Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Ezra Miller

0] 0

P

ezra@math.duke.edu

11 April 2024



Persistence ~ Sheaves Intervals  Stratification Tameness

Persistent homology
Sheaves on posets
Intervals

Stratification

Tameness
Constructibility
Presenting poset modules

Syzygy theorem

© o N o g ke w b=

Resolving sheaves

10. Future directions

Constructibilit;

Presentation

Syzygy

thm

Resolving sheaves




Persistence  Sheaves Intervals  Stratification ~ Tameness  Constructibility ~ Presentation ~ Syzygy thm  Resolving sheaves  Future directions

Persistent homology over arbitrary posets

[nput. Topological space X filtered by set @ of subspaces: X, C X for g € Q

= @ is a partially ordered set: Xq; C Xy < g = q

{Xq}qeq has {Hq = H(Xg: k) }qeq-

Q-module over the poset @
Q-graded vector space H = @qu Hg over the field k W|th
homomorphism Hq — Hy whenever ¢ < ¢’ in @ such that
Hg — Hg» equals the composite Hy — Hgr — Hgr whenever g < ¢’ < q”

representation of @

functor from Q to the category of vector spaces
vector-space valued sheaf on @

representation of incidence algebra of @

module over directed acyclic graph Q@

representation of quiver @ with (commutative) relations
module over path algebra of @ modulo transitivity ideal
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= Q is a partially ordered set: X; C Xy < g =<¢’

Def {Xy}qeq has persistent homology {Hg = H(Xg: k) }eeq-

Q-module over the poset @ :
Q-graded vector space H = @qeo Hg over the field k with
homomorphism Hq — Hy whenever ¢ < ¢’ in @ such that
Hg — Hg» equals the composite Hy — Hgr — Hgr whenever g < ¢’ < q”

representation of @

functor from Q to the category of vector spaces
vector-space valued sheaf on @

representation of incidence algebra of @

module over directed acyclic graph @

representation of quiver @ with (commutative) relations
module over path algebra of @ modulo transitivity ideal



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =¢

{Xq}qeq has persistent homology {Hqg = H(Xg: k) }qeq- Thisis a

Q-module over the poset Q (e, [V arxivinathAT/2008.00063]):
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
© st parameter: distance from vertex set
© 2nd parameter: distance from edge set

W, . is but = H = H(W. ;)
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W, . is but = H = H(W. ;)
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
o 1st parameter: distance from vertex set (require distance > —r)
© 2nd parameter: distance from edge set (require distance < s)

N

Sublevel set W, s is near edges but far from vertices = H. .= H;(W. .)
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W|ng Ve|n perSIStenCe [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
o 1st parameter: distance from vertex set (require distance > —r)
© 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, , is near edges but far from vertices = H, o = H;(W, ;)

A piece of fly wing vein The (r,s)-plane R?
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[w/Houle, et al., ongoing]

Encode fruit fly wing with 2-parameter persistence
st parameter: distance from vertex set (require distance > —r)
2nd parameter: distance from edge set (require distance < s)

W, . is near edges but far from vertices = H, . = Hi(W, ;)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Ve|n peI’SIStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
© 1st parameter: distance from vertex set (require distance > —r)
© 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, 5 is near edges but far from vertices = H, . = Hi(W, )

A piece of fly wing vein The (r,s)-plane R?
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Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =¢

{Xq}qeq has persistent homology {Hqg = H(Xg: k) }qeq- Thisis a

Q-module over the poset Q (e, [V arxivinathAT/2008.00063]):
Q-graded vector space H = (P o Hq over the field k with
homomorphism Hy — Hy whenever ¢ < ¢’ in @ such that
Hq — Hg equals the composite Hy; — Hy — Hgr whenever ¢ < ¢’ < q”

representation of @

functor from @ to the category of vector spaces
vector-space valued sheaf on @

representation of incidence algebra of @

module over directed acyclic graph Q

representation of quiver @ with (commutative) relations
module over path algebra of @ modulo transitivity ideal
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Sheaves on posets

[Def. In a poset Q, an

¢ upset UC Qhas U=U,cy Q-u
¢ downset D € @ has D = |Jyep Q=4

Poset @ has Alexandrov topology Q?'® whose open sets are the upsets in Q.

A sheaf on a topological space is a contravariant functor

F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U

can be reconstructed uniquely from restrictions to any open cover of U.

for Q any poset:
@-modules
sheaves on Q2

In @', each g € Q lies in unique minimal open

Uq = principal upset generated by g,

so stalk of F at q is Fq = F(Uq).
sheaf F — Q-module {F,}4eq of stalks

Q@-module M + sheaf Fy by right Kan extension: Fp(U) = ]

Future directions
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In R2:
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In R2:

and

In R3:

or

semialgebraic piecewise linear

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187-216]



Persistence  Sheaves Intervals  Stratification ~ Tameness ~ Constructibility ~ Presentation ~ Syzygy thm  Resolving sheaves

Sheaves on posets

[Def. In a poset Q, an

¢ upset UC Qhas U=U,cy Q-u
¢ downset D € @ has D = |Jyep Q=4

Poset @ has Alexandrov topology Q?'® whose open sets are the upsets in Q.

