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	- \bullet homomorphism $M_q \to M_{q'}$ whenever $q \prec q'$ in Q such that
	- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \prec q' \prec q''$

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set
- 2nd parameter: distance from edge set

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

 $\frac{1}{2}$ dges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set given as Bézier curves

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

 $\textsf{Sublevel set}\ \mathcal{W}_{r,\bm{s}}\ \textsf{is near edges but far from vertices}\ \ \Rightarrow H_{r,\bm{s}}=H_i(W_{r,\bm{s}})$

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

 $\textsf{Sublevel set}\ \mathcal{W}_{r,\bm{s}}\ \textsf{is near edges but far from vertices}\ \ \Rightarrow H_{r,\bm{s}}=H_i(W_{r,\bm{s}})$

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

↑ ↑ ↑ → *Hr*−ε,*s*+^δ → *Hr*,*s*+^δ → *Hr*+ε,*s*+^δ → ↑ ↑ ↑ Z 2 -module: → *Hr*−ε,*^s* → *Hr*,*^s* → *Hr*+ε,*^s* → ↑ ↑ ↑ → *Hr*−ε,*s*−^δ → *Hr*,*s*−^δ → *Hr*+ε,*s*−^δ → ↑ ↑ ↑

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

- Def. $\{X_{a}\}_{{a}\in Q}$ has persistent homology $\{H_{a} = H(X_{a}, \overline{\mathbb{k}})\}_{{a}\in Q}$. This is a
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	- \bullet homomorphism $M_q \to M_{q'}$ whenever $q \prec q'$ in Q such that
	- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \prec q' \prec q''$

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Yuzvinsky 1987], [Yanagawa 2001], [Curry 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime modules](#page-90-0) [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0)

- Def. $\{X_{a}\}_{{a}\in Q}$ has persistent homology $\{H_{a} = H(X_{a}, \overline{\mathbb{k}})\}_{{a}\in Q}$. This is a
- Def. Q-module over the poset Q
	- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
	- \bullet homomorphism $M_q \to M_{q'}$ whenever $q \prec q'$ in Q such that
	- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \prec q' \prec q''$

Essentially equivalent

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Yuzvinsky 1987], [Yanagawa 2001], [Curry 2014])
- **•** representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ \Rightarrow Q is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime modules](#page-90-0) [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0)

Def. $\{X_{\alpha}\}_{{\alpha}\in{O}}$ has persistent homology $\{H_{\alpha} = H(X_{\alpha}, \mathbb{k})\}_{{\alpha}\in{O}}$. This is a

Def. Q-module over the poset Q assume pfd: dim $M_q < \infty$ for all $q \in Q$

- \bullet Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field \Bbbk with
- \bullet homomorphism $M_q \to M_{q'}$ whenever $q \prec q'$ in Q such that
- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \prec q' \prec q''$

Essentially equivalent

- representation of Q [Nazarova–Roĭter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Yuzvinsky 1987], [Yanagawa 2001], [Curry 2014])
- representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]
- module over directed acyclic graph Q [Chambers–Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Interval decomposition

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \prec q \prec b$ and
- \bullet there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with ${\cal I}$ a set of intervals

Interval decomposition

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

• $q \in I$ whenever $q \prec q \prec b$ and

 \bullet there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with ${\cal I}$ a set of intervals $I \in \mathcal{T}$
Old bar codes

It is convenient to represent λ^A as a "diagram of boxes", each row starting at i and ending at j stands for one indecomposable factor of type $E_{(i,j)}$. E.g. the following diagram represents λ^A for A isomorphic to

 $E_{(1,6)} \oplus E_{(1,3)} \oplus E_{(3,6)} \oplus E_{(3,4)} \oplus E_{(3,4)} \oplus E_{(5,6)} \oplus E_{(5,5)}$

2.4. Conversely any indexed set $\lambda = (\lambda_{(i,j)})_{1 \le i \le j \le m}$ of natural numbers determines an orbit in $L(V_1, V_2, ..., V_m)$ provided dim $V_i = \hat{\lambda}_i := \sum_{\substack{x \le i \le n}} \lambda_{(r, s)}$ (= # boxes in the ith column of λ). We will shortly call such an indexed set a *diagram*, define [...]
Let us introduce now the set of non-negative integers $n^4 = \{n_{rs}^4\}_{1 \leq r \leq s \leq m}$

associated to A and defined by

$$
n_{rs}^4 := \sum_{p \leq r \leq s \leq q} e_{pq}^4.
$$

 n_{rs}^A is the number of the segments of the diagram of $[A]$ which contain the integers r , s . It follows that we have

$$
(2.4) \t\t e_{pq}^A = n_{pq}^A - n_{p-1,q}^A - n_{p,q+1}^A + n_{p-1,q+1}^A
$$

where we set $n_{re}^4 = 0$ if $r < 0$ or $s > m + 1$.

[Abeasis–Del Fra–Kraft 1981, Abeasis–Del Fra 1985]

Old bar codes

Example 1.5. Consider the rank array $\mathbf{r} = (r_{ii})$, its lace array $\mathbf{s} = (s_{ii})$, and its rectangle array $\mathbf{R} = (R_{ii})$, which we depict as follows.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime modules](#page-90-0) [Stability](#page-95-0) [Erosion](#page-107-0) Future [directions](#page-114-0)

$$
\mathbf{r} = \begin{array}{c|c}\n3 & 2 & 1 & 0 & i \diagup j \\
\hline\n2 & 0 & & \\
3 & 2 & 1 & \\
4 & 2 & 1 & 2 \\
3 & 2 & 1 & 0 & 3\n\end{array}\n\qquad\n\mathbf{s} = \begin{array}{c|c}\n3 & 2 & 1 & 0 & i \diagup j \\
\hline\n0 & 0 & & \\
0 & 1 & 1 & \\
1 & 0 & 1 & 2 \\
1 & 1 & 1 & 0 & 3\n\end{array}\n\qquad\n\mathbf{R} = \begin{array}{c|c}\n2 & 1 & 0 & i \diagup j \\
\hline\n\end{array}\n\qquad\n\mathbf{R} = \begin{array}{c|c}\n2 & 1 & 0 & i \diagup j \\
\hline\n\end{array}
$$

The relation (1.2) says that an entry of \bf{r} is the sum of the entries in \bf{s} that are weakly southeast of the corresponding location. The height of R_{ij} is obtained by subtracting the entry r_{ii} from the one above it, while the width of R_{ii} is obtained by subtracting the entry r_{ii} from the one to its left.

