Homological algebra and sheaf theory for multipersistence

Ezra Miller

Duke University, Department of Mathematics and Department of Statistical Science

ezra@math.duke.edu

Representation Theory and Topological Data Analysis

Banff, AB

11 April 2024

- 1. Persistent homology
- 2. Sheaves on posets
- 3. Intervals
- 4. Stratification
- 5. Tameness
- 6. Constructibility
- 7. Presenting poset modules
- 8. Syzygy theorem
- 9. Resolving sheaves
- 10. Future directions

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$.
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \prec q' \prec q''$

- representation of *Q* [Nazarova–Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$.
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \prec q' \prec q''$

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$.
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \prec q' \prec q''$

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$. This is a
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \prec q' \prec q''$

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$. This is a
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \prec q' \prec q''$

Essentially equivalent

Persistence

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Example. Encode fruit fly wing with 2-parameter persistence

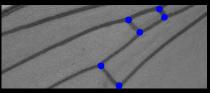
- Ist parameter: distance from vertex set
- 2nd parameter: distance from edge set

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

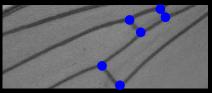
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set



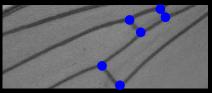
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set



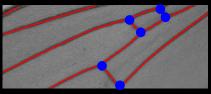
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves



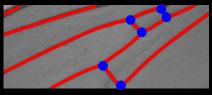
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves



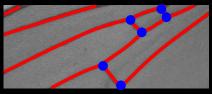
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves



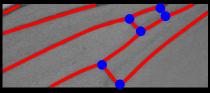
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set given as Bézier curves



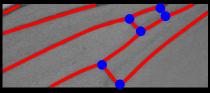
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance < s)



Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance < s)



Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance > -r)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

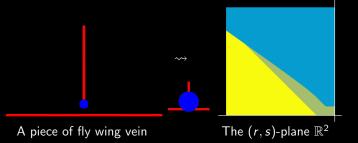
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

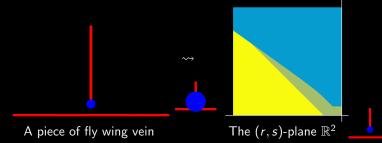
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



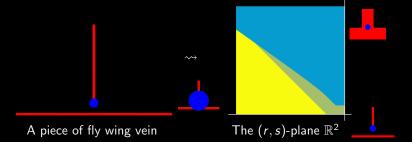
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

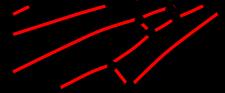
Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

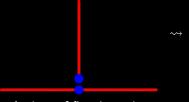
- 1st parameter: distance from vertex set (require distance > -r)
- 2nd parameter: distance from edge set (require distance $\leq s$)



A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance > -r)
- 2nd parameter: distance from edge set (require distance $\leq s$)



A piece of fly wing vein

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

A piece of fly wing vein

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$. This is a
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field \Bbbk with
 - homomorphism $H_q
 ightarrow H_{q'}$ whenever $q \preceq q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \preceq q' \preceq q''$

Essentially equivalent

Persistence

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

- Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$ $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$
- Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \Bbbk)\}_{q \in Q}$. This is a
- Def. Q-module over the poset Q (e.g., [M-, arXiv:math.AT/2008.00063]):
 - Q-graded vector space $H = \bigoplus_{q \in Q} H_q$ over the field k with
 - homomorphism $H_q o H_{q'}$ whenever $q \preceq q'$ in Q such that
 - $H_q o H_{q''}$ equals the composite $H_q o H_{q'} o H_{q''}$ whenever $q \preceq q' \preceq q''$

Essentially equivalent

Persistence

- representation of Q [Nazarova-Roiter 1972]
- functor from Q to the category of vector spaces (e.g., [Curry 2019])
- vector-space valued sheaf on Q (e.g., [Curry's thesis 2014])
- representation of incidence algebra of Q [Doubilet-Rota-Stanley 1972]
- module over directed acyclic graph Q [Chambers-Letscher 2018]
- representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])
- module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

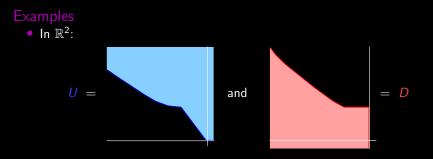
In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

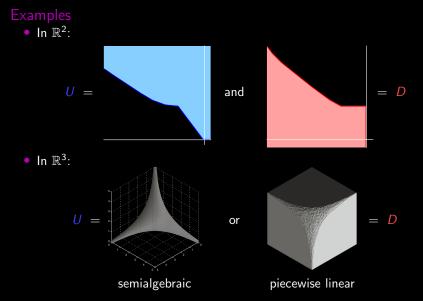
so stalk of ${\mathcal F}$ at q is ${\mathcal F}_q = {\mathcal F}(U_q).$

- sheaf $\mathcal{F} \mapsto Q$ -module $\{\mathcal{F}_q\}_{q \in Q}$ of stalks
- *Q*-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$.

Upsets and downsets



Upsets and downsets



[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187-216]

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

so stalk of ${\mathcal F}$ at q is ${\mathcal F}_q = {\mathcal F}(U_q).$

- sheaf $\mathcal{F}\mapsto Q$ -module $\{\mathcal{F}_q\}_{q\in Q}$ of stalks
- *Q*-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

so stalk of ${\mathcal F}$ at q is ${\mathcal F}_q = {\mathcal F}(U_q).$

- sheaf $\mathcal{F}\mapsto Q$ -module $\{\mathcal{F}_q\}_{q\in Q}$ of stalks
- Q-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

so stalk of ${\mathcal F}$ at q is ${\mathcal F}_q = {\mathcal F}(U_q).$

- sheaf $\mathcal{F} \mapsto Q$ -module $\{\mathcal{F}_q\}_{q \in Q}$ of stalks
- *Q*-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

so stalk of ${\mathcal F}$ at q is ${\mathcal F}_q = {\mathcal F}(U_q).$

- sheaf $\mathcal{F} \mapsto Q$ -module $\{\mathcal{F}_q\}_{q \in Q}$ of stalks
- Q-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$

Sheaves on posets

Def. In a poset Q, an

- upset $U \subseteq Q$ has $U = \bigcup_{u \in U} Q_{\succeq u}$
- downset $D \subseteq Q$ has $D = \bigcup_{d \in D} Q_{\preceq d}$

Def. Poset Q has Alexandrov topology Q^{ale} whose open sets are the upsets in Q.