A sheaf on a topological space is a contravariant functor

F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U

can be reconstructed uniquely from restrictions to any open cover of U.

for Q any poset:
@-modules
sheaves on Q2

In @', each g € Q lies in unique minimal open

Uq = principal upset generated by g,

so stalk of F at q is Fq = F(Uq).
sheaf F — Q-module {F,}4eq of stalks

Q@-module M + sheaf Fy by right Kan extension: Fp(U) = ]

Future directions



Persistence  Sheaves  Intervals  Stratification ~ Tameness  Constructibility ~ Presentation =~ Syzygy thm  Resolving sheaves  Future directions

Sheaves on posets

[Def. In a poset Q, an
¢ upset UC Qhas U= U,y Q-u
¢ downset D C @ has D = |J ecp Q<4

[Def. Poset @ has Alexandrov topology Q' whose open sets are the upsets in Q.

A sheaf on a topological space is a contravariant functor
F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U
can be reconstructed uniquely from restrictions to any open cover of U.

for Q any poset:

@-modules
sheaves on Q2

In Q' each g € Q lies in unique minimal open
Uq = principal upset generated by g,

so stalk of F at q is Fq = F(Uq).
sheaf F — Q-module {F,}4eq of stalks

Q@-module M +— sheaf Fy; by right Kan extension: Fu(U) = quU Uq
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In a poset @, an

upset U C @ has U = UueU Q-
downset D C @ has D = |J ecp Q<d

Poset @ has Alexandrov topology Q'® whose open sets are the upsets in Q.

A sheaf on a topological space is a contravariant functor

F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U
can be reconstructed uniquely from restrictions to any open cover of U.

for Q any poset:
®-modules
sheaves on Q2

In Q' each g € Q lies in unique minimal open
Ug = principal upset generated by g,

so stalk of F at q is Fq = F(Uy).
sheaf F = Q-module {Fg}q4cq of stalks
Q-module M — sheaf Fj by right Kan extension: F(U)

[im
%

q

c

Syzygy thm  Resolving sheaves

U

Future directions

Ug
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In a poset @, an

CQhas U=U,cy @
downset D C @ has D = |J ecp Q<d

Poset @ has Alexandrov topology Q'® whose open sets are the upsets in Q.
A sheaf on a topological space is a contravariant functor
F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U
can be reconstructed uniquely from restrictions to any open cover of U.
for Q any poset:

@-modules
sheaves on Q?'¢

In @' each g € Q lies in unique minimal open
Ug = principal upset generated by g,
so stalk of F at q is Fq = F(Uy).

sheaf F = Q-module {Fg}q4cq of stalks

@-module M +— sheaf Fy; by right Kan extension: Fy(U) = “@qt@(/ Uq
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In a poset @, an

CQhas U=U,cy @
downset D C @ has D = |J ecp Q<d

Poset @ has Alexandrov topology Q'® whose open sets are the upsets in Q.

A sheaf on a topological space is a contravariant functor

F : {open sets} — k-vector spaces whose sections s € F(U) over any open set U

can be reconstructed uniquely from restrictions to any open cover of U.

for Q any poset:
Q-modules
sheaves on Q2

In Q2', each g € Q lies in unique minimal open
Ug = principal upset generated by g,

so stalk of F at q is Fy = F(Uy).
sheaf F — Q-module {F,}4eq of stalks

Q@-module M +— sheaf Fy; by right Kan extension: F(U) =]

Future directions
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Multiparameter persistence

[Def. subgroup @ C partially ordered real vector space has positive cone
Qi ={q€Q|q=0}

Q@ = R"” with Q1 = (R>0)" partially ordered by componentwise comparison
Q=7Z" CR" with Q, =N”"
QR =7ZQ, = Z" with @, = any affine semigroup
Q =2 R" with Q, = any convex cone
to @-modules )
for sugroup @ generated by Q. in a partially ordered real vector space:
Q-graded modules over monoid algebra k[Q]

Partially ordered real vector space V has
ordinary topology V™
conic topology V": open sets are upsets in V/ that are open in Vo

to each other (but not to V-modules) , for V =
partially ordered vector space with closed subanalytic V., having nonempty interior:
(derived) sheaves with microsupport contained in negative polar cone V/
(derived) sheaves in conic topology
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[Def. subgroup @ C partially ordered real vector space has positive cone