It follows from the definition of R_{ii} that

(1.3)
$$
\sum_{k \geq j} \text{height}(R_{ik}) = r_{i,j-1} - r_{i,n} \leq r_{i,j-1} \quad \text{for all } i
$$

(1.4)
$$
\sum_{\ell \leq i} \text{width}(R_{\ell j}) = r_{i+1,j} - r_{0,j} \leq r_{i+1,j} \quad \text{for all } j.
$$

(This will be applied in Proposition 8.12.) The relation (1.2) can be inverted to obtain

(1.5)
$$
s_{ij} = r_{ij} - r_{i-1,j} - r_{i,j+1} + r_{i-1,j+1}
$$

[Knutson-M.-Shimozono 2005]

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

• $q \in I$ whenever $q \prec q \prec b$ and

 \bullet there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with ${\cal I}$ a set of intervals $I \in \mathcal{T}$

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with ${\cal I}$ a set of intervals $I \in \mathcal{T}$

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

• $q \in I$ whenever $a \preceq q \preceq b$ and

• there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

 $Examples.$ In \mathbb{R}^2 , intervals can look like

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

 $Examples.$ In \mathbb{R}^2 , intervals can look like

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with ${\cal I}$ a set of intervals

 $\mathsf{T}\mathsf{hm}$ [Crawley-Boevey 2015]. $\mathbb R\text{-}\mathsf{mod}$ ule $\mathcal M \Rightarrow \mathcal M \cong \bigoplus \Bbbk [I]$ with $\mathcal I$ a set of intervals I∈I

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
	- explicitly drawn bars
	- Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

 $Examples.$ In \mathbb{R}^2 , intervals can look like

Def. Q-module has interval decomposition $M \cong \bigoplus \Bbbk [I]$ with I a set of intervals I∈I

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable.

α∈*A* Essentially unique: multiset $\{M_{\alpha}\}_{{\alpha}\in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported \mathbb{Z}^{n+1} -module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported Z-module, up to translation, as a hyperplane section.

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules $\cong (\varepsilon$ -trivial \oplus indecomposable) is interleaving-open.

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable. α∈*A*

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-[directions](#page-114-0)

Essentially unique: multiset ${M_\alpha}_{\alpha \in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported \mathbb{Z}^{n+1} -module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported Z-module, up to translation, as a hyperplane section.

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules $\cong (\varepsilon$ -trivial \oplus indecomposable) is interleaving-open.

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable. α∈*A*

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-[directions](#page-114-0)

Essentially unique: multiset ${M_\alpha}_{\alpha \in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but they can't tell the full decomposition story, even over \mathbb{Z}^n [Carlsson-Zomorodian 2009].

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported \mathbb{Z}^{n+1} -module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported Z-module, up to translation, as a hyperplane section.

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules $\cong (\varepsilon$ -trivial \oplus indecomposable) is interleaving-open.

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable. α∈*A*

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-[directions](#page-114-0)

Essentially unique: multiset ${M_\alpha}_{\alpha \in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but they can't tell the full decomposition story, even over \mathbb{Z}^n [Carlsson-Zomorodian 2009].

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable Z *n* -modules are big.

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported Z *ⁿ*+1-module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported $\mathbb Z$ -module, up to translation, as a hyperplane section.

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules $\cong (\varepsilon$ -trivial ⊕ indecomposable) is interleaving-open.

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-[directions](#page-114-0)

 $\overline{a} \in A$ Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but they can't tell the full decomposition story, even over \mathbb{Z}^n [Carlsson-Zomorodian 2009].

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable Z *n* -modules are big.

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported Z *ⁿ*+1-module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported $\mathbb Z$ -module, up to translation, as a hyperplane section.

Thm [Bauer-Scoccola 2022]. Over \mathbb{Z}^n ,

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules \cong (ε -trivial ⊕ indecomposable) is interleaving-open.

 T hm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Roĭter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus M_\alpha$ with M_α indecomposable.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-[directions](#page-114-0)

 $\overline{a} \in A$ Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Remark. Interval modules are indecomposable (easy), but they can't tell the full decomposition story, even over \mathbb{Z}^n [Carlsson-Zomorodian 2009].

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable Z *n* -modules are big.

- 1. Every finitely supported \mathbb{Z}^n -module is a hyperplane section of some indecomposable finitely supported Z *ⁿ*+1-module.
- 2. A single indecomposable \mathbb{Z}^2 -module (not finitely supported) contains every finitely supported Z-module, up to translation, as a hyperplane section.

Thm [Bauer-Scoccola 2022]. Over \mathbb{Z}^n ,

- 1. Indecomposables are dense in interleaving distance.
- 2. The set of modules \cong (ε -trivial ⊕ indecomposable) is interleaving-open.

Divergence of interval vs. indecomposable \Rightarrow two avenues:

- study indecomposables and decomposition into direct sums thereof
- 2. relate indicator modules to arbitrary modules in some way
	- homologically (using resolutions, complexes or invariants from there)
	- virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed

- algorithms [QPA 2022, Dey-Xin 2022]
- bottleneck distances from ε -matching between decompositions

Avenue 2. So many options! E.g.,

- Betti numbers from free resolutions [Carlsson–Zomorodian 2009],
- modules \rightsquigarrow resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–],
- virtual or signed K -theoretic images of resolutions [Kim–Mémoli 2021],
- relative homological algebra [Blanchette-Brüstle-Hanson 2021], Key observation: free and injective objects are indicator modules.

Divergence of interval vs. indecomposable \Rightarrow two avenues:

- 1. study indecomposables and decomposition into direct sums thereof
- 2. relate indicator modules to arbitrary modules in some way
	- homologically (using resolutions, complexes or invariants from there)
	- virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed

- algorithms [QPA 2022, Dey-Xin 2022]
- bottleneck distances from ε -matching between decompositions
- Avenue 2. So many options! E.g.,
	- Betti numbers from free resolutions [Carlsson–Zomorodian 2009],
	- modules \rightsquigarrow resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–],
	- virtual or signed K -theoretic images of resolutions [Kim–Mémoli 2021],
- relative homological algebra [Blanchette-Brüstle-Hanson 2021], Key observation: free and injective objects are indicator modules.