Def. A sheaf on a topological space is a contravariant functor $\mathcal{F} : \{\text{open sets}\} \rightarrow \Bbbk$ -vector spaces whose sections $s \in \mathcal{F}(U)$ over any open set U can be reconstructed uniquely from restrictions to any open cover of U.

Equivalent for Q any poset:

- 1. *Q*-modules
- 2. sheaves on Q^{ale}

Proof [see Curry 2014].

In Q^{ale} , each $q \in Q$ lies in unique minimal open

 $U_q =$ principal upset generated by q,

so stalk of \mathcal{F} at q is $\mathcal{F}_q = \mathcal{F}(U_q)$.

- sheaf $\mathcal{F}\mapsto Q$ -module $\{\mathcal{F}_q\}_{q\in Q}$ of stalks
- Q-module $M \mapsto \text{sheaf } \mathcal{F}_M$ by right Kan extension: $\mathcal{F}_M(U) = \lim_{q \in U} U_q$

Multiparameter persistence

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\boldsymbol{Q}_{+} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q} \succeq \boldsymbol{0} \}$$

Examples

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 3. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
 - 4. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\boldsymbol{Q}_{+} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q} \succeq \boldsymbol{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 3. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
 - 4. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\boldsymbol{Q}_{+} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q} \succeq \boldsymbol{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z} Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 3. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
 - 4. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\boldsymbol{Q}_{+} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q} \succeq \boldsymbol{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup

•
$$Q\cong \mathbb{R}^n$$
 with $Q_+=$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 3. (derived) sheaves with microsupport contained in negative polar cone V^ee_+
- 4. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\boldsymbol{Q}_{+} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \boldsymbol{q} \succeq \boldsymbol{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M- 2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

3. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 4. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
 - 5. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\mathbf{Q}_+ = \{ q \in Q \mid q \succeq \mathbf{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

4. Q-graded modules over monoid algebra $\Bbbk[Q_+]$

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

- 4. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
- 5. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\mathbf{Q}_{+} = \{ q \in Q \mid q \succeq \mathbf{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

4. *Q*-graded modules over monoid algebra $\Bbbk[Q_+]$ E.g. $Q = \mathbb{R}^n$,

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

Equivalent to each other (but not to V-modules) [Kashiwara-Schapira 2018], for V = partially ordered vector space with closed subanalytic V_+ having nonempty interior:

- 4. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
- 5. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\mathbf{Q}_+ = \{ q \in Q \mid q \succeq \mathbf{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M- 2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

4. *Q*-graded modules over monoid algebra $\Bbbk[Q_+]$ E.g. $Q = \mathbb{R}^n$,

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

Equivalent to each other (but not to V-modules) [Kashiwara-Schapira 2018], for V = partially ordered vector space with closed subanalytic V_+ having nonempty interior:

- 4. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
- 5. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\mathbf{Q}_+ = \{ q \in Q \mid q \succeq \mathbf{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

4. *Q*-graded modules over monoid algebra $\Bbbk[Q_+]$ E.g. $Q = \mathbb{R}^n$,

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

Equivalent to each other (but not to V-modules) [Kashiwara-Schapira 2018], for V = partially ordered vector space with closed subanalytic V_+ having nonempty interior:

- 4. (derived) sheaves with microsupport contained in negative polar cone V^{ee}_+
- 5. (derived) sheaves in conic topology

Def. subgroup $Q \subseteq$ partially ordered real vector space has positive cone

$$\mathbf{Q}_{+} = \{ q \in Q \mid q \succeq \mathbf{0} \}$$

Examples

Sheaves

- $Q = \mathbb{R}^n$ with $Q_+ = (\mathbb{R}_{\geq 0})^n$ partially ordered by componentwise comparison
- $Q = \mathbb{Z}^n \subseteq \mathbb{R}^n$ with $Q_+ = \mathbb{N}^n$
- $Q = \mathbb{Z}Q_+ \cong \mathbb{Z}^n$ with $Q_+ =$ any affine semigroup
- $Q \cong \mathbb{R}^n$ with $Q_+ =$ any convex cone

Equivalent to Q-modules [M-2017, see arXiv:math.AT/2008.03819],

for sugroup Q generated by Q_+ in a partially ordered real vector space:

4. *Q*-graded modules over monoid algebra $\Bbbk[Q_+]$ E.g. $Q = \mathbb{R}^n$,

Def. Partially ordered real vector space V has

- ordinary topology V^{ord}
- conic topology V^{con} : open sets are upsets in V that are open in V^{ord}

Equivalent to each other (but not to V-modules) [Kashiwara-Schapira 2018], for V = partially ordered vector space with closed subanalytic V_+ having nonempty interior:

- 4. (derived) sheaves with microsupport contained in negative polar cone V_+^{\lor}
- 5. (derived) sheaves in conic topology

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in *I* of comparable elements from *a* to *b*.
- For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- $1. \ {\rm study} \ {\rm indecomposables} \ {\rm and} \ {\rm decomposition} \ {\rm into} \ {\rm direct} \ {\rm sums} \ {\rm thereof}$
- 2. study indicator modules and (homologically) relate to arbitrary modules

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in *I* of comparable elements from *a* to *b*.
 For any subset S ⊆ Q, let k[S] = ⊕_{s∈S} k_s be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- $1. \ {\rm study} \ {\rm indecomposables} \ {\rm and} \ {\rm decomposition} \ {\rm into} \ {\rm direct} \ {\rm sums} \ {\rm thereof}$
- 2. study indicator modules and (homologically) relate to arbitrary modules

Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions Intervals in posets <

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- 1. study indecomposables and decomposition into direct sums thereof
- 2. study indicator modules and (homologically) relate to arbitrary modules

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- 1. study indecomposables and decomposition into direct sums thereof
- 2. study indicator modules and (homologically) relate to arbitrary modules

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- 1. study indecomposables and decomposition into direct sums thereof
- 2. study indicator modules and (homologically) relate to arbitrary modules

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b.

For any subset $S \subseteq Q$, let $\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$ be its indicator module.