Qr={geQ]q=0}
Examples
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QR =7ZQ, = Z" with @, = any affine semigroup
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to @-modules )
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to each other (but not to V-modules) , for V =
partially ordered vector space with closed subanalytic V., having nonempty interior:
(derived) sheaves with microsupport contained in negative polar cone VY
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QR =7ZQ, = Z" with @, = any affine semigroup
Q =2 R" with Q, = any convex cone
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Q-graded modules over monoid algebra k[Q]
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Multiparameter persistence

[Def. subgroup @ C partially ordered real vector space has positive cone

Qr={q€Q|q=0}
Examples
° Q@ =R" with Q1 = (Rx0)" partially ordered by componentwise comparison
°© Q=2"CR"with Q. =N"
° Q=7ZQs = 7Z" with Q; = any affine semigroup
Q =2 R" with Q, = any convex cone
to @-modules )
for sugroup @ generated by Q. in a partially ordered real vector space:
Q-graded modules over monoid algebra k[Q4 ]

Partially ordered real vector space V has
ordinary topology V™
conic topology V": open sets are upsets in V/ that are open in Vo

to each other (but not to V-modules) , for V =
partially ordered vector space with closed subanalytic V., having nonempty interior:
(derived) sheaves with microsupport contained in negative polar cone VY
(derived) sheaves in conic topology
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Multiparameter persistence

[Def. subgroup @ C partially ordered real vector space has positive cone

Q ={9€Q|qg=0}

Examples
° Q@ =R" with Q1 = (Rx0)" partially ordered by componentwise comparison
° Q=7Z"CR"with Q. =N"
° Q=7ZQs = 7Z" with Q; = any affine semigroup
o

Q =2 R" with Q; = any convex cone

to @-modules ,
for sugroup @ generated by Q. in a partially ordered real vector space:
Q-graded modules over monoid algebra k[Q4 ]

Partially ordered real vector space V has
ordinary topology V™
conic topology V": open sets are upsets in V/ that are open in Vo

to each other (but not to V-modules) , for V =
partially ordered vector space with closed subanalytic V. having nonempty interior:
(derived) sheaves with microsupport contained in negative polar cone V/
(derived) sheaves in conic topology



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

subgroup @ C partially ordered real vector space has positive cone

Q ={9€Q|qg=0}

Q@ = R"” with Q4+ = (Rx0)" partially ordered by componentwise comparison
QR =7Z" CR" with Q, =N"
Q =7ZQ; = 7Z" with Q4 = any affine semigroup
Q =2 R" with Q; = any convex cone
to Q-modules [V 2017, see arkiv:nath.AT/2008.03819],
for sugroup @ generated by Q. in a partially ordered real vector space:
Q-graded modules over monoid algebra k[Q.]

Partially ordered real vector space V has
ordinary topology V™
conic topology V": open sets are upsets in V/ that are open in Vo

to each other (but not to V-modules) , for V =
partially ordered vector space with closed subanalytic V. having nonempty interior:
(derived) sheaves with microsupport contained in negative polar cone V.
(derived) sheaves in conic topology
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subgroup @ C partially ordered real vector space has positive cone

Q ={9€Q|qg=0}

Q@ = R"” with Q4+ = (Rx0)" partially ordered by componentwise comparison
QR =7Z" CR" with Q, =N"
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An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

L but not

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

L but not

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

An interval I in a poset @ is a convex connected subset: a,b € [ =
g € I whenever a < g = b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

or A but not \

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

An interval I in a poset @ is a convex connected subset: a,b € [ =
g € I whenever a < g = b and
there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S C Q, let k[S] = .. ks be its indicator module.

ses

In R2, intervals can look like

or A but not \

In one parameter, interval modules are indecomposable
= two avenues:

study indecomposables and decomposition into direct sums thereof

study indicator modules and (homologically) relate to arbitrary modules



Persistence ~ Sheaves Intervals  Stratification ~ Tameness  Constructibility ~ Presentation ~ Syzygy thm  Resolving sheaves  Future directions

Stratification

How to define sheaves “constructed from interval sheaves” on Vo4, .

[Def. A partition of a subset of a vector space V into strata S, C V is
1. subanalytic if the strata S, are subanalytic
piecewise linear (PL) if each S, is a finite union of convex polyhedra

A (derived) sheaf F on V°rd
has a subordinate subanalytic subdivision if F is constant on every stratum
is PL if V, is polyhedral and F has a subordinate PL subdivision

...or on V/<n

A closed subset S C V has
conic stratification {S, }aea if
strata S, C S are subanalytic and pairwise disjoint
each stratum S, locally closed in V<" (so of the form /N D)
S =Ugnen Sa is a locally finite union
conic stratification {S, },ca subordinate to F if
S = suppF and
(each homology sheaf of) F is locally constant on every stratum S,
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Tameness

And now the @-module version. ..