Divergence of interval vs. indecomposable \Rightarrow two avenues:

- 1. study indecomposables and decomposition into direct sums thereof
- 2. relate indicator modules to arbitrary modules in some way
	- homologically (using resolutions, complexes or invariants from there)
	- virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed

- algorithms [QPA 2022, Dey-Xin 2022]
- bottleneck distances from ε -matching between decompositions

Avenue 2. So many options! E.g.,

- Betti numbers from free resolutions [Carlsson–Zomorodian 2009],
- modules \rightsquigarrow resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–],
- virtual or signed K -theoretic images of resolutions [Kim–Mémoli 2021],
- relative homological algebra [Blanchette–Brüstle–Hanson 2021], Key observation: free and injective objects are indicator modules.

Divergence of interval vs. indecomposable \Rightarrow two avenues:

- 1. study indecomposables and decomposition into direct sums thereof
- 2. relate indicator modules to arbitrary modules in some way
	- homologically (using resolutions, complexes or invariants from there)
	- virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed, but decreasingly promising in view of Thms

- algorithms [QPA 2022, Dey-Xin 2022]
- bottleneck distances from ε -matching between decompositions
- Avenue 2. So many options! E.g.,
	- Betti numbers from free resolutions [Carlsson–Zomorodian 2009],
	- modules \rightsquigarrow resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–],
	- virtual or signed K -theoretic images of resolutions [Kim–Mémoli 2021],
- relative homological algebra [Blanchette-Brüstle-Hanson 2021], Key observation: free and injective objects are indicator modules.

Divergence of interval vs. indecomposable \Rightarrow two avenues:

- 1. study indecomposables and decomposition into direct sums thereof
- 2. relate indicator modules to arbitrary modules in some way
	- homologically (using resolutions, complexes or invariants from there)
	- virtually (using signed expressions for positive integers, like dim or rank)

Avenue 1. substantially developed, but decreasingly promising in view of Thms

- algorithms [QPA 2022, Dey-Xin 2022]
- bottleneck distances from ε -matching between decompositions
- Avenue 2. So many options! E.g.,
	- Betti numbers from free resolutions [Carlsson–Zomorodian 2009], [Cerri–DiFabio–Ferri–Frosini–Landi 2013], [Oudot–Scoccola 2023]
	- modules \rightsquigarrow resolutions or complexes [Kashiwara–Schapira 2017–19], [M.– 2017–], [Scolamiero–Chachólski–Lundman–Ramanujam–Öberg 2017]
	- virtual or signed K -theoretic images of resolutions [$Kim-Mémoli 2021$], [Botnan–Oppermann–Oudot 2021], [McCleary–Patel 2022]
- relative homological algebra [Blanchette–Brüstle–Hanson 2021], [Chacholski–Guidolin–Ren–Scolamiero–Tombari 2023], [Asashiba–Escolar–Nakashima–Yoshiwaki 2023] Key observation: free and injective objects are indicator modules.

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

- $M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all M*i*/M*i*−¹ "nice"

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

•
$$
M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0
$$

• with all M*i*/M*i*−¹ "nice"

Pipeline

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

"nice" algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

 ζ

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

•
$$
M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0
$$

• with all M*i*/M*i*−¹ "nice"

Pipeline

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

 $\, \hat{\diamond}$ old: decompose

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

•
$$
M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0
$$

• with all M*i*/M*i*−¹ "nice"

Pipeline

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

<mark>↓new: filter</mark>

- Filtration method
- Stability

Positivity. $M = \bigoplus_{\alpha \in A} M_{\alpha}$ expresses M positively in term of the M_{α} . Choose:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- 1. retain positivity or
- 2. retain description in terms of intervals.

Question. Can both be achieved? Look for advice from elsewhere.

Examples. groups or vector bundles: \bigoplus not an option

Solution. Answer filtration with filtration! filtered space $X \rightsquigarrow$ filtered module

•
$$
M = M_{\ell} \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0
$$

• with all M*i*/M*i*−¹ "nice"

Pipeline

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

<mark>↓new: filter</mark>

"nice" algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Need

- Filtration method
- Stability

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: $\text{Im}Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration

• $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$

• with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x -$ finer than rank invariant!
- \bullet more generally: anything factoring through dim : $\mathcal{K}(\mathcal{Q}\text{-mods}) \to \mathbb{Z}^{\text{vertices}(Q)}$

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: $\text{Im}Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x -$ finer than rank invariant!
- \bullet more generally: anything factoring through dim : $\mathcal{K}(\mathcal{Q}\text{-mods}) \to \mathbb{Z}^{\text{vertices}(Q)}$

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: Im $Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x -$ finer than rank invariant!
- \bullet more generally: anything factoring through dim : $\mathcal{K}(\mathcal{Q}\text{-mods}) \to \mathbb{Z}^{\text{vertices}(Q)}$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Example: Harder–Narasimhan filtration

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: Im $Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- \bullet dim at some fixed vertex x finer than rank invariant!
- \bullet more generally: anything factoring through dim : $\mathcal{K}(\mathcal{Q}\text{-mods}) \to \mathbb{Z}^{\text{vertices}(Q)}$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Example: Harder–Narasimhan filtration

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: Im $Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration

- $F_{\bullet}: M \equiv M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x -$ finer than rank invariant!
- $\bullet\,$ more generally: anything factoring through \dim : ${\sf K}({\sf Q{\text{-}mods}})$ \to ${\mathbb Z}^{\sf vertices(Q)}$

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: Im $Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration \leftarrow key point

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x \rightarrow$ finer than rank invariant! \leftarrow key point
- $\bullet\,$ more generally: anything factoring through \dim : ${\sf K}({\sf Q{\text{-}mods}})$ \to ${\mathbb Z}^{\sf vertices(Q)}$

Idea [Fersztand–Jacquard–Nanda–Tillmann 2023], [Fersztand 2024]. Copy vector bundle theory:

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

- vector bundle is "nice" if semistable for group action on moduli space
- semistable ⇔ simple numerical criterion on subbundles: deg/rank decreases
- no \bigoplus decomposition into semistables, but
- ∃ filtration with semistable quotients

Input. M and central charge: additive group morphism $Z : K(Q\text{-mods}) \to \mathbb{C}$

- think: Im $Z \leftrightarrow$ deg and $\text{Re}Z \leftrightarrow$ dim
- M is semistable if slopes decrease: $\frac{\text{Im}Z(M)}{\text{Re}Z(M)} \ge \frac{\text{Im}Z(M')}{\text{Re}Z(M')}$ whenever $M \supseteq M'$

Output. unique filtration $\left\{ \begin{array}{c} \begin{array}{c} \sim \end{array} \right. \end{array} \right.$

