GEOMETRY AND MEASURE ON $CAT(\kappa)$ SPACES

EZRA MILLER

JOINT WITH JONATHAN MATTINGLY AND DO TRAN

INTERACTIONS OF STATISTICS AND GEOMETRY (ISAG) II

NATIONAL UNIVERSITY OF SINGAPORE 14–16 OCTOBER 2024

1. $CAT(\kappa)$ SPACES

For more on $CAT(\kappa)$ spaces, consult a metric geometry text, such as [BBI01].

Definition 1.1 (Injectivity radius). For any $\kappa \in \mathbb{R}$, a model space of curvature κ is a Riemannian manifold M_{κ} with geodesic distance \mathbf{d}_{κ} and constant curvature κ . The injectivity radius of M_{κ} is $R_{\kappa} = \pi/\sqrt{\kappa}$ when $\kappa > 0$ and $R_{\kappa} = \infty$ if $\kappa < 0$.

Definition 1.2 (Comparison triangle). Given a triangle $\triangle xyz$ (a union of geodesics x to y to z to x) in a metric space $(\mathcal{M}, \mathbf{d})$, a *comparison triangle* of $\triangle xyz$ in a model space $(\mathcal{M}_{\kappa}, \mathbf{d}_{\kappa})$ is a triangle $\triangle x'y'z'$ in \mathcal{M}_{κ} such that $\{x', y', z'\}$ is an isometric copy of $\{x, y, z\}$.

Definition 1.3 (CAT(κ) metric space). A metric space (\mathcal{M}, \mathbf{d}) is CAT(κ) if

- 1. any two points $x, y \in \mathcal{M}$ such that $\mathbf{d}(x, y) < R_{\kappa}$ can be joined by a unique geodesic of length $\mathbf{d}(x, y)$; and
- 2. for any triangle $\triangle xyz$ in \mathcal{M} with $\mathbf{d}(x, y) + \mathbf{d}(y, z) + \mathbf{d}(z, x) < 2R_{\kappa}$, if $\triangle x'y'z'$ is a comparison triangle in M_{κ} of $\triangle xyz$, then the constant-speed geodesics γ : $[0,1] \rightarrow \mathcal{M}$ from y to z and $\gamma': [0,1] \rightarrow M_{\kappa}$ from y' to z' satisfy, for all $t \in [0,1]$,

$$\mathbf{d}(x,\gamma(t)) \leq \mathbf{d}_{\kappa}(x',\gamma'(t)).$$

Example 1.4.

Remark 1.5. The definition of $CAT(\kappa)$ space is never used directly in these lectures. The developments instead rest on certain consequences.

Date: 14-16 October 2024.

EZRA MILLER

Definition 1.6. The angle between geodesics $\gamma_i : [0, \varepsilon_i) \to \mathcal{M}$ for i = 1, 2 emanating from $\bar{\mu}$ in a CAT(κ) space (\mathcal{M}, \mathbf{d}) and parametrized by arclength is characterized by

$$\cos\left(\angle(\gamma_1,\gamma_2)\right) = \lim_{t,s\to 0} \frac{s^2 + t^2 - \mathbf{d}^2(\gamma_1(s),\gamma_2(t))}{2st}$$

The geodesics γ_i are *equivalent* if the angle between them is 0. The set $S_{\bar{\mu}}\mathcal{M}$ of equivalence classes is the *space of directions* at $\bar{\mu}$.

Remark 1.7. Definition 1.6 introduces angle by taking the law of cosines by flat, namely $s^2 + t^2 = d^2 + 2st \cos(\angle)$.

Lemma 1.8. The notion of angle makes the space $S_{\bar{\mu}}\mathcal{M}$ of directions into a length space whose angular metric \mathbf{d}_s satisfies

$$\mathbf{d}_s(V,W) = \angle(V,W)$$
 whenever $V, W \in S_{\overline{\mu}}\mathcal{M}$ with $\angle(V,W) < \pi$

Proof. This is [MMT23a, Proposition 1.7], which in turn is [BBI01, Lemma 9.1.39]. \Box

Definition 1.9. The *tangent cone* at a point $\bar{\mu}$ in a CAT(κ) space \mathcal{M} is

 $T_{\bar{\mu}}\mathcal{M} = S_{\bar{\mu}}\mathcal{M} \times [0,\infty)/(S_{\bar{\mu}}\mathcal{M} \times \{0\}),$

whose *apex* is often also called $\bar{\mu}$ (although it can be called \mathcal{O} if necessary for clarity). The *length* of a vector $W = W_{\bar{\mu}} \times t$ with $W_{\bar{\mu}} \in S_{\bar{\mu}}\mathcal{M}$ is ||W|| = t in $T_{\bar{\mu}}\mathcal{M}$. The *unit tangent sphere* $S_{\bar{\mu}}\mathcal{M}$ of length 1 vectors in $T_{\bar{\mu}}\mathcal{M}$ is identified with the space of directions.