[Def mM-2017, see arxivimatnat/200800063]. A module M over an arbitrary poset @
admits a constant subdivision if @ is partitioned into

© constant regions A, each with vector space M, = M, for all a ¢ A, having

. all comparable pairs a < b with and induce the
same composite M, = M, — M, — Mg.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all q.
M is subanalytic or PL if M is tamed by a subanalytic or PL stratification of V.

ko @ k[R?] admits constant regions {0} and R2 \. {0}
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Encoding persistence modules

[Def. A complex M* of modules over a poset Q has finite encoding 7 : Q — P if
¢ P is a finite poset,
¢ mwisa poset morphism, and
M= 75N = @qEQ r(q), the pullback of some complex N* of P-modules.
The encoding is subanalytlc or PL if its fibers are.

tame < finitely encodable
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A complex M* of modules over a poset @ has finite encoding 7 : Q — P if

P is a finite poset,
7 is a poset morphism, and
M= 7a*N = @qu Nr(q), the pullback of some complex N* of P-modules.

The encoding is subanalytic or PL if its fibers are.

N

An R?-module finitely encoded
tame < finitely encodable,

and same for subanalytic or PL
]
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ConStrUCtlblhty see [Kashiwara—Schapira 1990]

et Fix a real analytic manifold X and (derived) sheaf F of k-vector spaces.
subanalytic triangulation of subanalytic Y C X is
homeomorphism |A| =5 Y
image of open cell & is subanalytic in X for each simplex 0 € A
subanalytic triangulation of Y is subordinate to F if
Y D suppF
(every homology sheaf of) F is constant on image of every &
F is subanalytically constructible if
a subanalytic triangulation is subordinate to F and
every stalk F, has dimy(F,) < oo

conic stratification
constant subdivision
subanalytic triangulation

Q" is too coarse to allow triangulation.
Can constructibility be detected without refining Q" to Qerd?
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Fix a real analytic manifold X and (derived) sheaf F of k-vector spaces.
subanalytic triangulation of subanalytic Y C X is
homeomorphism |A| =5 Y
image of open cell & is subanalytic in X for each simplex o € A
subanalytic triangulation of Y is subordinate to F if
Y D suppF
(every homology sheaf of) F is constant on image of every &

F is subanalytically constructible if
a subanalytic triangulation is subordinate to F and
every stalk F, has dimy(F,) < oo

conic stratification Relations among them?
constant subdivision Homological consequences. . .
subanalytic triangulation ...or characterizations?

Q" is too coarse to allow triangulation.
Can constructibility be detected without refining Q<" to Q°? Hint: yes!

10
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Presentation and resolution

Default
© free presentation
© injective copresentation

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism

K[V ]®---@k[U] = Kk[U]® - @ Kk[U]
with cokernel = M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

kU] @ @ kU] - kD] & e k(D]
with image = M.

monomial matrix

D1 o D/
(2 5 A 2 V4
Pk1 Pke

K[U:] @ @ k[U)] K[Di]@® - - ®K[D]
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Presentation and resolution

Default
© free presentation
¢ injective copresentation

[Def v-2017, see arxivimatnat/200800063]. Fix a module M over an arbitrary poset Q.
© An upset presentation of M is a homomorphism

k[Ul/] D---D k[U(f/] — k[Ul] D---D k[Uk]

with cokernel = M. Dually for
A fringe presentation of M is a homomorphism

k[ @ k(U] = K[Di] & - Kk[D/]
with image = M.

monomial matrix
(2 5 A 2 V4

99;(1 Sﬁlké
k[Ui]& - @ k[U] k[Di]® --- @ k[D/]
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free presentation

Notation: k[S] = ks when S C
injective copresentation otation: k[S] = @,cs ks when 5 € Q

[M— 2017, see arxiv:mathAT/2008.00063]. Fix a module M over an arbitrary poset Q.
An upset presentation of M is a homomorphism
k[ ]@® - ok[U]—=Kk[U]®- - dk[U]

with cokernel = M. Dually for
A fringe presentation of M is a homomorphism

k[U)] @ @ k[U] = K[D:] & - - ®K[D/]
with image = M.

monomial matrix

{3911 QM'I

Lsﬁm ’QMJ
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Presentation and resolution

In R:

4
has cokernel O—Z
a
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In R:

has cokernel 0—2
a

In R2:

‘H‘ has cokernel \
T
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free presentation

Notation: k[S] = ks when S C
injective copresentation otation: k[S] = @,cs ks when 5 € Q

[M— 2017, see arxiv:mathAT/2008.00063]. Fix a module M over an arbitrary poset Q.
An upset presentation of M is a homomorphism
k[ ]@® - ok[U]—=Kk[U]®- - dk[U]

with cokernel = M. Dually for
A fringe presentation of M is a homomorphism

k[U)] @ @ k[U] = K[D:] & - - ®K[D/]
with image = M.

monomial matrix

{3911 QM'I

Lsﬁm ’QMJ
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free presentation

Notation: k[S] = ks when S C
injective copresentation otation: k[S] = @,cs ks when 5 € Q