- $F_{\bullet}: M \equiv M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ semistable and decreasing slopes

Central charge. Choose $ReZ = 1$ and ImZ to be, e.g.,

- dim at some fixed vertex $x \rightarrow$ finer than rank invariant! \leftarrow key point
- $\bullet\,$ more generally: anything factoring through \dim : ${\sf K}({\sf Q{\text{-}mods}})$ \to ${\mathbb Z}^{\sf vertices(Q)}$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

Lifetime filtration

 $Idea$ [M.–Zhang 2024]. Filter using indicator modules $k[S]$:

- find a "maximally persistent" element $x \in M$
- L = lifetime of $x \Rightarrow$ lifetime submodule $\Bbbk[L] \subseteq M$
- replace M with $M/\mathbb{k}[L]$
- iterate: view M as "stack of lifetimes"

Motivation. What could "top 100 bar lengths" mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ lifetime modules, so the associated graded module is interval-decomposable:

$$
\text{gr} M = \bigoplus_{i=1} M_i/M_{i-1}
$$

Prop. M tame \Rightarrow M has finite lifetime filtration.

Thm [M.–Zhang 2024]. Lifetime filtrations \rightsquigarrow lifetime-bottleneck distance **d**_L, which is interleaving-stable: tame M and N admit lifetime filtrations verifying

$$
\mathbf{d}_L(M,N)\leq \mathbf{d}_I(M,N).
$$
Lifetime filtration

 $Idea$ [M.–Zhang 2024]. Filter using indicator modules $k[S]$:

- find a "maximally persistent" element $x \in M$
- L = lifetime of $x \Rightarrow$ lifetime submodule $\Bbbk[L] \subseteq M$
- replace M with $M/\mathbb{k}[L]$
- iterate: view M as "stack of lifetimes"

Motivation. What could "top 100 bar lengths" mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ lifetime modules, so the associated graded module is interval-decomposable:

$$
\text{gr} M = \bigoplus_{i=1} M_i/M_{i-1}
$$

Prop. M tame \Rightarrow M has finite lifetime filtration.

Thm [M.–Zhang 2024]. Lifetime filtrations \rightsquigarrow lifetime-bottleneck distance **d**_L, which is interleaving-stable: tame M and N admit lifetime filtrations verifying

$$
\mathbf{d}_L(M,N)\leq \mathbf{d}_I(M,N).
$$

Lifetime filtration

 $Idea$ [M.–Zhang 2024]. Filter using indicator modules $k[S]$:

- find a "maximally persistent" element $x \in M$
- L = lifetime of $x \Rightarrow$ lifetime submodule $\Bbbk[L] \subseteq M$
- replace M with $M/\mathbb{k}[L]$
- iterate: view M as "stack of lifetimes"

Motivation. What could "top 100 bar lengths" mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ lifetime modules, so the associated graded module is interval-decomposable: ℓ

$$
\text{gr} M = \bigoplus_{i=1} M_i/M_{i-1}
$$

Prop. M tame \Rightarrow M has finite lifetime filtration.

Thm [M.–Zhang 2024]. Lifetime filtrations \rightsquigarrow lifetime-bottleneck distance **d**_L, which is interleaving-stable: tame M and N admit lifetime filtrations verifying

 $d_l(M, N) \leq d_l(M, N)$.

Lifetime filtration

 $Idea$ [M.–Zhang 2024]. Filter using indicator modules $k[S]$:

- find a "maximally persistent" element $x \in M$
- L = lifetime of $x \Rightarrow$ lifetime submodule $\Bbbk[L] \subseteq M$
- replace M with $M/\mathbb{k}[L]$
- iterate: view M as "stack of lifetimes"

Motivation. What could "top 100 bar lengths" mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ lifetime modules, so the associated graded module is interval-decomposable: ℓ

$$
\text{gr} M = \bigoplus_{i=1} M_i/M_{i-1}
$$

Prop. M tame \Rightarrow M has finite lifetime filtration.

 T I hm M –Zhang 2024]. Lifetime filtrations \rightsquigarrow lifetime-bottleneck distance **d**_L, which is interleaving-stable: tame M and N admit lifetime filtrations verifying

 $d_l(M, N) \leq d_l(M, N)$.

Lifetime filtration

 $Idea$ [M.–Zhang 2024]. Filter using indicator modules $k[S]$:

- find a "maximally persistent" element $x \in M$
- L = lifetime of $x \Rightarrow$ lifetime submodule $\Bbbk[L] \subseteq M$
- replace M with $M/\mathbb{k}[L]$
- iterate: view M as "stack of lifetimes"

Motivation. What could "top 100 bar lengths" mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_{\bullet}: M = M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_1 \supset M_0 = 0$
- with all gr*i*M = M*i*/M*i*−¹ lifetime modules, so the associated graded module is interval-decomposable: ℓ

$$
\text{gr} M = \bigoplus_{i=1} M_i/M_{i-1}
$$

Prop. M tame \Rightarrow M has finite lifetime filtration.

 T hm M –Zhang 2024]. Lifetime filtrations \rightsquigarrow lifetime-bottleneck distance **d**_L, which is interleaving-stable: tame M and N admit lifetime filtrations verifying

 $d_l(M, N) \leq d_l(M, N)$.

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- α : all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all q. Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all q. Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_a < \infty$ for all q. Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all q.

Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_{q} < \infty$ for all q. Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

Def $[M, -2017]$. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \nightharpoonup M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_{q} < \infty$ for all q.

= ∪

Example. $\Bbbk_0\oplus \Bbbk[\mathbb{R}^2]$ admits constant regions $\{\pmb{0}\}$ and $\mathbb{R}^2\smallsetminus \{\pmb{0}\}$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Encoding persistence modules

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M ≌ π[*]N = ∎_{q∈Q} N_{π(q)}, the pullback of some P-module N.$

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable Cor. Much can be done over finite Q or \mathbb{Z}^n (e.g., lifetime filtration existence)

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Encoding persistence modules

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M ≊ π*N = ∎_{q∈Q} N_{π(q)}, the pullback of some P-module N.$

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable Cor. Much can be done over finite Q or \mathbb{Z}^n (e.g., lifetime filtration existence)

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Encoding persistence modules

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

An \mathbb{R}^2 -module

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

An \mathbb{R}^2 -module

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

An \mathbb{R}^2 -module

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable Cor. Much can be done over finite Q or \mathbb{Z}^n (e.g., lifetime filtration existence)

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

An \mathbb{R}^2

finitely encoded

Thm [M.– 2017]. tame \Leftrightarrow finitely encodable

Def. Q-module M has finite encoding $\pi: Q \to P$ if

- \bullet P is a finite poset,
- π is a poset morphism, and
- $M \cong \pi^*N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some P-module N.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) Lifetime-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions

finitely encoded

Thm $[M - 2017]$. tame \Leftrightarrow finitely encodable Cor. Much can be done over finite Q or \mathbb{Z}^n (e.g., lifetime filtration existence)

Lifetime modules

Def. lifetime module is \cong k[$U \cap D$] for an upset U and downset D.

