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Persistent homology over arbitrary posets

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q .

Def. Q-module over the poset Q (e.g., [M–, arXiv:math.AT/2008.00063]):

• Q-graded vector space H =
⊕

q∈Q Hq over the field k with
• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that
• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Essentially equivalent
• representation of Q [Nazarova–Roiter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Curry’s thesis 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])
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Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2
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Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set (require distance ≥ −r)
• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

 

A piece of fly wing vein The (r , s)-plane R
2

2



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Persistent homology over arbitrary posets

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q (e.g., [M–, arXiv:math.AT/2008.00063]):

• Q-graded vector space H =
⊕

q∈Q Hq over the field k with
• homomorphism Hq → Hq′ whenever q � q′ in Q such that
• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Essentially equivalent
• representation of Q [Nazarova–Roiter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Curry’s thesis 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

1’



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Persistent homology over arbitrary posets

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q (e.g., [M–, arXiv:math.AT/2008.00063]):

• Q-graded vector space H =
⊕

q∈Q Hq over the field k with
• homomorphism Hq → Hq′ whenever q � q′ in Q such that
• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Essentially equivalent
• representation of Q [Nazarova–Roiter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Curry’s thesis 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

1’



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Sheaves on posets

Def. In a poset Q, an
• upset U ⊆ Q has U =

⋃

u∈U Q�u

• downset D ⊆ Q has D =
⋃

d∈D Q�d

Def. Poset Q has Alexandrov topology Qale whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor
F : {open sets} → k-vector spaces whose sections s ∈ F(U) over any open set U
can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

1. Q-modules
2. sheaves on Qale

Proof [see Curry 2014].
In Qale, each q ∈ Q lies in unique minimal open

Uq = principal upset generated by q,

so stalk of F at q is Fq = F(Uq).
• sheaf F 7→ Q-module {Fq}q∈Q of stalks
• Q-module M 7→ sheaf FM by right Kan extension: FM(U) = lim

←−q∈U
Uq. �

3
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Upsets and downsets

Examples
• In R

2:

U = and = D

• In R
3:

U =

semialgebraic

or

piecewise linear

= D

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187–216]
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Multiparameter persistence

Def. subgroup Q ⊆ partially ordered real vector space has positive cone

Q+ = {q ∈ Q | q � 0}
Examples
• Q = R

n with Q+ = (R≥0)
n partially ordered by componentwise comparison

• Q = Z
n ⊆ R

n with Q+ = N
n

• Q = ZQ+
∼= Z

n with Q+ = any affine semigroup
• Q ∼= R

n with Q+ = any convex cone

Equivalent to Q-modules [M– 2017, see arXiv:math.AT/2008.03819],
for sugroup Q generated by Q+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra k[Q+]

Def. Partially ordered real vector space V has
• ordinary topology V ord

• conic topology V con: open sets are upsets in V that are open in V ord

Equivalent to each other (but not to V -modules) [Kashiwara–Schapira 2018], for V =
partially ordered vector space with closed subanalytic V+ having nonempty interior:

3. (derived) sheaves with microsupport contained in negative polar cone V ∨
+

4. (derived) sheaves in conic topology
5
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Intervals in posets

Def. An interval I in a poset Q is a convex connected subset: a, b ∈ I ⇒

• q ∈ I whenever a � q � b and

• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k[S ] =
⊕

s∈S ks be its indicator module.

Examples In R
2, intervals can look like

or or but not

Remark. In one parameter, interval modules are indecomposable
⇒ two avenues:

1. study indecomposables and decomposition into direct sums thereof

2. study indicator modules and (homologically) relate to arbitrary modules

6
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Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on V ord. . .