Examples In \mathbb{R}^2 , intervals can look like

- 1. study indecomposables and decomposition into direct sums thereof
- 2. study indicator modules and (homologically) relate to arbitrary modules \leftarrow

Stratification

How to define sheaves "constructed from interval sheaves" on $V^{\mathrm{ord}}\ldots$

Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is

- 1. subanalytic if the strata S_{lpha} are subanalytic
- 2. piecewise linear (PL) if each S_{lpha} is a finite union of convex polyhedra
- Def. A (derived) sheaf ${\mathcal F}$ on V^{ord}
- 1. has a subordinate subanalytic subdivision if ${\mathcal F}$ is constant on every stratum
 - 2. is PL if V_+ is polyhedral and ${\mathcal F}$ has a subordinate PL subdivision

 \ldots or on $V^{\rm con}$

Def [Kashiwara–Schapira 2017]. A closed subset $S \subseteq V$ has

- 1. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ if
 - strata $S_{lpha}\subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{lpha} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = igcup_{lpha \in \mathcal{A}} \overline{S}_{lpha}$ is a locally finite union
- 2. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ subordinate to \mathcal{F} if
 - ${\it S}={\it {
 m supp}}{\cal F}$ and
 - (each homology sheaf of) ${\cal F}$ is locally constant on every stratum ${\it S}_{lpha}$

Stratification

How to define sheaves "constructed from interval sheaves" on Vord

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
- 1. has a subordinate subanalytic subdivision if \mathcal{F} is constant on every stratum
 - is PL if V_+ is polyhedral and \mathcal{F} has a subordinate PL subdivision

 \dots or on V^{con}

- 1. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ if
 - strata $S_{\alpha} \subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{α} locally closed in V^{con} (so of the form $U \cap D$)
- 2. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ subordinate to \mathcal{F} if

 - (each homology sheaf of) \mathcal{F} is locally constant on every stratum S_{α}

How to define sheaves "constructed from interval sheaves" on $V^{\mathrm{ord}}\ldots$

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{lpha} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if ${\mathcal F}$ is constant on every stratum
 - 2. is PL if V_+ is polyhedral and $\mathcal F$ has a subordinate PL subdivision

 \ldots or on V^{con}

Def [Kashiwara–Schapira 2017]. A closed subset $S \subseteq V$ has

- 1. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ if
 - strata $S_{lpha} \subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{lpha} locally closed in $V^{ ext{con}}$ (so of the form $U \cap D$)
 - $S = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$ is a locally finite union
- 2. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ subordinate to \mathcal{F} if
 - ${\it S}={\it {
 m supp}}{\it {\cal F}}$ and
 - (each homology sheaf of) ${\cal F}$ is locally constant on every stratum ${\it S}_{lpha}$

How to define sheaves "constructed from interval sheaves" on $V^{\mathrm{ord}}\ldots$

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if ${\mathcal F}$ is constant on every stratum
 - 2. is PL if V_+ is polyhedral and $\mathcal F$ has a subordinate PL subdivision

 \ldots or on V^{con}

- Def [Kashiwara–Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ if
 - strata $S_{lpha} \subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{lpha} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$ is a locally finite union
 - 2. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ subordinate to \mathcal{F} if
 - ${\it S}={\it {
 m supp}}{\cal F}$ and
 - (each homology sheaf of) ${\cal F}$ is locally constant on every stratum ${\it S}_{lpha}$

How to define sheaves "constructed from interval sheaves" on $V^{\mathrm{ord}}\ldots$

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if ${\mathcal F}$ is constant on every stratum
 - 2. is PL if V_+ is polyhedral and $\mathcal F$ has a subordinate PL subdivision

...or on V^{con}

- Def [Kashiwara-Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ if
 - strata $S_{lpha}\subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{lpha} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = igcup_{lpha \in \mathcal{A}} \overline{S}_{lpha}$ is a locally finite union
 - 2. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ subordinate to \mathcal{F} if
 - $S = \mathsf{supp}\mathcal{F}$ and
 - (each homology sheaf of) ${\cal F}$ is locally constant on every stratum ${\it S}_{lpha}$

Stratification

How to define sheaves "constructed from interval sheaves" on Vord

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if \mathcal{F} is constant on every stratum
 - 2. is PL if V_{+} is polyhedral and \mathcal{F} has a subordinate PL subdivision

 \dots or on V^{con}

- Def [Kashiwara-Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ if
 - strata $S_{\alpha} \subset S$ are subanalytic and pairwise disjoint
 - each stratum S_{α} locally closed in V^{con} (so of the form $U \cap D$)
 - 2. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ subordinate to \mathcal{F} if

 - (each homology sheaf of) \mathcal{F} is locally constant on every stratum S_{α}

Stratification

How to define sheaves "constructed from interval sheaves" on Vord

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if \mathcal{F} is constant on every stratum
 - 2. is PL if V_{+} is polyhedral and \mathcal{F} has a subordinate PL subdivision

 \dots or on V^{con}

- Def [Kashiwara-Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ if
 - strata $S_{\alpha} \subset S$ are subanalytic and pairwise disjoint
 - each stratum S_{α} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$ is a locally finite union
 - <u>2</u>. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ subordinate to \mathcal{F} if

 - (each homology sheaf of) \mathcal{F} is locally constant on every stratum S_{α}

Stratification

How to define sheaves "constructed from interval sheaves" on $V^{\mathrm{ord}}\ldots$

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{lpha} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if ${\mathcal F}$ is constant on every stratum
 - 2. is PL if V_+ is polyhedral and ${\mathcal F}$ has a subordinate PL subdivision

...or on V^{con}

- Def [Kashiwara–Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ if
 - strata $S_{lpha}\subseteq S$ are subanalytic and pairwise disjoint
 - each stratum S_{lpha} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = igcup_{lpha \in \mathcal{A}} \overline{S}_{lpha}$ is a locally finite union
 - 2. conic stratification $\{S_{\alpha}\}_{\alpha\in A}$ subordinate to \mathcal{F} if
 - $S = \mathsf{supp}\mathcal{F}$ and
 - (each homology sheaf of) ${\cal F}$ is locally constant on every stratum ${\cal S}_lpha$

Stratification

How to define sheaves "constructed from interval sheaves" on Vord

- Def. A partition of a subset of a vector space V into strata $S_{\alpha} \subseteq V$ is
 - 1. subanalytic if the strata S_{α} are subanalytic
 - 2. piecewise linear (PL) if each S_{α} is a finite union of convex polyhedra
- Def. A (derived) sheaf \mathcal{F} on V^{ord}
 - 1. has a subordinate subanalytic subdivision if \mathcal{F} is constant on every stratum
 - 2. is PL if V_{+} is polyhedral and \mathcal{F} has a subordinate PL subdivision

 \dots or on V^{con}

- Def [Kashiwara-Schapira 2017]. A closed subset $S \subseteq V$ has
 - 1. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ if
 - strata $S_{\alpha} \subset S$ are subanalytic and pairwise disjoint
 - each stratum S_{α} locally closed in V^{con} (so of the form $U \cap D$)
 - $S = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$ is a locally finite union
 - 2. conic stratification $\{S_{\alpha}\}_{\alpha \in A}$ subordinate to \mathcal{F} if
 - $S = supp \mathcal{F}$ and
 - (each homology sheaf of) \mathcal{F} is locally constant on every stratum S_{α}

And now the Q-module version...