Example. fringe presentation of a lifetime module:

In general, lifetime $=$ antichain of intervals

Lifetime modules

Def. lifetime module is \cong k[$U \cap D$] for an upset U and downset D. Example. fringe presentation of a lifetime module:

In general, lifetime $=$ antichain of intervals

Lifetime modules

Def. lifetime module is \cong k[$U \cap D$] for an upset U and downset D. Example. fringe presentation of a lifetime module:

In general, lifetime $=$ antichain of intervals

Lifetime modules

Def. lifetime module is \cong k[$U \cap D$] for an upset U and downset D. Example. fringe presentation of a lifetime module:

In general, lifetime $=$ antichain of intervals

Example.

Lifetime modules

Def. lifetime module is \cong k[$U \cap D$] for an upset U and downset D. Example. fringe presentation of a lifetime module:

In general, lifetime $=$ antichain of intervals

Example.

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g: \, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n$. The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ Def. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are ε -matched if \mathcal{M}_α and \mathcal{N}_α are ε -interleaved for all $\alpha \in A$.

Def. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon \text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance \mathbf{d}_L from $\mathcal{D}(M) = \{ \text{gr} \mathcal{F}_\bullet M \mid \mathcal{F}_\bullet \text{ is a lifetime filtration of } M \}$

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ Def. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are ε -matched if \mathcal{M}_α and \mathcal{N}_α are ε -interleaved for all $\alpha \in A$.

Def. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon \text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance \mathbf{d}_L from $\mathcal{D}(M) = \{ \text{gr} \mathcal{F}_\bullet M \mid \mathcal{F}_\bullet \text{ is a lifetime filtration of } M \}$

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ $\overline{\mathsf{Def}}$. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are $\varepsilon\text{-matched}$ if \mathcal{M}_α and \mathcal{N}_α are α∈*A* $\alpha \subset \Delta$ ε -interleaved for all $\alpha \in A$.

Def. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon \text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance \mathbf{d}_L from $\mathcal{D}(M) = \{ \text{gr} \mathcal{F}_\bullet M \mid \mathcal{F}_\bullet \text{ is a lifetime filtration of } M \}$

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ $\overline{\mathsf{Def}}$. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are $\varepsilon\text{-matched}$ if \mathcal{M}_α and \mathcal{N}_α are α∈*A* $\alpha \subset \Delta$ ε -interleaved for all $\alpha \in A$.

Det. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon\text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance d_L from $\mathcal{D}(M) = \{ \text{gr} F \cdot M \mid F \cdot \text{gr} \}$ is a lifetime filtration of M

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ $\overline{\mathsf{Def}}$. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are $\varepsilon\text{-matched}$ if \mathcal{M}_α and \mathcal{N}_α are α∈*A* $\alpha \subset \Delta$ ε -interleaved for all $\alpha \in A$.

Det. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon\text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \not\Rightarrow L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance d_L from $\mathcal{D}(M) = \{ \text{gr} F \cdot M \mid F \cdot \text{gr} \}$ is a lifetime filtration of M

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $\mathbf{d}_I(M, N) = \inf \{ \varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved} \}$ $\overline{\mathsf{Def}}$. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are $\varepsilon\text{-matched}$ if \mathcal{M}_α and \mathcal{N}_α are α∈*A* $\alpha \subset \Delta$ ε -interleaved for all $\alpha \in A$.

Det. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon\text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance d_L from $\mathcal{D}(M) = \{ \text{gr} F_\bullet M \mid F_\bullet \text{ is a lifetime filtration of } M \}$

Def [Lesnick 2015]. An ε -interleaving between \mathbb{R}^n -modules M and N is a pair of homomorphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ whose composites induce $g(\varepsilon) \circ f : M_a \to M_{a+2\varepsilon}$ and $f(\varepsilon) \circ g:\, N_q \to \, N_{q+2\varepsilon}$, natural maps $\forall q \in \mathbb{R}^n.$ The interleaving distance is $d_I(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$ $\overline{\mathsf{Def}}$. Direct sums $\bigoplus \mathcal{M}_\alpha$ and $\bigoplus \mathcal{N}_\alpha$ are $\varepsilon\text{-matched}$ if \mathcal{M}_α and \mathcal{N}_α are α∈*A* $\alpha \subset \Delta$ ε -interleaved for all $\alpha \in A$.

Det. Let $\mathcal{D}: Q$ -mods \rightarrow families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(M)$ is a direct sum $K = K_1 \oplus \cdots \oplus K_\ell$. The bottleneck distance determined by D is

 $d_{\mathcal{D}}(M, N) = \inf \{ \varepsilon \mid K \text{ and } L \text{ are } \varepsilon\text{-matched with } K \in \mathcal{D}(M) \text{ and } L \in \mathcal{D}(N) \}.$

Note. Summands can be 0, and $L \in \mathcal{D}(M) \neq L \cong M$.

- 1. bottleneck distance d_B from $\mathcal{D}(M) = \{$ indecomposable decompositions of M $\}$
- 2. lifetime distance d_L from $\mathcal{D}(M) = \{ \text{gr} F_\bullet M \mid F_\bullet \text{ is a lifetime filtration of } M \}$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime](#page-90-0) modules [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0) Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration. Proof sketch.

- 1. Reduce to $Q = \mathbb{Z}^n$ by finite encoding.
- 2. Use primary decomposition.

Lemma. Any homomorphism $f : M \to N$ takes any lifetime filtration of M, say $F_{\bullet}M$: $M_{\ell} \supset \cdots \supset M_0$, to a lifetime filtration $F_{\bullet}N$, where $N_i = F_iN = f(M_i)$.

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Any ε -interleaving morphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ induce a lifetime filtration of N such that grM and grN are ε -matched.