Def. A partition of a subset of a vector space V into strata Sα ⊆ V is

1. subanalytic if the strata Sα are subanalytic

2. piecewise linear (PL) if each Sα is a finite union of convex polyhedra

Def. A (derived) sheaf F on V ord

1. has a subordinate subanalytic subdivision if F is constant on every stratum

2. is PL if V+ is polyhedral and F has a subordinate PL subdivision

. . . or on V con

Def [Kashiwara–Schapira 2017]. A closed subset S ⊆ V has

1. conic stratification {Sα}α∈A if
• strata Sα ⊆ S are subanalytic and pairwise disjoint
• each stratum Sα locally closed in V con (so of the form U ∩ D)
• S =

⋃

α∈A Sα is a locally finite union

2. conic stratification {Sα}α∈A subordinate to F if
• S = suppF and
• (each homology sheaf of) F is locally constant on every stratum Sα

7



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Tameness

And now the Q-module version. . .

Def [M– 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if Q is partitioned into
• constant regions A, each with vector space MA−→∼ Ma for all a ∈ A, having
• no monodromy: all comparable pairs a � b with a ∈ A and b ∈ B induce the
same composite MA → Ma → Mb → MB .

M is tame if it admits a finite constant subdivision and dimk Mq <∞ for all q.
M is subanalytic or PL if M is tamed by a subanalytic or PL stratification of V .

Example. k0 ⊕ k[R2] admits constant regions {0} and R
2
r {0}

8
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Encoding persistence modules

Def. A complex M• of modules over a poset Q has finite encoding π : Q → P if
• P is a finite poset,
• π is a poset morphism, and
• M ∼= π∗N =

⊕

q∈Q Nπ(q), the pullback of some complex N• of P-modules.

The encoding is subanalytic or PL if its fibers are.

 

An R
2-module finitely encoded

Thm [M– 2017, see arXiv:math.AT/2008.00063]. tame ⇔ finitely encodable,
and same for subanalytic or PL
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Constructibility see [Kashiwara–Schapira 1990]

Def. Fix a real analytic manifold X and (derived) sheaf F of k-vector spaces.

1. subanalytic triangulation of subanalytic Y ⊆ X is
• homeomorphism |∆|−→∼ Y
• image of open cell σ̊ is subanalytic in X for each simplex σ ∈ ∆

2. subanalytic triangulation of Y is subordinate to F if
• Y ⊇ suppF
• (every homology sheaf of) F is constant on image of every σ̊

Def. F is subanalytically constructible if
• a subanalytic triangulation is subordinate to F and
• every stalk Fp has dimk(Fp) <∞

3 types of stratification into intervals
• conic stratification
• constant subdivision
• subanalytic triangulation

At issue. Qcon is too coarse to allow triangulation.
Can constructibility be detected without refining Qcon to Qord?
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Presentation and resolution

Default
• free presentation
• injective copresentation

Def [M– 2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.
• An upset presentation of M is a homomorphism

k[U1
′]⊕ · · · ⊕ k[Uℓ

′]→ k[U1]⊕ · · · ⊕ k[Uk ]

with cokernel ∼= M. Dually for downset copresentation.
• A fringe presentation of M is a homomorphism

k[U1]⊕ · · · ⊕ k[Uk ]→ k[D1]⊕ · · · ⊕ k[Dℓ]

with image ∼= M.

Data structure: monomial matrix

U1

...
Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...
ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] −−−−−−−−−−−−−−−−→ k[D1]⊕ · · · ⊕ k[Dℓ]
11
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Presentation and resolution

In R:

a b

→֒

։

has cokernel

presentation: upset fringe

In R
2:

←֓

upset
presentation

has cokernel

→

fringe
presentation

has image

12
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Presentation and resolution [M– 2017, see arXiv:math.AT/2008.00063]

Def. A homomorphism ϕ : M → N of modules over any poset Q is tame if

• M and N share a finite constant subdivision such that for each region I ,

• MI → Mi → Ni → NI does not depend on i ∈ I ;

the subdivision is subordinate to ϕ, which is subanalytic or PL if the subdivision is.

Def. Fix a complex M• of modules over a poset Q.