Def [M- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all *q*. *M* is subanalytic or PL if *M* is tamed by a subanalytic or PL stratification of *V*. Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

And now the Q-module version...

Def [M-2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

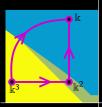
- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.

M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all *q*. *M* is subanalytic or PL if *M* is tamed by a subanalytic or PL stratification of *V*. Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

And now the Q-module version...

Def [M-2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.

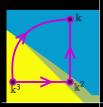


M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{K}} M_q < \infty$ for all q. M is subanalytic or PL if M is tamed by a subanalytic or PL stratification of V. Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \smallsetminus \{\mathbf{0}\}$

And now the Q-module version...

Def [M-2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.

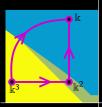


M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all q. M is subanalytic or PL if M is tamed by a subanalytic or PL stratification of V. Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

And now the Q-module version...

Def [M-2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.

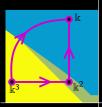


M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all q. M is subanalytic or PL if M is tamed by a subanalytic or PL stratification of V. Example. $k_0 \oplus k[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \smallsetminus \{\mathbf{0}\}$

And now the Q-module version...

Def [M-2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a constant subdivision if Q is partitioned into

- constant regions A, each with vector space $M_A \xrightarrow{\sim} M_a$ for all $a \in A$, having
- no monodromy: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \to M_\mathbf{a} \to M_\mathbf{b} \to M_B$.



M is tame if it admits a finite constant subdivision and dim_k $M_q < \infty$ for all *q*. *M* is subanalytic or PL if *M* is tamed by a subanalytic or PL stratification of *V*. Example. $k_0 \oplus k[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \smallsetminus \{\mathbf{0}\}$

Encoding persistence modules

- Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if
 - P is a finite poset,
 - π is a poset morphism, and

• $M \cong \pi^* N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some complex N^{\bullet} of *P*-modules. The encoding is subanalytic or PL if its fibers are.

Encoding persistence modules

- Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if
 - P is a finite poset,
 - π is a poset morphism, and
 - $M \cong \pi^* N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some complex N^{\bullet} of *P*-modules.

The encoding is subanalytic or PL if its fibers are.

Encoding persistence modules

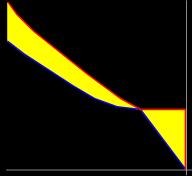
- Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if
 - P is a finite poset,
 - π is a poset morphism, and

Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

- P is a finite poset,
- π is a poset morphism, and

• $M \cong \pi^* N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some complex N^{\bullet} of *P*-modules. The encoding is subanalytic or PL if its fibers are.



An \mathbb{R}^2 -module

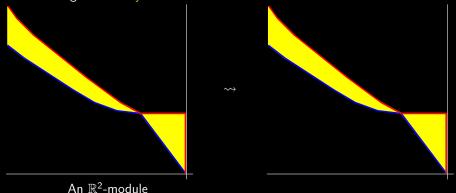
Thm [M- 2017, see arXiv:math.AT/2008.00063]. tame \Leftrightarrow finitely encodable

Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

- P is a finite poset,
- π is a poset morphism, and

• $M \cong \pi^* N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some complex N^{\bullet} of *P*-modules. The encoding is subanalytic or PL if its fibers are.



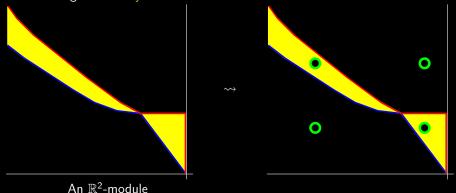
 Thm [M- 2017, see arXiv:math.AT/2008.00063]. tame \Leftrightarrow finitely encodable

Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

- P is a finite poset,
- π is a poset morphism, and

• $M \cong \pi^* N = \bigoplus_{q \in Q} N_{\pi(q)}$, the pullback of some complex N^{\bullet} of *P*-modules. The encoding is subanalytic or PL if its fibers are.

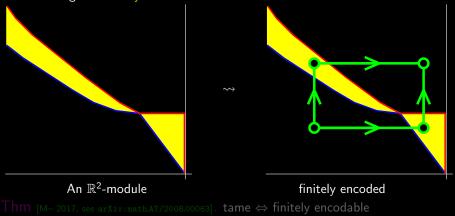


 $\mathsf{I}\mathsf{h}\mathsf{m}$ [M- 2017, see arXiv:math.AT/2008.00063]. tame \Leftrightarrow finitely encodable

Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

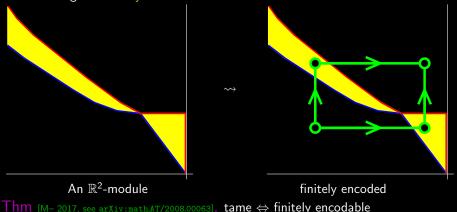
- P is a finite poset,
- π is a poset morphism, and



Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

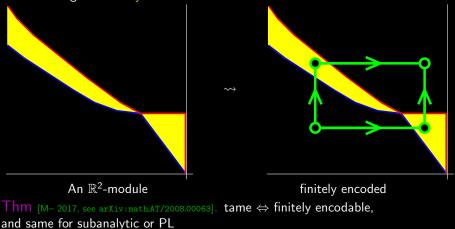
- P is a finite poset,
- π is a poset morphism, and



Encoding persistence modules

Def. A complex M^{\bullet} of modules over a poset Q has finite encoding $\pi: Q \to P$ if

- P is a finite poset,
- π is a poset morphism, and



Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to ${\mathcal F}$ if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$