[M— 2017, see arxiv:mathAT/2008.00063]. Fix a module M over an arbitrary poset Q.
An upset presentation of M is a homomorphism
kU] @k[U]=Kk[U]® - @Kk[U]

with cokernel = M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

with image = M.

monomial matrix

{ Y11 Pre '|
Low - e
k[Ui] @ --- @ k[U] k[Di] @ --- @ k[D/]




Persistence  Sheaves Intervals Stratification Tameness Constructibility

free presentation
injective copresentation

[M- 2017, see arXiv:math.AT/2008.00063]

k[U]@--- @k

A fringe presentation of M is a homomorphism

k[U/]@---@ k|
with image = M.

monomial matrix

| = k[Di] & --- @ K[D/]

Presentation

Syzygy thm

Notation: k[S] = &P

Resolving sheaves

ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism
TokU]e- - ok

with cokernel 2 M. Dually for downset copresentation.

Future directions
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In R:

has cokernel 0—2
a

In R2:

‘H‘ has cokernel \
T
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In R:

has cokernel 0—2
a

presentation: upset
In R?:

upset
presentation

has cokernel
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In R: 1

P—)

has cokerne| e—o has image . °

a
presentation: upset fringe

In R%:
upset
presentation

has cokernel
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In R: 1

4 .
has cokernel b — has image —
a

presentation: upset fringe

upset
presentation

has cokernel

fringe
presentation

has image
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free presentation
injective copresentation

[M- 2017, see arXiv:math.AT/2008.00063]

k[U]@--- @k

A fringe presentation of M is a homomorphism

k[U/]@---@ k|
with image = M.

monomial matrix

| = k[Di] & --- @ K[D/]

Presentation

Syzygy thm

Notation: k[S] = &P

Resolving sheaves

ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism
TokU]e- - ok

with cokernel 2 M. Dually for downset copresentation.

Future directions
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free presentation

L . Notation: k[S] = @
injective copresentation

ses ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism
k[U @ @k[U] = k[U]®-- - @k[U]

with cokernel 2 M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

k[ ak[U] =KD aKk[D/]
with image = M.

monomial matrix

Dy - Dy
(725 5 A 2 V4
Pk1 Pke
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free presentation

L . Notation: k[S] = @
injective copresentation

ses ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism
k[U @ @k[U] = k[U]®-- - @k[U]

with cokernel 2 M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

k[ ak[U] =KD aKk[D/]
with image = M.

monomial matrix

Dy - Dy
(725 5 A 2 V4
Pk1 Pke




Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

free presentation

L . Notation: k[S] = @
injective copresentation

ses ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism
k[U @ @k[U] = k[U]®-- - @k[U]

with cokernel 2 M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

k[Ui] @ @k[U] = Kk[Di]@-- & k[D]
with image = M.

monomial matrix

Dy --- Dy — death downsets
(725 5 A 2 V4
Pk1 Pke

£

2]
£

2]
-
5

£

v
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free presentation

L . Notation: k[S] = @
injective copresentation

ses ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism

k[ @ ok[U] = Kk[U]®- - k[U]

with cokernel 2 M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

with image = M.
monomial matrix
Dy --- Dy — death downsets
(725 5 A 2 V4
e + scalar entries
Pk1 Pke )
K[U)] @ @ K[U] » K[Di]& - ak[D]
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free presentation

L . Notation: k[S] = @
injective copresentation

ses ks when S C Q

Fix a module M over an arbitrary poset Q.
An of M is a homomorphism

k[ @ ok[U] = Kk[U]®- - k[U]

with cokernel 2 M. Dually for downset copresentation.
A fringe presentation of M is a homomorphism

with image = M.
monomial matrix
Dy --- Dy — death downsets
(725 5 A 2 V4
e + scalar entries
Pk1 Pke
k[Ui] & - @ k[U] k[Di] @ --- ®Kk[D/]
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Presentation and resolution [M= 2017, see arXiv:math.AT/2008.00063]

[Def A homomorphism ¢ : M — N of modules over any poset @ is tame if
M and N share a finite constant subdivision such that for each region I,
M; — My — N; — Nj does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M°.
An of M* is a homology isomorphism — M* where
F'= @ crik[U] is a direct sum of upset modules.
A downset resolution of M* is a homology isomorphism M* — E£° where
E'=@pcna k[D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.
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Presentation and reso

UtION [M- 2017, see arXiv:nath.AT/2008.00063]

[Def A homomorphism ¢ : M — N of modules over any poset @ is tame if
© M and N share a finite constant subdivision such that for each region I,
M; — My — N; — Nj does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.

M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.

An of M* is a homology isomorphism — M?* where
F'= @ ycrik[U] is a direct sum of upset modules.
A of M* is a homology isomorphism M*® — where

E' = @pcp k(D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.



