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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so (V) :Q — R foreach V € S, M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S; M
® covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law g yields
e random tangent field g(V) = g(x,V) = (V,log x)
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---)= [, -du
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xq,X,...1.i.d. M-valued variables ~
° g, (V)=1%1_1g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, -Eg) % G
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Random tangent fields

Def. A random tangent field on T;M is a stochastic process f : Q2 x 5, M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V4),...,f(V,)) is multivariate Gaussian V¥ V4,...,V, € S;M
® covariance L(U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law g yields
e random tangent field g(V) = g(x,V) = (V,log x)
* covariance Y(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---)= [, -du
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
° G = Gaussian random tangent field with E[G(U)G(V)] = Z(U,V; u)
® Xx1,Xp,...1.i.d. M-valued variables ~ p
° g, (V)=13"7_,g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, -Eg) % G
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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
® covariance L(U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
e random tangent field g(V) = g(x,V) = (V,log x)
* covariance Y(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(--+) :f/\/r'”d:u
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
° G = Gaussian random tangent field with E[G(U)G(V)] = Z(U,V; u)
® Xx1,Xp,...1.i.d. M-valued variables ~ p
° g, (V)=13"7_,g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g,—Eg) > G
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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
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* covariance Y(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log,x);
covariance ¥(U,V; p) = E[(g(x, U) — Eg(U)) (g(x,V) — Eg(V))], where
E(-)= [, dpu
Fix a localized measure ;1 on M. Let
G = Gaussian random tangent field with E[G(U)G(V)] = £(U,V; )
X1, X2, ... i.i.d. M-valued variables ~ u
g,(V) =137, gi(V), the average of the fields g;(V) = g(x;,V).

Then Vg, —Eg) 2 6
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields

® random tangent field g(V) = g(x,V) = (V,log,x);

® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp

Fix a localized measure p on M. Let

G = Gaussian random tangent field with E[G(U)G(V)]| = (U,V; )
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M-, Tran & Lammers, Huckemann]. Fix a localized measure y on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
X1, X2, ... 1.i.d. M-valued variables ~ p

(V) =130 1 &(V), the average of the fields g;(V) = g(x;,V).
Then Vn(g, —E )2>
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M-, Tran & Lammers, Huckemann]. Fix a localized measure y on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® x1,X2,...1.i.d. M-valued variables ~ p
(V) =130 1 &(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, —Eg) >
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M—, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M—, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xq1,X,...1.i.d. M-valued variables ~

° 2,(V)=1%_1g(V), the average of the fields g;(V) = g(x;,V).
Then Vg, -Eg) % G =(7,V)
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

C.={X € T:M|VaF(X)=0and pushforward of 1
X € convex cone generated by supp(u o IogEl)}

Lemma. Adding mass to x can only cause /i to move into C,

smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £: T, M — R™ that is
injective on and
preserves angles with vectors in

eI ES

® kale: 4

® nonconvex quadrants:
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone
C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog;l)}
Lemma. Adding mass to x can only cause /i to move into C,

Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and

® preserves angles with vectors in C,

eI ES

® kale: 4

® nonconvex quadrants:
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog;l)}

Lemma. Adding mass to x can only cause /i to move into C,
Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and

® preserves angles with vectors in C,
e open book:

eI ES

® kale: 4

® nonconvex quadrants:
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Stratified Gaussians

Smooth M: T, M = R™ already
M use tangential collapse T, M Ly Rm
The map £ has a measurable section over R = conv(image L),
A : R — discrete measures on R, supp(p o log ') € T, M
with £ o A = idge, where L(A18y1 + -+ + Njdys) = ML(YD) + -+ + NL( V).

L

=
Example. A
(_

A Gaussian tangent mass [, is any measurable section
of any R*-valued random variable N ~ N(0, X):

M, =AW).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

G(X) = (., X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
The map £ has a measurable section over R = conv(image L),

A : R — discrete measures on R, supp(p o log ') € T, M
with £o A = idge, where L(A1dy1 + -+ 4+ Ndys) = ML(Y) + - + N L(YY).