Def. ${\mathcal F}$ is subanalytically constructible if

- ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
- every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$

3 types of stratification into intervals

- conic stratification
- constant subdivision
- subanalytic triangulation

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces. 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is

- homeomorphism $|\Delta| \xrightarrow{\sim} Y$
- image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of \boldsymbol{Y} is subordinate to $\boldsymbol{\mathcal{F}}$ if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. ${\mathcal F}$ is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$

3 types of stratification into intervals

- conic stratification
- constant subdivision
- subanalytic triangulation

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. ${\mathcal F}$ is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$
- 3 types of stratification into intervals
 - conic stratification
 - constant subdivision
 - subanalytic triangulation

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. \mathcal{F} is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$
- 3 types of stratification into intervals
 - conic stratification
 - constant subdivision
 - subanalytic triangulation

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. \mathcal{F} is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$
- 3 types of stratification into intervals
 - conic stratification
 - constant subdivision
 - subanalytic triangulation

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. \mathcal{F} is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$

3 types of stratification into intervals

- conic stratification
- constant subdivision
- subanalytic triangulation

Relations among them? Homological consequences... ... or characterizations?

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. \mathcal{F} is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$

3 types of stratification into intervals

- conic stratification
- constant subdivision
- subanalytic triangulation

Relations among them? Homological consequences... ...or characterizations?

Def. Fix a real analytic manifold X and (derived) sheaf \mathcal{F} of k-vector spaces.

- 1. subanalytic triangulation of subanalytic $Y \subseteq X$ is
 - homeomorphism $|\Delta| \xrightarrow{\sim} Y$
 - image of open cell $\mathring{\sigma}$ is subanalytic in X for each simplex $\sigma \in \Delta$
- 2. subanalytic triangulation of Y is subordinate to \mathcal{F} if
 - $Y \supseteq \operatorname{supp} \mathcal{F}$
 - (every homology sheaf of) ${\cal F}$ is constant on image of every $\mathring{\sigma}$
- Def. \mathcal{F} is subanalytically constructible if
 - ullet a subanalytic triangulation is subordinate to ${\cal F}$ and
 - every stalk $\mathcal{F}_{
 ho}$ has $\mathsf{dim}_{\Bbbk}(\mathcal{F}_{
 ho}) < \infty$

3 types of stratification into intervals

- conic stratification
- constant subdivision
- subanalytic triangulation

Relations among them? Homological consequences... ... or characterizations?

Presentation and resolution

Default

- free presentation
- injective copresentation

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1'] \oplus \cdots \oplus \Bbbk[U_\ell'] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of M is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Data structure: monomial matrix

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Presentation and resolution

Default

- free presentation
- injective copresentation

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

• An upset presentation of *M* is a homomorphism

 $\Bbbk[U_1'] \oplus \cdots \oplus \Bbbk[U_\ell'] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

• An upset presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$$

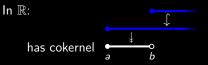
with cokernel $\cong M$. Dually for downset copresentation.

• A fringe presentation of M is a homomorphism

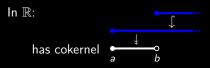
$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

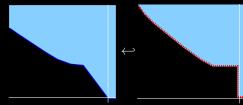
Presentation and resolution



Presentation and resolution



In \mathbb{R}^2 :



has cokernel

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

• An upset presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$$

with cokernel $\cong M$. Dually for downset copresentation.

• A fringe presentation of M is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Data structure: monomial matrix

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel $\cong M$. Dually for downset copresentation.

• A fringe presentation of M is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

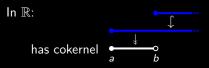
with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

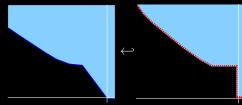
$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

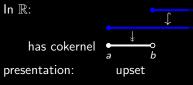


In \mathbb{R}^2 :

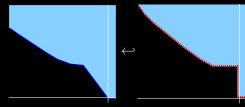


has cokernel

Presentation and resolution

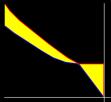


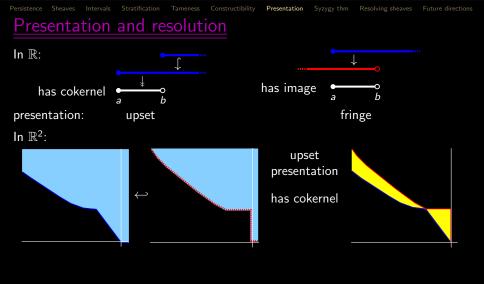
In \mathbb{R}^2 :

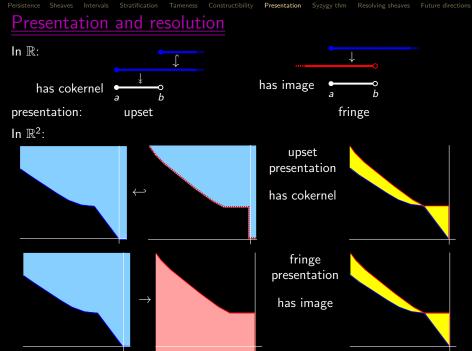


upset presentation

has cokernel







Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel $\cong M$. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

 $\mathbb{k}[D_1] \oplus \cdots \oplus \mathbb{k}[D_\ell]$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Data structure: monomial matrix

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

• An upset presentation of *M* is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel \cong *M*. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Data structure: monomial matrix

Presentation and resolution

Default

- free presentation
- injective copresentation

Notation:
$$\Bbbk[S] = \bigoplus_{s \in S} \Bbbk_s$$
 when $S \subseteq Q$

Def [M-2017, see arXiv:math.AT/2008.00063]. Fix a module M over an arbitrary poset Q.

An upset presentation of M is a homomorphism

 $\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_\ell] \to \Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k]$

with cokernel $\cong M$. Dually for downset copresentation.

• A fringe presentation of *M* is a homomorphism

$$\Bbbk[U_1] \oplus \cdots \oplus \Bbbk[U_k] \to \Bbbk[D_1] \oplus \cdots \oplus \Bbbk[D_\ell]$$

with image $\cong M$.

Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions Presentation and resolution [M- 2017, see arXiv:math.AT/2008.00063]

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

• M and N share a finite constant subdivision such that for each region I,

•
$$M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$$
 does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

Either of these indicator resolutions

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions Presentation and resolution [M- 2017, see arXiv:math.AT/2008.00063]

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

• M and N share a finite constant subdivision such that for each region I,

•
$$M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$$
 does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

Either of these indicator resolutions

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Persistence Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions Presentation and resolution [M- 2017, see arXiv:math.AT/2008.00063]

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- M and N share a finite constant subdivision such that for each region I,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

Either of these indicator resolutions

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Def. A homomorphism $\varphi: M \to N$ of modules over any poset Q is tame if

- *M* and *N* share a finite constant subdivision such that for each region *I*,
- $M_I \rightarrow M_i \rightarrow N_i \rightarrow N_I$ does not depend on $i \in I$;

the subdivision is subordinate to φ , which is subanalytic or PL if the subdivision is.

Def. Fix a complex M^{\bullet} of modules over a poset Q.

- 1. M^{\bullet} is tame if its morphisms are tame.
- 2. A constant subdivision is subordinate to M^{\bullet} if it is subordinate to the morphisms in M^{\bullet} .
- 3. An upset resolution of M^{\bullet} is a homology isomorphism $F^{\bullet} \to M^{\bullet}$ where $F^{i} \cong \bigoplus_{U \in \Upsilon^{i}} \Bbbk[U]$ is a direct sum of upset modules.
- 4. A downset resolution of M^{\bullet} is a homology isomorphism $M^{\bullet} \to E^{\bullet}$ where $E^{i} \cong \bigoplus_{D \in \Delta^{i}} \Bbbk[D]$ is a direct sum of downset modules.

- is finite if it has finitely many indicator summands
- is subanalytic or PL if the constant subdivision is subanalytic or PL.

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
 - 4. constant subdivision subordinate to any given one of items 1-3
 - 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

 Syzygy theorem
 [M- 2017, see arXiv:math.AT/2008.00063]

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items $1\!-\!3$
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.
- Remains true with
 - "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
 - "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.
- Remains true with
 - "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
 - "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- $\Leftrightarrow \mathsf{has} \mathsf{ finite} \mathsf{ resolution} \mathsf{ by} \mathsf{ intervals}$
- \Leftrightarrow has finite data structure by monomial matrices

Syzygy thm. A module M or bounded complex M^{\bullet} of modules over a poset Q is tame if and only if it admits one, and hence all, of the following: a finite

- 1. upset resolution
- 2. downset resolution
- 3. fringe presentation
- 4. constant subdivision subordinate to any given one of items 1-3
- 5. encoding subordinate to any given one of items 1-4.

Remains true with

- "subanalytic" in place of "tame" and "finite", if M^{\bullet} has compact support
- "PL" in place of "tame" and "finite", if V_+ is polyhdral.

Any tame or subanalytic or PL morphism $M^{\bullet} \rightarrow N^{\bullet}$ lifts to a similarly well behaved morphism of resolutions as in parts 1 and 2.

Summary. tame \Leftrightarrow stratified by intervals

- $\Leftrightarrow \mathsf{finitely} \; \mathsf{encodable}$
- \Leftrightarrow has finite resolution by intervals
- \Leftrightarrow has finite data structure by monomial matrices

(and that's how the proof goes)

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- downset resolution of *F*[•] is a homology isomorphism *F*[•] → *D*[•] with each *Dⁱ* a direct sum of subanalytic downset sheaves
 Fither type of indicator resolution is
- - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology V^{con} and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves

Either type of indicator resolution is

- finite if finitely many summands across all homological degrees
- PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves
- Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves
- Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^\bullet is

- pulled back from the conical topology V^{con} and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves
- Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^{\bullet} is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,

Def (indicator sheaves). Fix a complex \mathcal{F}^{\bullet} of sheaves on V^{ord} . A subanalytic

- 1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an open subanalytic upset in V^{ord}
- 2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf on a closed subanalytic downset in V^{ord}
- 3. upset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{U}^{\bullet} \to \mathcal{F}^{\bullet}$ with each \mathcal{U}^{i} a direct sum of subanalytic upset sheaves
- 4. downset resolution of \mathcal{F}^{\bullet} is a homology isomorphism $\mathcal{F}^{\bullet} \to \mathcal{D}^{\bullet}$ with each \mathcal{D}^{i} a direct sum of subanalytic downset sheaves
- Either type of indicator resolution is
 - finite if finitely many summands across all homological degrees
 - PL if V_+ is polyhedral and the upsets or downsets are PL

Application of syzygy thm. Fix a real vector space V partially ordered with V_+ closed, subanalytic, and of full dimension. If \mathcal{F}^{\bullet} is

- pulled back from the conical topology $V^{\rm con}$ and
- subanalytically constructible,
- then \mathcal{F}^{\bullet} is tamely resolved by conical intervals. Precisely:

Cor [M- 2020, arXiv:math.AT/2008.00091]. The following are equivalent for any bounded, compactly supported derived sheaf \mathcal{F}^{\bullet} on the conical topology V^{con} .

- 1. \mathcal{F}^{ullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution
- 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^\bullet PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

Cor 1 [Kashiwara–Schapira 2017, Conj. 3.17].

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_+ the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

Cor [M- 2020, arXiv:mathAT/2008.00091]. The following are equivalent for any bounded, compactly supported derived sheaf \mathcal{F}^{\bullet} on the conical topology V^{con} .

1. \mathcal{F}^{ullet} is subanalytically constructible after pulling back to V^{ord}

- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution
- 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^\bullet PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

Cor 1 [Kashiwara–Schapira 2017, Conj. 3.17].

 \mathcal{F}^{ullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_+ the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

Cor [M- 2020, arXiv:mathAT/2008.00091]. The following are equivalent for any bounded, compactly supported derived sheaf \mathcal{F}^{\bullet} on the conical topology V^{con} .

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution
- 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution

Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} . V_{+} polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

Cor 1 [Kashiwara–Schapira 2017, Conj. 3.17].