1. M• is tame if its morphisms are tame.

2. A constant subdivision is subordinate to M• if it is subordinate to the
morphisms in M•.

3. An upset resolution of M• is a homology isomorphism F • → M• where
F i ∼=

⊕

U∈Υi k[U ] is a direct sum of upset modules.

4. A downset resolution of M• is a homology isomorphism M• → E • where
E i ∼=

⊕

D∈∆i k[D ] is a direct sum of downset modules.

Either of these indicator resolutions

• is finite if it has finitely many indicator summands

• is subanalytic or PL if the constant subdivision is subanalytic or PL.
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Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)

14



Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M• of modules over a poset Q
is tame if and only if it admits one, and hence all, of the following: a finite

1. upset resolution

2. downset resolution
3. fringe presentation

4. constant subdivision subordinate to any given one of items 1–3

5. encoding subordinate to any given one of items 1–4.

Remains true with
• “subanalytic” in place of “tame” and “finite”, if M• has compact support
• “PL” in place of “tame” and “finite”, if V+ is polyhdral.

Any tame or subanalytic or PL morphism M• → N• lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

Summary. tame ⇔ stratified by intervals
⇔ finitely encodable
⇔ has finite resolution by intervals
⇔ has finite data structure by monomial matrices

(and that’s how the proof goes)
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Syzygy theorem [M– 2017, see arXiv:math.AT/2008.00063]
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Resolving sheaves

Def (indicator sheaves). Fix a complex F• of sheaves on V ord. A subanalytic

1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in V ord

2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in V ord

3. upset resolution of F• is a homology isomorphism U• → F• with
each U i a direct sum of subanalytic upset sheaves

4. downset resolution of F• is a homology isomorphism F• → D• with
each Di a direct sum of subanalytic downset sheaves

Either type of indicator resolution is
• finite if finitely many summands across all homological degrees
• PL if V+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with
V+ closed, subanalytic, and of full dimension. If F• is
• pulled back from the conical topology V con and
• subanalytically constructible,

then F• is tamely resolved by conical intervals.
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Resolving sheaves

Cor [M– 2020, arXiv:math.AT/2008.00091].The following are equivalent for any
bounded, compactly supported derived sheaf F• on the conical topology V con.

1. F• is subanalytically constructible after pulling back to V ord

2. F• has a finite subanalytic upset resolution

3. F• has a finite subanalytic downset resolution

Implications 2 ⇒1 and 3 ⇒1 do not require compact support for F•.
V+ polyhedral and F• PL ⇒ claims all hold with “PL” in place of “subanalytic”.

Proof. Compact support + constructible ⇒ finite constant subdivision ⇒ tame.

Cor 1 [Kashiwara–Schapira 2017, Conj. 3.17].
F• constructible ⇒ suppF has a subordinate conic stratification.

Cor 2 [Kashiwara–Schapira 2021, Conj. 3.20]. For polyhedralV+ the following are equivalent.
• F• is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
• The isomorphism class of F• is represented by a complex that is a finite
direct sum of constant sheaves on bounded V con-locally closed polyhedra

At issue. strong PL version of Db(constructible)−→∼ constructibleDb
[Kashiwara 1984]
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Looking forward

Implementation
• single preprocessing step for many multiPH computations; e.g., fly wings
• Lebesgue distance computations: no sampling for Riemann integration

Invariants
• E.g., what could “top 100 bar lengths” mean in multipersistence?
• E.g., boundaries of up- or downsets  “highly persistent” elements

Real Lp distances [Bubenik–Scott–Stanley], [Skraba–Turner], [Bjerkevik–Lesnick]

• integer parameters: match pairs of generators
• real parameters: sums →∞ with finer discrete approximation
• instead: use Lp distances between boundaries of up- and downsets. . .
• . . . from corresponding associated primes (same history or mortality type)

Relative homological algebra
• resolve using upsets and/or downsets
• Conj: Rn-modules have upset resolutions of length at most n − 1.
• Compare [Geist–M– 2023]: k[Rn

+] has global dimension n + 1.
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