Future directions
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Presentation and reso

ULtION [M- 2017, see arXiv:math.AT/2008.00063]

[Def A homomorphism ¢ : M — N of modules over any poset @ is tame if
© M and N share a finite constant subdivision such that for each region I,
° M; — M; — N; — N; does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.

M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M°.

An of M* is a homology isomorphism — M?* where
F'= @ ycrik[U] is a direct sum of upset modules.
A of M* is a homology isomorphism M*® — where

E' = @pcp k(D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.



Future directions
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Presentation and reso

UTION [M- 2017, see arXiv:math.AT/2008.00063]

[Def A homomorphism ¢ : M — N of modules over any poset @ is tame if
¢ M and N share a finite constant subdivision such that for each region I,
° My — M; — N; — N; does not depend on i € I
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.

M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.

An of M* is a homology isomorphism — M* where
F'= @ e k[U] is a direct sum of upset modules.
A of M* is a homology isomorphism M*® — where

E' = @pcp k(D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.
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[M- 2017, see arXiv:math.AT/2008.00063]

A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — N; does not depend on i € I,
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.
An of M* is a homology isomorphism — M* where
F'= @ ycv k[U] is a direct sum of upset modules.

A of M* is a homology isomorphism M*® — where
E'=@pca k[D] is a direct sum of downset modules.

Either of these indicator resolutions
is finite if it has finitely many indicator summands

is subanalytic or PL if the constant subdivision is subanalytic or PL.
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[M- 2017, see arXiv:math.AT/2008.00063]

A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — N; does not depend on i € I
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.
An of M* is a homology isomorphism — M* where
F'= @ ycv k[U] is a direct sum of upset modules.

A of M* is a homology isomorphism M*® — where
E'=@pca k[D] is a direct sum of downset modules.

Either of these indicator resolutions
is finite if it has finitely many indicator summands

is subanalytic or PL if the constant subdivision is subanalytic or PL.
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Persistence  Sheaves Intervals  Stratification ~ Tameness

[M- 2017, see arXiv:math.AT/2008.00063]

A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — N; does not depend on i € I
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.

M? is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.

An of M* is a homology isomorphism — M* where
F'= @ crik[U] is a direct sum of upset modules.
A of M* is a homology isomorphism M* — where

E' = @pcp k(D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.
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A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — Nj does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.
An of M* is a homology isomorphism — M* where
F'= @ crik[U] is a direct sum of upset modules.

A downset resolution of M* is a homology isomorphism M* — E° where
E'=@pn k[D] is a direct sum of downset modules.

indicator resolutions
finite

subanalytic or PL
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A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — Nj does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.
An of M* is a homology isomorphism — M* where
F'= @ crik[U] is a direct sum of upset modules.
/—\_downset resolution of M* is a homology isomorphism M* — E£° where
E' =@, ak[D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands

subanalytic or PL
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A homomorphism ¢ : M — N of modules over any poset Q is tame if
M and N share a finite constant subdivision such that for each region I,
M; — M; — N; — Nj does not depend on i € I;
the subdivision is subordinate to ¢, which is subanalytic or PL if the subdivision is.

Fix a complex M* of modules over a poset Q.
M- is tame if its morphisms are tame.
A constant subdivision is subordinate to M* if it is subordinate to the
morphisms in M*.
An of M* is a homology isomorphism — M* where
F'= @ crik[U] is a direct sum of upset modules.
/—\_downset resolution of M* is a homology isomorphism M* — E£° where
E' =@, ak[D] is a direct sum of downset modules.
Either of these indicator resolutions
is finite if it has finitely many indicator summands
is subanalytic or PL if the constant subdivision is subanalytic or PL.
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Syzygy theorem [M- 2017, see arXiv:math.AT/2008.00063]

Syzyey thm. A module M or bounded complex M* of modules over a poset @
is tame if and only if it admits one, and hence all, of the following: a finite
upset resolution
downset resolution
fringe presentation
constant subdivision subordinate to any given one of items 1-3
encoding subordinate to any given one of items 1-4.
Remains true with
“subanalytic” in place of “tame” and “finite”, if M* has compact support
“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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Syzygy theorem [M- 2017, see arXiv:math.AT/2008.00063]

Syzyey thm. A module M or bounded complex M* of modules over a poset @
is tame if and only if it admits one, and hence all, of the following: a finite
1. upset resolution
2. downset resolution
fringe presentation
constant subdivision subordinate to any given one of items 1-3
encoding subordinate to any given one of items 1-4.
Remains true with
“subanalytic” in place of “tame” and “finite”, if M* has compact support
“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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Syzygy theorem [M- 2017, see arXiv:math.AT/2008.00063]

Syzyey thm. A module M or bounded complex M* of modules over a poset @
is tame if and only if it admits one, and hence all, of the following: a finite
1. upset resolution
2. downset resolution
3. fringe presentation
constant subdivision subordinate to any given one of items 1-3
encoding subordinate to any given one of items 1-4.
Remains true with
“subanalytic” in place of “tame” and "finite”, if M* has compact support
“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N°* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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Syzygy theorem [M- 2017, see arXiv:math.AT/2008.00063]