 \mathcal{F}^{ullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara–Schapira 2021, Conj. 3.20]. For polyhedral V_+ the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution $\}$ indicator resolutions

Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} . V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_{+} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution $\}$ indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_{+} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution $\}$ indicator resolutions
- Implications $2 \Rightarrow 1$ and $3 \Rightarrow 1$ do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_{+} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution $\left.\right\}$ indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_{+} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- 2. \mathcal{F}^{\bullet} has a finite subanalytic upset resolution 3. \mathcal{F}^{\bullet} has a finite subanalytic downset resolution $\left.\right\}$ indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara-Schapira 2021, Conj. 3.20]. For polyhedral V_{+} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- *F* has a finite subanalytic upset resolution
 F has a finite subanalytic downset resolution indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara–Schapira 2021, Conj. 3.20]. For polyhedral V_{\pm} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con} -locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- *F* has a finite subanalytic upset resolution
 F has a finite subanalytic downset resolution } indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara–Schapira 2021, Conj. 3.20]. For polyhedral V_{\pm} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con}-locally closed polyhedra

- 1. \mathcal{F}^{\bullet} is subanalytically constructible after pulling back to V^{ord}
- *F* has a finite subanalytic upset resolution
 F has a finite subanalytic downset resolution indicator resolutions
- Implications 2 \Rightarrow 1 and 3 \Rightarrow 1 do not require compact support for \mathcal{F}^{\bullet} .
- V_+ polyhedral and \mathcal{F}^{\bullet} PL \Rightarrow claims all hold with "PL" in place of "subanalytic".

Proof. Compact support + constructible \Rightarrow finite constant subdivision \Rightarrow tame.

 \mathcal{F}^{\bullet} constructible \Rightarrow supp \mathcal{F} has a subordinate conic stratification.

Cor 2 [Kashiwara–Schapira 2021, Conj. 3.20]. For polyhedral V_{\pm} the following are equivalent.

- \mathcal{F}^{\bullet} is a PL object in the bounded derived category of compactly supported constructible conic sheaves.
- The isomorphism class of \mathcal{F}^{\bullet} is represented by a complex that is a finite direct sum of constant sheaves on bounded V^{con}-locally closed polyhedra

Implementation

- single preprocessing step for many multiPH computations; e.g., fly wings
- Lebesgue distance computations: no sampling for Riemann integration

Invariants

- E.g., what could "top 100 bar lengths" mean in multipersistence?
- E.g., boundaries of up- or downsets \rightsquigarrow "highly persistent" elements

Real L^P distances [Bubenik–Scott–Stanley], [Skraba–Turner], [Bjerkevik–Lesnick]

- integer parameters: match pairs of generators
- ${\mbox{\circ}}$ real parameters: sums $\rightarrow\infty$ with finer discrete approximation
- instead: use L^p distances between boundaries of up- and downsets...
- ... from corresponding associated primes (same history or mortality type)

- resolve using upsets and/or downsets
- Conj: \mathbb{R}^n -modules have upset resolutions of length at most n-1.
- Compare [Geist-M-2023]: $\mathbb{k}[\mathbb{R}^n_+]$ has global dimension n+1.

Implementation

- single preprocessing step for many multiPH computations; e.g., fly wings
- Lebesgue distance computations: no sampling for Riemann integration

Invariants

- E.g., what could "top 100 bar lengths" mean in multipersistence?
- E.g., boundaries of up- or downsets \rightsquigarrow "highly persistent" elements

Real L^p distances [Bubenik–Scott–Stanley], [Skraba–Turner], [Bjerkevik–Lesnick]

- integer parameters: match pairs of generators
- ullet real parameters: sums $ightarrow\infty$ with finer discrete approximation
- instead: use L^p distances between boundaries of up- and downsets...
- ... from corresponding associated primes (same history or mortality type)

- resolve using upsets and/or downsets
- Conj: \mathbb{R}^n -modules have upset resolutions of length at most n-1.
- Compare [Geist-M-2023]: $\mathbb{k}[\mathbb{R}^n_+]$ has global dimension n+1.

Implementation

- single preprocessing step for many multiPH computations; e.g., fly wings
- Lebesgue distance computations: no sampling for Riemann integration

Invariants

- E.g., what could "top 100 bar lengths" mean in multipersistence?
- E.g., boundaries of up- or downsets ↔ "highly persistent" elements

Real L^p distances [Bubenik-Scott-Stanley], [Skraba-Turner], [Bjerkevik-Lesnick]

- integer parameters: match pairs of generators
- real parameters: sums $ightarrow\infty$ with finer discrete approximation
- instead: use L^p distances between boundaries of up- and downsets...
- ... from corresponding associated primes (same history or mortality type)

- resolve using upsets and/or downsets
- Conj: \mathbb{R}^n -modules have upset resolutions of length at most n-1.
- Compare [Geist-M-2023]: $\mathbb{k}[\mathbb{R}^n_+]$ has global dimension n+1.

Implementation

- single preprocessing step for many multiPH computations; e.g., fly wings
- Lebesgue distance computations: no sampling for Riemann integration

Invariants

- E.g., what could "top 100 bar lengths" mean in multipersistence?
- E.g., boundaries of up- or downsets \rightsquigarrow "highly persistent" elements

Real L^p distances [Bubenik-Scott-Stanley], [Skraba-Turner], [Bjerkevik-Lesnick]

- integer parameters: match pairs of generators
- real parameters: sums $ightarrow\infty$ with finer discrete approximation
- instead: use L^p distances between boundaries of up- and downsets...
- ... from corresponding associated primes (same history or mortality type)

- resolve using upsets and/or downsets
- Conj: \mathbb{R}^n -modules have upset resolutions of length at most n-1.
- Compare [Geist-M- 2023]: $\mathbb{k}[\mathbb{R}^n_+]$ has global dimension n+1.