Example 1.10.

1. three quadrants:

2. kale: see slides for many pictures

3. open book: see slides for many pictures

Definition 1.11. Given tangent vectors $V, W \in T_{\bar{\mu}}\mathcal{M}$, their angular pairing is

$$\langle V, W \rangle_{\bar{\mu}} = \|V\| \|W\| \cos(\angle(V, W))$$

The subscript $\bar{\mu}$ is suppressed when the point $\bar{\mu}$ is clear from context.

Lemma 1.12. For a fixed basepoint in a CAT(κ) space, the angular pairing function $\langle \cdot, \cdot \rangle_{\bar{\mu}} : T_{\bar{\mu}}\mathcal{M} \times T_{\bar{\mu}}\mathcal{M} \to \mathbb{R}$ is continuous.

Proof. This is [MMT23a, Lemma 1.21], where it is derived from Lemma 1.8.

The angular metric \mathbf{d}_s induces a metric on the tangent cone $T_{\bar{\mu}}\mathcal{M}$ which makes $T_{\bar{\mu}}\mathcal{M}$ into a length space.

Definition 1.13. The *conical metric* on the tangent cone $T_{\bar{\mu}}\mathcal{M}$ of a CAT(κ) space is

$$\mathbf{d}_{\bar{\mu}}(V,W) = \sqrt{\|V\|^2 + \|W\|^2 - 2\langle V,W\rangle} \quad \text{for } V,W \in T_{\bar{\mu}}\mathcal{M}.$$

Lemma 1.14 ([BBI01, Lemma 3.6.15]). Any geodesic triangle in $T_{\bar{\mu}}\mathcal{M}$ with one vertex at the apex is isometric to a triangle in \mathbb{R}^2 .

Definition 1.15. Fix a point $\bar{\mu}$ in a CAT(κ) space (\mathcal{M}, \mathbf{d}). For each point v in the set $\mathcal{M}' \subseteq \mathcal{M}$ of points with a unique shortest path to $\bar{\mu}$, write γ_v for the unit-speed shortest path from $\bar{\mu}$ to v and $V = \gamma'_v(0)$ for its tangent vector at $\bar{\mu}$. Define the log map by

$$\log_{\bar{\mu}} : \mathcal{M}' \to T_{\bar{\mu}}\mathcal{M}$$
$$v \mapsto \mathbf{d}(\bar{\mu}, v)V.$$

 \mathcal{M} is *conical* with *apex* $\bar{\mu}$ if $\mathcal{M}' = \mathcal{M}$ and $\log_{\bar{\mu}} : \mathcal{M} \to T_{\bar{\mu}}\mathcal{M}$ is an isometry.

2. Measures on $CAT(\kappa)$ spaces

Definition 2.1 (Localized measure). A measure μ on CAT(κ) \mathcal{M} is *localized* if

- μ has unique Fréchet mean $\bar{\mu}$,
- μ has locally convex Fréchet function in a neighborhood of $\bar{\mu}$, and
- the logarithm map $\log_{\bar{\mu}} : \mathcal{M} \to T_{\bar{\mu}}\mathcal{M}$ is μ -almost surely uniquely defined.

Denote the pushforward of a localized measure μ to $T_{\bar{\mu}}\mathcal{M}$ by

$$\widehat{\mu} = (\log_{\overline{\mu}})_{\sharp} \mu.$$

Example 2.2. Intuition behind Definition 2.1 is that μ should be "Fréchet-localized", in the sense that "retracting" to the tangent cone at $\bar{\mu}$ captures all of the mass. For instance, if μ is a measure on a CAT(κ) space \mathcal{M} that is supported in a metric ball $B(\bar{\mu}, R_{\mu})$ of radius $R_{\mu} < \frac{1}{2}R_{\kappa} = \pi/(2\sqrt{\kappa})$ —this can be any measure when $\kappa = 0$ —then μ is localized. Indeed, thanks to results by Kuwae [Kuw14], the Fréchet mean $\bar{\mu}$ of such a measure is unique and the Fréchet function of μ is k-uniform convex in a small ball around $\bar{\mu}$. In addition, such a measure is retractable because the cut locus (the closure of the set of points with more than shortest path to $\bar{\mu}$) has measure 0.

Definition 2.3. Fix a localized measure μ on a CAT(κ) space \mathcal{M} . The Fréchet function F has directional derivative at $\overline{\mu}$ given by

$$\nabla_{\bar{\mu}}F: T_{\bar{\mu}}\mathcal{M} \to \mathbb{R}$$
$$V \mapsto \frac{d}{dt}F(\exp_{\bar{\mu}}tV)|_{t=0}$$

in which the exponential is a geodesic with constant speed and tangent V at $\bar{\mu}$.