Syzyey thm. A module M or bounded complex M* of modules over a poset @
is tame if and only if it admits one, and hence all, of the following: a finite
1. upset resolution
2. downset resolution
3. fringe presentation
4. constant subdivision subordinate to any given one of items 1-3
encoding subordinate to any given one of items 1-4.
Remains true with
“subanalytic” in place of “tame” and "finite”, if M* has compact support
“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N°* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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[M- 2017, see arXiv:math.AT/2008.00063]

A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and "finite”, if M* has compact support

“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N°* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
& finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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[M- 2017, see arXiv:math.AT/2008.00063]

A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and “finite”, if M* has compact support

“PL" in place of “tame” and “finite", if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N°* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
& finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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[M- 2017, see arXiv:math.AT/2008.00063]

A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and “finite”, if M* has compact support

“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N°* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
& finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and “finite”, if M* has compact support

“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.
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A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and “finite”, if M* has compact support

“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
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A module M or bounded complex M* of modules over a poset @

is tame if and only if it admits one, and hence all, of the following: a finite

upset resolution

downset resolution

fringe presentation

constant subdivision subordinate to any given one of items 1-3

encoding subordinate to any given one of items 1-4.
Remains true with

“subanalytic” in place of “tame” and “finite”, if M* has compact support

“PL" in place of “tame” and “finite”, if V, is polyhdral.
Any tame or subanalytic or PL morphism M* — N* lifts to a similarly well
behaved morphism of resolutions as in parts 1 and 2.

tame < stratified by intervals
< finitely encodable
< has finite resolution by intervals
< has finite data structure by monomial matrices
(and that's how the proof goes)
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Resolving sheaves

Def (indicator sheaves). Fix a complex F* of sheaves on V. A subanalytic
1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo'
on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in V/°r
of F* is a homology isomorphism — F* with
each a direct sum of subanalytic upset sheaves
of F* is a homology isomorphism F* — with
each a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.
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Resolving sheaves

Def (indicator sheaves). Fix a complex F* of sheaves on V. A subanalytic
1. upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo'
2. downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in /o
of F* is a homology isomorphism — JF* with
each a direct sum of subanalytic upset sheaves
of F* is a homology isomorphism F* — with
each a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.
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indicator sheaves). Fix a complex F* of sheaves on V°“. A subanalytic
upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo'
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in /o
upset resolution of F* is a homology isomorphism //* — F* with
each //" a direct sum of subanalytic upset sheaves
of F* is a homology isomorphism F* — with
each a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.
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indicator sheaves). Fix a complex F* of sheaves on V°“. A subanalytic
upset sheaf on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo'
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in /o
upset resolution of F* is a homology isomorphism //* — F* with
each //" a direct sum of subanalytic upset sheaves
downset resolution of F* is a homology isomorphism F* — D* with
each D' a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V, is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.



Persistence  Sheaves Intervals Stratification Tameness Constructibility Presentation Syzygy thm Resolving sheaves Future directions

indicator sheaves). Fix a complex F* of sheaves on V°“. A subanalytic
on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo'
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in /o

of F* is a homology isomorphism //* — F* with
each a direct sum of subanalytic upset sheaves
downset resolution of F* is a homology isomorphism F* — D* with
each D' a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V, is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.
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indicator sheaves). Fix a complex F* of sheaves on V°“. A subanalytic
on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in V/°rd
of F* is a homology isomorphism — F* with
each a direct sum of subanalytic upset sheaves
downset resolution of F* is a homology isomorphism F* — D* with
each D' a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL
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indicator sheaves). Fix a complex F* of sheaves on V°9. A subanalytic
on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in V/°rd
of F* is a homology isomorphism — F* with
each a direct sum of subanalytic upset sheaves
downset resolution of F* is a homology isomorphism F* — D* with
each D' a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals.



Persistence  Sheaves Intervals Stratification Tameness Constructibilit Presentation Syzygy thm Resolving sheaves Future directions

indicator sheaves). Fix a complex F* of sheaves on V°9. A subanalytic
on V is the extension by zero of the rank 1 constant sheaf on an
open subanalytic upset in Vo
downset sheaf on V is the pushforward of the rank 1 locally constant sheaf
on a closed subanalytic downset in V/°rd
of F* is a homology isomorphism — F* with
each a direct sum of subanalytic upset sheaves
downset resolution of F* is a homology isomorphism F* — D* with
each D' a direct sum of subanalytic downset sheaves
Either type of indicator resolution is
finite if finitely many summands across all homological degrees
PL if V. is polyhedral and the upsets or downsets are PL

Fix a real vector space V partially ordered with
V. closed, subanalytic, and of full dimension. If F* is
pulled back from the conical topology V<" and
subanalytically constructible,
then F* is tamely resolved by conical intervals. Precisely:
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Resolving sheaves

COF (M= 2020, arkivematnat/200200091] . The following are equivalent for any

bounded, compactly supported derived sheaf F* on the conical topology V<".
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution

Implications 2 =1 and 3 =1 do not require compact support for F*°.