<u>References</u>

- Håvard Bakke Bjerkevik and Michael Lesnick, l^p-distances on multiparameter persistence modules, preprint. arXiv:mathAT/2106.13589
- Magnus Bakke Botnan and William Crawley-Boevey, Decomposition of persistence modules, Proc. Amer. Math. Soc. 148 (2020), 4581–4596. doi:10.1090/proc/14790 arXiv:math.RT/1811.08946
- Peter Bubenik, Jonathan Scott, and Donald Stanley, An algebraic Wasserstein distance for generalized persistence modules. arXiv:math.AT/1809.09654
- Gunnar Carlsson and Afra Zomorodian, The theory of multidimensional persistence, Discrete and Comput. Geom. 42 (2009), 71–93. doi:10.1007/s00454-009-9176-0
- Erin Wolf Chambers and David Letscher, Persistent homology over directed acyclic graphs, Res. in Comput. Topology, Assoc. Women Math. Ser., Vol. 13, Springer, 2018, pp. 11–32.
- Justin Curry, Sheaves, cosheaves, and applications, Ph.D. thesis, University of Pennsylvania, 2014. arXiv:math.AT/1303.3255
- Justin Curry, Functors on posets left Kan extend to cosheaves: an erratum, preprint, 2019. arXiv:math.CT/1907.09416v1
- Peter Doubliet, Gian-Carlo Rota, and Richard Stanley. On the foundations of combinatorial theory (VI): The idea of generating function, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, 1970/1971), Vol. II: Probability theory, pp. 267–318, Univ. California Press, Berkeley, CA, 1972.
- Nathan Geist and Ezra Miller, Global dimension of real-exponent polynomial rings, Algebra & Number Theory, 17 (2023), no. 10, 1779–1788. arXiv:math.AC/2109.04924
- Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS Kyoto Univ. 20 (1984), 319–365.
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, with a chapter by Christian Houzel, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 292. Springer-Verlag, Berlin, 1990.
- Masaki Kashiwara and Pierre Schapira, Persistent homology and microlocal sheaf theory, preprint version of the next item. arXiv:mathAT/1705.00955v3
- Masaki Kashiwara and Pierre Schapira, Persistent homology and microlocal sheaf theory, J. of Appl. and Comput. Topology 2, no. 1–2 (2018), 83–113. arXiv:math #T/1705.00955v6
- Masaki Kashiwara and Pierre Schapira, Piecewise linear sheaves, International Math. Res. Notices [IMRN] (2021), no. 15, 11565–11584. doi:10.1093/imrn/rnz145 arXiv:math.AG/1805.00349v3
- Michael Lesnick, The theory of the interleaving distance on multidimensional persistence modules, Foundations of Computational Mathematics (2015), no. 15, 613-650. doi:10.1007/s10208-015-9255-y arXiv:math.CG/1106.5305
- Ezra Miller, Homological algebra of modules over posets, 43 pages, in revision, SIAGA. arXiv:math.AT/2008.00063
- Ezra Miller, Stratifications of real vector spaces from constructible sheaves with conical microsupport, J. Applied and Computational Topology 7 (2023), no.3, 473–489. arXiv:math.AT/2008.00091
- Ezra Miller, Essential graded algebra over polynomial rings with real exponents, 73 pages, in revision, Adv. Math. arXiv:math.AT/2008.03819
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.
- L. A. Nazarova and A. V. Roïter, Representations of partially ordered sets (in Russian), Investigations on the theory of representations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 5–31.
- Steve Oudot, Persistence theory: from quiver representations to data analysis, Mathematical Surveys and Monographs, Vol. 209, Amer. Math. Society, Providence, RI, 2015.
- Primoz Skraba and Katharine Turner, Algebraic Wasserstein distance between persistence modules.

References

- Håvard Bakke Bjerkevik and Michael Lesnick, l^p-distances on multiparameter persistence modules, preprint. arXiv:mathAT/2106.13589
- Magnus Bakke Botnan and William Crawley-Boevey, Decomposition of persistence modules, Proc. Amer. Math. Soc. 148 (2020), 4581–4596. doi:10.1090/proc/14790 arXiv:math.RT/1811.08946
- Peter Bubenik, Jonathan Scott, and Donald Stanley, An algebraic Wasserstein distance for generalized persistence modules. arXiv:math.AT/1809.09654
- Gunnar Carlsson and Afra Zomorodian, The theory of multidimensional persistence, Discrete and Comput. Geom. 42 (2009), 71–93. doi:10.1007/s00454-009-9176-0
- Erin Wolf Chambers and David Letscher, Persistent homology over directed acyclic graphs, Res. in Comput. Topology, Assoc. Women Math. Ser., Vol. 13, Springer, 2018, pp. 11–32.
- Justin Curry, Sheaves, cosheaves, and applications, Ph.D. thesis, University of Pennsylvania, 2014. arXiv:math.AT/1303.3255
- Justin Curry, Functors on posets left Kan extend to cosheaves: an erratum, preprint, 2019. arXiv:math.CT/1907.09416v1
- Peter Doubliet, Gian-Carlo Rota, and Richard Stanley. On the foundations of combinatorial theory (VI): The idea of generating function, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, 1970/1971), Vol. II: Probability theory, pp. 267–318, Univ. California Press, Berkeley, CA, 1972.
- Nathan Geist and Ezra Miller, Global dimension of real-exponent polynomial rings, Algebra & Number Theory, 17 (2023), no. 10, 1779–1788. arXiv:math.AC/2109.04924
- Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS Kyoto Univ. 20 (1984), 319–365.
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, with a chapter by Christian Houzel, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 292. Springer-Verlag, Berlin, 1990.
- Masaki Kashiwara and Pierre Schapira, Persistent homology and microlocal sheaf theory, preprint version of the next item. arXiv:mathAT/1705.00955v3
- Masaki Kashiwara and Pierre Schapira, Persistent homology and microlocal sheaf theory, J. of Appl. and Comput. Topology 2, no. 1–2 (2018), 83–113. arXiv:mathAT/1705.00955v6
- Masaki Kashiwara and Pierre Schapira, Piecewise linear sheaves, International Math. Res. Notices [IMRN] (2021), no. 15, 11565–11584. doi:10.1093/imrn/rnz145 arXiv:math.AG/1805.00349v3
- Michael Lesnick, The theory of the interleaving distance on multidimensional persistence modules, Foundations of Computational Mathematics (2015), no. 15, 613-650. doi:10.1007/s10208-015-9255-y arXiv:math.CG/1106.5305
- Ezra Miller, Homological algebra of modules over posets, 43 pages, in revision, SIAGA. arXiv:math.AT/2008.00063
- Ezra Miller, Stratifications of real vector spaces from constructible sheaves with conical microsupport, J. Applied and Computational Topology 7 (2023), no.3, 473–489. arXiv:math.AT/2008.00091
- Ezra Miller, Essential graded algebra over polynomial rings with real exponents, 73 pages, in revision, Adv. Math. arXiv:math.AT/2008.03819
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.
- L. A. Nazarova and A. V. Roïter, Representations of partially ordered sets (in Russian), Investigations on the theory of representations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 5–31.
- Steve Oudot, Persistence theory: from quiver representations to data analysis, Mathematical Surveys and Monographs, Vol. 209, Amer. Math. Society, Providence, RI, 2015.
- Primoz Skraba and Katharine Turner, Algebraic Wasserstein distance between persistence modules.

Thank You