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Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.

• Gaussian if
(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields

• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let

• G = Gaussian random tangent field with E
[

G (U)G (V )
]

= Σ(U,V ;µ)

• x1, x2, . . . i.i.d. M-valued variables ∼ µ

• gn(V ) = 1
n

∑n

k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G = 〈 ? ,V 〉

1



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Tangential collapse

Def. Localized µ on smoothly stratified M has fluctuating cone

Cµ =
{

X ∈ Tµ̄M | ∇µ̄F (X ) = 0 and pushforward of µ
X ∈ convex cone generated by supp(µ ◦ log−1

µ̄ )
}

Lemma. Adding mass to µ can only cause µ̄ to move into Cµ

Thm [Mattingly, M–, Tran 2023]. M smoothly stratified ⇒ some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map L : Tµ̄M → R

m that is
• injective on Cµ and
• preserves angles with vectors in Cµ

Examples

• kale:
L−→

• nonconvex quadrants:
L−→

2
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Stratified Gaussians

Smooth M : Tµ̄M ∼= R
m already

Singular M : use tangential collapse Tµ̄M
L−→ R

m

Lemma. The map L has a measurable section over Rℓ = conv(imageL),
∆ : Rℓ → discrete measures on R+ supp(µ ◦ log−1

µ̄ ) ⊆ Tµ̄M

with L ◦∆ = idRℓ , where L(λ1δY 1 + · · ·+ λjδY j ) = λ1L(Y 1) + · · ·+ λjL(Y j).

Example.
1/2

1/2

L−→
∆←−

Def [Mattingly, M–, Tran 2023]. A Gaussian tangent mass Γµ is any measurable section
of any R

ℓ-valued random variable N ∼ N(0,Σ):

Γµ = ∆(N ).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

Thm [Mattingly, M–, Tran 2023]. G (X ) = 〈Γµ,X 〉µ̄ for all X ∈ Cµ.

3
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Stratified Gaussians
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m already

Singular M : use tangential collapse Tµ̄M
L−→ R

m

Lemma. The map L has a measurable section over Rℓ = conv(imageL),
∆ : Rℓ → discrete measures on R+ supp(µ ◦ log−1

µ̄ ) ⊆ Tµ̄M

with L ◦∆ = idRℓ , where L(λ1δY 1 + · · ·+ λjδY j ) = λ1L(Y 1) + · · ·+ λjL(Y j).

Example.
1/2

1/2

L−→
∆←−

Def [Mattingly, M–, Tran 2023]. A Gaussian tangent mass Γµ is any measurable section
of any R

ℓ-valued random variable N ∼ N(0,Σ):

Γµ = ∆(N ).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

Thm [Mattingly, M–, Tran 2023]. G (X ) = 〈Γµ,X 〉µ̄ for all X ∈ Cµ.

3



Tangent fields Collapse Gaussians Escape vectors Distortion CLT

Escape vectors

Def. Fix ∆ = λ1δY 1 + · · ·+ λjδY j , a discrete measure on Tµ̄M. If
δ = λ1δy1 + · · ·+ λjδy j with Y i = logµ̄y

i then ∆ has escape vector

E (∆) = lim
t→0

1

t
logµ̄(µ+ tδ)

Note. Γµ is a random discrete measure of the form ∆.

Example [Huckemann, Mattingly, M–, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at
apex is α > 2π (that is, circumference at radius 1 is α)

• E is convex projection to the fluctuating cone
Cµ = {V ∈ hullµ | ∇µ̄F (V ) = 0}
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Distortion

Perturbative CLT [Mattingly, M–, Tran 2023]. limn→∞

√
n logµ̄ µ̄n

d→ E (Γµ)

Def. The distortion map is

H = E ◦∆ : Rℓ → Tµ̄M

Prop. Distortion H does not depend on choice of section ∆

Geometric CLT [Mattingly, M–, Tran 2023]. limn→∞

√
n logµ̄ µ̄n

d→ H♯N(0,Σ)

Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

H = (∇∇µ̄ Fµ)
−1

is the inverse Hessian of the Fréchet function

Note. Hessian not defined in singular settings, but inverse Hessian is
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M–, Tran 2023]. limn→∞

√
n logµ̄ µ̄n

d→ E (Γµ)

Variational CLT in a space of measures

CLT 3 [Mattingly, M–, Tran 2023]. lim
n→∞

√
n logµ̄ µ̄n = ∇µb(Γµ),

• the directional derivative, in the space P2M of L2 measures on M,
• of the barycenter map b : P2M → M sending µ 7→ µ̄

• at µ
• along any Gaussian tangent mass Γµ

Variational CLT in a space of functions

CLT 4 [Mattingly, M–, Tran 2023]. lim
n→∞

√
n logµ̄ µ̄n

d
= ∇Fµ◦expµ̄B(G ),

• the directional derivative, in the space of continuous maps C(Tµ̄M,R),
• of the minimizer map B : C(Tµ̄M,R)→ Tµ̄M that sends f 7→ argmin

X∈Cµ

f (X )
• at Fµ ◦ expµ̄
• along the Gaussian tangent field G = G ( · ) = 〈Γµ, · 〉µ̄ induced by µ
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Next lecture: proof via continuous mapping thm
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