V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V“°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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Resolving sheaves

COF (M= 2020, arkivematnat/200200091] . The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<".
1. F* is subanalytically constructible after pulling back to V/°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =1 do not require compact support for F*°.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.

F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.

The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V“°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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Resolving sheaves

COF M- 2020, arxivematnat/2005.00091]. The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<".
1. F* is subanalytically constructible after pulling back to V°rd
2. F* has a finite subanalytic upset resolution
3. F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =1 do not require compact support for F°.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.

F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.

The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V“°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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Resolving sheaves

COF M- 2020, arxivematnat/2005.00091]. The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
1. F* is subanalytically constructible after pulling back to V°rd
2. F* has a finite subanalytic upset resolution
3. F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =1 do not require compact support for F°.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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[M— 2020, arxiv:mathaT/2008.00091]. T he following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =-1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

F* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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[M— 2020, arxiv:mathaT/2008.00091]. T he following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =-1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

F* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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[M— 2020, arxiv:mathaT/2008.00091]. T he following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =-1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

F* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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[M— 2020, arxiv:mathaT/2008.00091]. T he following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =-1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

[Kashiwara—Schapira 2017, Conj. 3.17]
JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V. the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of DP(constructible) ™ constructible D?
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The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
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The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V. the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.
The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra
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The following are equivalent for any
bounded, compactly supported derived sheaf F* on the conical topology V<.
F* is subanalytically constructible after pulling back to V°r
F* has a finite subanalytic upset resolution
F* has a finite subanalytic downset resolution
Implications 2 =1 and 3 =-1 do not require compact support for F*.
V. polyhedral and F* PL = claims all hold with “PL" in place of “subanalytic”.

} indicator resolutions

Compact support + constructible = finite constant subdivision = tame.

JF* constructible = supp F has a subordinate conic stratification.

For polyhedral V, the following are equivalent.
F* is a PL object in the bounded derived category of compactly supported
constructible conic sheaves.

The isomorphism class of F* is represented by a complex that is a finite
direct sum of constant sheaves on bounded V<°"-locally closed polyhedra

strong PL version of D?(constructible) ~ constructible D?
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Looking forward

Implementation
© single preprocessing step for many multiPH computations; e.g., fly wings
¢ Lebesgue distance computations: no sampling for Riemann integration

E.g., what could “top 100 bar lengths” mean in multipersistence?
E.g., boundaries of up- or downsets ~~ “highly persistent” elements

integer parameters: match pairs of generators

real parameters: sums — oo with finer discrete approximation

instead: use LP distances between boundaries of up- and downsets. ..

... from corresponding associated primes (same history or mortality type)

resolve using upsets and/or downsets
Conj: R"-modules have upset resolutions of length at most n — 1.
Compare : k[R] has global dimension n+ 1.
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single preprocessing step for many multiPH computations; e.g., fly wings
Lebesgue distance computations: no sampling for Riemann integration

E.g., what could “top 100 bar lengths” mean in multipersistence?
E.g., boundaries of up- or downsets ~~ “highly persistent” elements

integer parameters: match pairs of generators

real parameters: sums — oo with finer discrete approximation

instead: use LP distances between boundaries of up- and downsets. ..

... from corresponding associated primes (same history or mortality type)

resolve using upsets and/or downsets
Conj: R"™-modules have upset resolutions of length at most n — 1.
Compare . k[R"] has global dimension n+ 1.
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single preprocessing step for many multiPH computations; e.g., fly wings
Lebesgue distance computations: no sampling for Riemann integration

E.g., what could “top 100 bar lengths” mean in multipersistence?
E.g., boundaries of up- or downsets ~~» “highly persistent” elements

integer parameters: match pairs of generators

real parameters: sums — oo with finer discrete approximation

instead: use LP distances between boundaries of up- and downsets. . .

... from corresponding associated primes (same history or mortality type)
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single preprocessing step for many multiPH computations; e.g., fly wings
Lebesgue distance computations: no sampling for Riemann integration

E.g., what could “top 100 bar lengths” mean in multipersistence?
E.g., boundaries of up- or downsets ~~» “highly persistent” elements

integer parameters: match pairs of generators

real parameters: sums — oo with finer discrete approximation

instead: use LP distances between boundaries of up- and downsets. . .

... from corresponding associated primes (same history or mortality type)

resolve using upsets and/or downsets
Conj: R™-modules have upset resolutions of length at most n — 1.
Compare : k[R"] has global dimension n+ 1.
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