Proof sketch. The filtration of N is the shift up by ε of the image in $N(\varepsilon)$, under the interleaving map $f : M \to N(\varepsilon)$, of the filtration of M. That is,

$$
F_{\bullet}N=f(F_{\bullet}M)(-\varepsilon).
$$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime](#page-90-0) modules [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0) Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration. Proof sketch.

- 1. Reduce to $Q = \mathbb{Z}^n$ by finite encoding.
- 2. Use primary decomposition.

Lemma. Any homomorphism $f : M \to N$ takes any lifetime filtration of M, say $F_{\bullet}M: M_{\ell} \supset \cdots \supset M_0$, to a lifetime filtration $F_{\bullet}N$, where $N_i = F_iN = f(M_i)$.

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Any ε -interleaving morphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ induce a lifetime filtration of N such that grM and grN are ε -matched.

Proof sketch. The filtration of N is the shift up by ε of the image in $N(\varepsilon)$, under the interleaving map $f : M \to N(\varepsilon)$, of the filtration of M. That is,

$$
F_{\bullet}N = f(F_{\bullet}M)(-\varepsilon).
$$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) [Lifetime](#page-90-0)-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration. Proof sketch.

- 1. Reduce to $Q = \mathbb{Z}^n$ by finite encoding.
- 2. Use primary decomposition.

Lemma. Any homomorphism $f : M \to N$ takes any lifetime filtration of M, say $F_{\bullet}M: M_{\ell} \supset \cdots \supset M_0$, to a lifetime filtration $F_{\bullet}N$, where $N_i = F_iN = f(M_i)$.

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Thm [M.-Zhang 2024]. Fix tame \mathbb{R}^n -modules M and N plus a lifetime filtration of M. Any ε -interleaving morphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ induce a lifetime filtration of N such that $\text{gr}M$ and $\text{gr}N$ are ε -matched.

Proof sketch. The filtration of N is the shift up by ε of the image in $N(\varepsilon)$, under the interleaving map $f : M \to N(\varepsilon)$, of the filtration of M. That is,

$$
F_{\bullet}N = f(F_{\bullet}M)(-\varepsilon).
$$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) [Lifetime](#page-90-0)-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration. Proof sketch.

- 1. Reduce to $Q = \mathbb{Z}^n$ by finite encoding.
- 2. Use primary decomposition.

Lemma. Any homomorphism $f : M \to N$ takes any lifetime filtration of M, say $F_{\bullet}M: M_{\ell} \supset \cdots \supset M_0$, to a lifetime filtration $F_{\bullet}N$, where $N_i = F_iN = f(M_i)$.

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Thm [M.-Zhang 2024]. Fix tame \mathbb{R}^n -modules M and N plus a lifetime filtration of M. Any ε -interleaving morphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ induce a lifetime filtration of N such that $\text{gr}M$ and $\text{gr}N$ are ε -matched.

Proof sketch. The filtration of N is the shift up by ε of the image in $N(\varepsilon)$, under the interleaving map $f : M \to N(\varepsilon)$, of the filtration of M. That is,

$$
F_{\bullet}N=f(F_{\bullet}M)(-\varepsilon).
$$

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) [Lifetime](#page-90-0)-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Stability of lifetime distance

Prop. If M is a tame Q-module then M admits a finite lifetime filtration. Proof sketch.

- 1. Reduce to $Q = \mathbb{Z}^n$ by finite encoding.
- 2. Use primary decomposition.

Lemma. Any homomorphism $f : M \to N$ takes any lifetime filtration of M, say $F_{\bullet}M: M_{\ell} \supset \cdots \supset M_0$, to a lifetime filtration $F_{\bullet}N$, where $N_i = F_iN = f(M_i)$.

Proof sketch. Apply Lemma on images and subquotients of lifetime modules.

Thm [M.-Zhang 2024]. Fix tame \mathbb{R}^n -modules M and N plus a lifetime filtration of M. Any ε -interleaving morphisms $f : M \to N(\varepsilon)$ and $g : N \to M(\varepsilon)$ induce a lifetime filtration of N such that $\text{gr}M$ and $\text{gr}N$ are ε -matched.

Proof sketch. The filtration of N is the shift up by ε of the image in $N(\varepsilon)$, under the interleaving map $f : M \to N(\varepsilon)$, of the filtration of M. That is,

$$
F_{\bullet}N = f(F_{\bullet}M)(-\varepsilon).
$$

Cor. $\mathbf{d}_L(M, N) \leq \mathbf{d}_I(M, N)$.

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) Lifetime-filtration [Tameness](#page-76-0) [Lifetime](#page-90-0)-modules [Stability](#page-95-0) [Erosion](#page-107-0) Future-directions Example: erosion neighborhoods

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

1. one parameter: ignore short bars by summing only the bigger ones

2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm β [B] erkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Conj [Bjerkevik 2023]. Pruning distance is interleaving stable and Lipschitz.
Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

1. one parameter: ignore short bars by summing only the bigger ones

2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm β [B] erkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

Rephrase.

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

1. one parameter: ignore short bars by summing only the bigger ones

2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm β [B] erkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

Rephrase.

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

Compare.

- 1. one parameter: ignore short bars by summing only the bigger ones
- 2. multiple parameters: ignore "short bars" by filtering them away

Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm β [B] erkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

Rephrase.

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

Compare.

- 1. one parameter: ignore short bars by summing only the bigger ones
- 2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm β [B] erkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

Rephrase.

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

Compare.

1. one parameter: ignore short bars by summing only the bigger ones

2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm [Bjerkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Moral. Filtrations play well with interleaving because they push and pull.

Idea [Bjerkevik 2023]. If you insist on decomposing, then allow perturbation first. How to perturb? Filter! More precisely, take a big filtered piece by pruning:

- $M \supset M^{\varepsilon} \supset M_{\varepsilon} \supset 0$
- with small successive quotients $M_{\epsilon}/0$ and M/M^{ϵ}
- take subquotients before decomposing and comparing

Rephrase.

- Two modules are close if they have big filtered pieces that are close.
- Big filtered pieces can decompose more readily than the given modules.

Compare.

1. one parameter: ignore short bars by summing only the bigger ones

2. multiple parameters: ignore "short bars" by filtering them away Crucially, filtration also dissolves threads that bind indecomposables into clumps.

Thm [Bjerkevik 2023]. Pruning of M is stable, in the sense that it detects all indecomposables appearing in modules within ε of M.

Looking forward

Question. What could "top 100 bar lengths" mean in multipersistence?

- Locate "maximally persistent" elements
- ⇒ Conj: d*^L* ≥ cd*^I* for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

Looking forward

Question. What could "top 100 bar lengths" mean in multipersistence?