EZRA MILLER

The next three concepts are [MMT23b, Definition 2.12, 2.17, and 2.18], where explanations of their background, geometry, and motivation can be found.

Definition 2.4 (Escape cone). The *escape cone* of a localized measure μ on a CAT(κ) space \mathcal{M} is the set E_{μ} of tangent vectors along which the directional derivative of the Fréchet function vanishes at $\bar{\mu}$:

$$E_{\mu} = \{ X \in T_{\bar{\mu}} \mathcal{M} \mid \nabla_{\bar{\mu}} F(X) = 0 \}.$$

Proposition 2.5. If μ is a measure on a CAT(κ) space \mathcal{M} , then the escape cone E_{μ} is a closed, path-connected, geodesically convex subcone of $(T_{\bar{\mu}}\mathcal{M}, \mathbf{d}_{\bar{\mu}})$.

Definition 2.6 (Hull). If \mathcal{X} is a conical CAT(0) space, then the *hull* of any subset $\mathcal{S} \subseteq \mathcal{X}$ is the smallest geodesically convex cone hull $\mathcal{S} \subseteq \mathcal{X}$ containing \mathcal{S} . For a localized measure μ on a CAT(κ) space \mathcal{M} , set

$$\operatorname{hull} \mu = \operatorname{hull} \operatorname{supp}(\widehat{\mu}),$$

the hull of the support in $\mathcal{X} = T_{\bar{\mu}}\mathcal{M}$ of the pushforward measure $\hat{\mu} = (\log_{\bar{\mu}})_{\sharp}\mu$.

Definition 2.7 (Fluctuating cone). The *fluctuating cone* of a localized measure μ on a CAT(κ) space \mathcal{M} is the intersection

$$C_{\mu} = E_{\mu} \cap \operatorname{hull} \mu$$
$$= \{ V \in \operatorname{hull} \mu \mid \nabla_{\bar{\mu}} F(V) = 0 \}$$

of the escape cone and hull of μ . Let \overline{C}_{μ} be the closure in $T_{\overline{\mu}}\mathcal{M}$ of the escape cone C_{μ} .

Remark 2.8. The purpose of the fluctuating cone C_{μ} is to encapsulate those directions in which the Fréchet mean $\bar{\mu}$ can be induced to wiggle by adding to μ a point mass in \mathcal{M} along that direction (this is made precise in the main theorem of [MMT23d, Section 4]); hence the terminology. However, if the measure μ is supported on a "thin" subset of \mathcal{M} , then it is possible to induce fluctuations in directions that have nothing whatsoever to do with the geometry in \mathcal{M} of the (support of) μ by adding a point mass outside supp μ ; see the next Example. That is why the fluctuations of $\bar{\mu}$ that can be realized—at least in principle—by means of samples from μ itself are relevant to the asymptotics in a central limit theorem.

Example 2.9. For a concrete example, consider a measure μ supported on the spine R of an open book \mathcal{M} (see [HHL⁺13]). The spine R is simply a vector space, where the usual central limit theorem yields convergence to a Gaussian supported on R. It is true that the Fréchet mean $\bar{\mu}$ can be induced to fluctuate off of R onto any desired page of \mathcal{M} by adding a point mass on the relevant page, but that observation is irrelevant to the CLT, which only cares about fluctuations of $\bar{\mu}$ within R.

4

References

- [BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov, *A course in metric geometry*, volume 33, American Mathematical Soc., 2001.
- [HHL⁺13] Thomas Hotz, Stephan Huckemann, Huiling Le, J.S. Marron, Jonathan C. Mattingly, Ezra Miller, James Nolen, Megan Owen, Vic Patrangenaru, and Sean Skwerer, *Sticky central limit theorems on open books*, Annals of Applied Probability 23 (2013), no. 6, 2238–2258.
 [Kuw14] Kazuhiro Kuwae, *Jensen's inequality on convex spaces*, Calculus of Variations and Partial
- Differential Equations **49** (2014), no. 3, 1359–1378.
- [MMT23a] Jonathan Mattingly, Ezra Miller, and Do Tran, Shadow geometry at singular points of $CAT(\kappa)$ spaces, preprint, 2023. arXiv:math.MG/2311.09451
- [MMT23b] Jonathan Mattingly, Ezra Miller, and Do Tran, Geometry of measures on smoothly stratified metric spaces, preprint, 2023. arXiv:math.MG/2311.09453
- [MMT23c] Jonathan Mattingly, Ezra Miller, and Do Tran, A central limit theorem for random tangent fields on stratified spaces, submitted, 2023. arXiv:math.MG/2311.09454
- [MMT23d] Jonathan Mattingly, Ezra Miller, and Do Tran, Central limit theorems for Fréchet means on stratified spaces, preprint, 2023. arXiv:math.MG/2311.09455

Departments of Mathematics and Statistical Sciences, Duke University, Durham, NC 27708 URL: https://scholars.duke.edu/person/ezra.miller