- **Locate "maximally persistent" elements**
- \Rightarrow Conj: $d_L \geq c d$ _I for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

Looking forward

Question. What could "top 100 bar lengths" mean in multipersistence?

- **Locate "maximally persistent" elements**
- \Rightarrow Conj: $d_L \geq c d$ _I for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- \bullet How likely is M to break into interpretable small pieces by perturbation?

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

[Persistence modules](#page-2-0) [Intervals](#page-34-0) [Filtration](#page-54-0) [HN](#page-64-0) [Lifetime filtration](#page-71-0) [Tameness](#page-76-0) [Lifetime](#page-90-0) modules [Stability](#page-95-0) [Erosion](#page-107-0) [Future directions](#page-114-0) Looking forward

Question. What could "top 100 bar lengths" mean in multipersistence?

- Locate "maximally persistent" elements
- ⇒ Conj: d*^L* ≥ cd*^I* for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- \bullet How likely is M to break into interpretable small pieces by perturbation?

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

Question. What could "top 100 bar lengths" mean in multipersistence?

- Locate "maximally persistent" elements
- ⇒ Conj: d*^L* ≥ cd*^I* for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- \bullet How likely is M to break into interpretable small pieces by perturbation?

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

Question. What could "top 100 bar lengths" mean in multipersistence?

- Locate "maximally persistent" elements
- ⇒ Conj: d*^L* ≥ cd*^I* for some constant c, independent of # parameters
- What is meant by "maximally persistent"?
	- length, width, area, volume
	- "size" is crucial when parameters have incomparable scientific meanings
	- primary distances: separate classes according to birth and death types
	- note: primary decomposition is really another filtration!

Compare Bjerkevik's pruning distance stability/Lipschitz conjecture

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- \bullet How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating d*^L*

References

- 1. Silvana Abeasis and Alberto Del Fra, *Degenerations for the representations of an equioriented quiver of type Am*, Boll. Un. Mat. Ital. Suppl. 2 (1980), 157–171.
- 2. Hideto Asashiba, et al., *Approximation by interval-decomposables and interval resolutions of persistence modules*, J. Pure Appl. Alg. 227 (2023), no. 10, 107397.
- 3. Hävard Bjerkevik, Stabilizing decomposition of multiparameter persistence modules, preprint, 2023. arXiv:math.RT/2305.15550
- 4. Benjamin Blanchette, Thomas Brüstle, and Eric J Hanson, *Homological approximations in persistence theory*, *Canadian J. Math* (2021), 1–38
- 5. Magnus Botnan and William Crawley-Boevey, *Decomposition of persistence modules*, Proc. Amer. Math. Soc. 148 (2020), 4581–4596.
- 6. Magnus Botnan, et al., *Signed bar codes for multipersistence via rank decompositions and rank-exact resolutions*, preprint, 2021. arXiv:math.AT/2107.06800
- 7. Micka¨el Buchet, Emerson Escolar, *Every 1D persistence module is a restriction of some 2D indecomposable*, J. Appl. Comput. Top. 4 (2020), no. 3, 387–424.
- 8. Gunnar Carlsson and Afra Zomorodian, *The theory of multidimensional persistence*, Discrete and Comput. Geom. 42 (2009), 71–93.
- 9. Andrea Cerri, et al., *Betti numbers in multidimensional persistent homology are stable functions*, Math. Methods Appl. Sci. 36 (2013), no. 12, 1543–1557.
- 10. Wojciech Chacholski, et al., *Koszul complexes and relative homological algebra of functors over posets*, preprint, 2023. arXiv:math.AT/2209.05923
- 11. Erin Wolf Chambers and David Letscher, *Persistent homology over directed acyclic graphs*, Res. Comput. Top. AWM Ser. Vol. 13, Springer, 2018, p. 11–32.
- 12. Justin Curry, *Sheaves, cosheaves, and applications*, Ph.D. thesis, University of Pennsylvania, 2014. arXiv:math.AT/1303.3255
- 13. Justin Curry, *Functors on posets left Kan extend to cosheaves: an erratum*, preprint, 2019. arXiv:math.CT/1907.09416v1
- 14. Tamal Dey and Cheng Xin, *Generalized persistence algorithm for decomposing multiparameter persistence*, J. Appl. Comput. Top. 6 (2022), no. 3, 271–322.
- 15. Peter Doubilet, G-C. Rota, and Richard Stanley, On the foundations of combinatorial theory (VI): the idea of generating function, Probability theory, 267-318
- 16. Marc Fersztand, et al., *Harder–Narasimhan filtrations of persistence modules*, preprint, 2023. arXiv:math.RT/2303.16075
- 17. Marc Fersztand, *Harder–Narasimhan filtrations of persistence modules: metric stability*, preprint, 2024. arXiv:math.RT/2406.05069
- 18. Masaki Kashiwara and Pierre Schapira, *Persistent homology and microlocal sheaf theory*, J. of Appl. and Comput. Topology 2, no. 1–2 (2018), 83–113.
- 19. Masaki Kashiwara and Pierre Schapira, *Piecewise linear sheaves*, International Math. Res. Notices [IMRN] (2021), no. 15, 11565–11584.
- 20. Woojin Kim and Facundo M´emoli, *Generalized persistence diagrams for persistence modules over posets*, J. Appl. Comput. Top. 5 (2021), no. 4, 533–581.
- 21. Michael Lesnick, *The theory of the interleaving distance on multidimensional persistence modules*, Found. Comput. Math. 15 (2015), 613–650.
- 22. Alexander McCleary and Amit Patel, *Edit distance and persistence diagrams over lattices*, SIAM J. Appl. Alg. Geom. 6 (2022), no.,2, 134–155.
- 23. Ezra Miller, *Homological algebra of modules over posets*, 41 pages, in revision, SIAGA. arXiv:math.AT/2008.00063
- 24. Ezra Miller, *Stratifications of real vector spaces from constructible sheaves with conical microsupport*, J. Appl. Comput. Topology 7 (2023), no. 3, 473–489.
- 25. Ezra Miller and Jiaxi (Jesse) Zhang, *Lifetime filtration of multiparameter persistence modules*, draft, 2024.
- 26. L. A. Nazarova and A. V. Roĭter, *Representations of partially ordered sets* (in Russian), Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 28 (1972), 5–31.
- 27. Steve Oudot, *Persistence theory: from quiver representations to data analysis*, Math. Surveys and Monographs, Vol. 209, AMS, Providence, RI, 2015.
- 28. Steve Oudot and Luis Scoccola, *On the stability of multigraded Betti numbers and Hilbert functions*, preprint, 2023. arXiv:math.AT/2112.11901
- 29. The QPA-team, *QPA—Quivers, path algebras and representations—a GAP package*, 2022. https://folk.ntnu.no/oyvinso/QPA
- 30. Martina Scolamiero, et al., *Multidimensional persistence and noise*, Found. Comput. Math. 17 (2017), no. 6, 1367–1406.
- 31. Kohji Yanagawa, *Alexander duality for Stanley–Reisner rings and squarefree* N *n-graded modules*, J. Algebra 225 (2000), no. 2, 630–645.
- 32. Sergey Yuzvinsky, *Linear representations of posets, their cohomology and a bilinear form*, European J. Combin. 2 (1981), no. 4, 385–397.

References

- 1. Silvana Abeasis and Alberto Del Fra, *Degenerations for the representations of an equioriented quiver of type Am*, Boll. Un. Mat. Ital. Suppl. 2 (1980), 157–171.
- 2. Hideto Asashiba, et al., *Approximation by interval-decomposables and interval resolutions of persistence modules*, J. Pure Appl. Alg. 227 (2023), no. 10, 107397.
- 3. Hävard Bjerkevik, Stabilizing decomposition of multiparameter persistence modules, preprint, 2023. arXiv:math.RT/2305.15550
- 4. Benjamin Blanchette, Thomas Brüstle, and Eric J Hanson, *Homological approximations in persistence theory*, *Canadian J. Math* (2021), 1–38
- 5. Magnus Botnan and William Crawley-Boevey, *Decomposition of persistence modules*, Proc. Amer. Math. Soc. 148 (2020), 4581–4596.
- 6. Magnus Botnan, et al., *Signed bar codes for multipersistence via rank decompositions and rank-exact resolutions*, preprint, 2021. arXiv:math.AT/2107.06800
- 7. Micka¨el Buchet, Emerson Escolar, *Every 1D persistence module is a restriction of some 2D indecomposable*, J. Appl. Comput. Top. 4 (2020), no. 3, 387–424.
- 8. Gunnar Carlsson and Afra Zomorodian, *The theory of multidimensional persistence*, Discrete and Comput. Geom. 42 (2009), 71–93.
- 9. Andrea Cerri, et al., *Betti numbers in multidimensional persistent homology are stable functions*, Math. Methods Appl. Sci. 36 (2013), no. 12, 1543–1557.
- 10. Wojciech Chacholski, et al., *Koszul complexes and relative homological algebra of functors over posets*, preprint, 2023. arXiv:math.AT/2209.05923
- 11. Erin Wolf Chambers and David Letscher, *Persistent homology over directed acyclic graphs*, Res. Comput. Top. AWM Ser. Vol. 13, Springer, 2018, p. 11–32.
- 12. Justin Curry, *Sheaves, cosheaves, and applications*, Ph.D. thesis, University of Pennsylvania, 2014. arXiv:math.AT/1303.3255
- 13. Justin Curry, *Functors on posets left Kan extend to cosheaves: an erratum*, preprint, 2019. arXiv:math.CT/1907.09416v1
- 14. Tamal Dey and Cheng Xin, *Generalized persistence algorithm for decomposing multiparameter persistence*, J. Appl. Comput. Top. 6 (2022), no. 3, 271–322.
- 15. Peter Doubilet, G-C. Rota, and Richard Stanley, On the foundations of combinatorial theory (VI): the idea of generating function, Probability theory, 267-318
- 16. Marc Fersztand, et al., *Harder–Narasimhan filtrations of persistence modules*, preprint, 2023. arXiv:math.RT/2303.16075
- 17. Marc Fersztand, *Harder–Narasimhan filtrations of persistence modules: metric stability*, preprint, 2024. arXiv:math.RT/2406.05069
- 18. Masaki Kashiwara and Pierre Schapira, *Persistent homology and microlocal sheaf theory*, J. of Appl. and Comput. Topology 2, no. 1–2 (2018), 83–113.
- 19. Masaki Kashiwara and Pierre Schapira, *Piecewise linear sheaves*, International Math. Res. Notices [IMRN] (2021), no. 15, 11565–11584.
- 20. Woojin Kim and Facundo M´emoli, *Generalized persistence diagrams for persistence modules over posets*, J. Appl. Comput. Top. 5 (2021), no. 4, 533–581.
- 21. Michael Lesnick, *The theory of the interleaving distance on multidimensional persistence modules*, Found. Comput. Math. 15 (2015), 613–650.
- 22. Alexander McCleary and Amit Patel, *Edit distance and persistence diagrams over lattices*, SIAM J. Appl. Alg. Geom. 6 (2022), no.,2, 134–155.
- 23. Ezra Miller, *Homological algebra of modules over posets*, 41 pages, in revision, SIAGA. arXiv:math.AT/2008.00063
- 24. Ezra Miller, *Stratifications of real vector spaces from constructible sheaves with conical microsupport*, J. Appl. Comput. Topology 7 (2023), no. 3, 473–489.
- 25. Ezra Miller and Jiaxi (Jesse) Zhang, *Lifetime filtration of multiparameter persistence modules*, draft, 2024.
- 26. L. A. Nazarova and A. V. Roïter, *Representations of partially ordered sets* (in Russian), Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 28 (1972), 5–31.
- 27. Steve Oudot, *Persistence theory: from quiver representations to data analysis*, Math. Surveys and Monographs, Vol. 209, AMS, Providence, RI, 2015.
- 28. Steve Oudot and Luis Scoccola, *On the stability of multigraded Betti numbers and Hilbert functions*, preprint, 2023. arXiv:math.AT/2112.11901
- 29. The QPA-team, *QPA—Quivers, path algebras and representations—a GAP package*, 2022. https://folk.ntnu.no/oyvinso/QPA
- 30. Martina Scolamiero, et al., *Multidimensional persistence and noise*, Found. Comput. Math. 17 (2017), no. 6, 1367–1406.
- 31. Kohji Yanagawa, *Alexander duality for Stanley–Reisner rings and squarefree* N *n-graded modules*, J. Algebra 225 (2000), no. 2, 630–645.
- 32. Sergey Yuzvinsky, *Linear representations of posets, their cohomology and a bilinear form*, European J. Combin. 2 (1981), no. 4, 385–397.

Thank You and the state of \mathbb{I}^7