L

=
Example. A
(_

A Gaussian tangent mass [, is any measurable section
of any R*-valued random variable N ~ N(0, X):

M, =AW).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

G(X) = (., X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ 0 A = idge, where £(A1dy1 + -+ \idys) = ML(YE) + -+ NL(YI).

c

—
Example. A
<—

A is any measurable section
of any Rfvalued random variable N' ~ N(0, ¥):

= A(N).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ 0 A = idge, where £(A1dy1 + -+ \idys) = ML(YE) + -+ NL(YI).

c

—
Example. A
<—

A is any measurable section
of any Rfvalued random variable N' ~ N(0, ¥):

= A(N).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

M= AWN).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

r,=AW).
Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

M, = AWN).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

Thm mattingly, M-, Tran 2023]. G(X) = ([, X); for all X € C,.
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

N I ——
“(A) = lim ~log; (i + )

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

(D) = p+ 6

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

(D) = TERT)

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

AB)= log, (u )

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

1 R
SB)= g (n 1)

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

N I ——
“(A) = lim ~log; (i + )

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a discrete measure on T;M. If
§ = Miby1 4 -+ Xjd,; with Y7 =log, y’ then A has escape vector

1 I
2(A) = lim =log .
£(A) tl|_n>10 tlogﬂ(pH- td)
Note. I, is a random discrete measure of the form A.

Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
§ = M0y + -+ Ny with Y/ = Iogﬂy" then A has escape vector

@ N H 1 T +5
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015]

® [solated hyperbolic planar singularity: angle sum at
apex is @ > 27 (that is, circumference at radius 1 is a)

is convex projection to the
={V ehullp|ViF(V)=0}
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Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
§ = M0y + -+ Ny with Y/ = Iogﬂy" then A has escape vector

@ N H 1 T +5
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \O& > 2m

® [solated hyperbolic planar singularity: angle sum at
apex is @ > 27 (that is, circumference at radius 1 is a)

is convex projection to the
={V ehullp|ViF(V)=0}
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Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

is convex projection to the
={V ehullp|ViF(V)=0}
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Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.
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apex is a > 27 (that is, circumference at radius 1 is «)
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® £ is convex projection to the fluctuating cone
={V ehullp|ViF(V)=0}
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Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m
® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)
M

embedded in R3:

® £ is convex projection to the fluctuating cone
C,={Vehullpy|ViF(V)=0} M
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Distortion

Perturbative CLT [Mattingly, M—, Tran 2023]. limp_y00 Vnlog, fin 4 A(0)
Def. The is

=&o0A:R - T, M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. lim,_,o0 \/N1l0g, fin LS N(0,X)
Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

=(VV, F.)™

is the inverse Hessian of the Fréchet function

Note. Hessian not defined in singular settings, but inverse Hessian is
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Distortion

Perturbative CLT [Mattingly, M—, Tran 2023]. limp_y00 Vnlog, fin 4 A(0)
Def. The distortion map is
H=~Eo0A R - T,M
Prop. Distortion 7/ does not depend on choice of section A
limp o0 /7110, fin = 7. N(0, )
Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
= (VVi F)™
is the inverse Hessian of the Fréchet function

Hessian not defined in singular settings, but inverse Hessian is
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Distortion

Perturbative CLT [Mattingly, M—, Tran 2023]. limp_y00 Vnlog, fin 4 A(0)
Def. The distortion map is
H=~Eo0A R - T,M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. liMp_y00 v/N110g}; fin 2, H-N(0,X)
Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
= (VVi F)™
is the inverse Hessian of the Fréchet function

Hessian not defined in singular settings, but inverse Hessian is
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Distortion

Perturbative CLT [Mattingly, M=, Tran 2023]. limp_o0 Vnlog, fin LS ()
Def. The distortion map is

H=~Eo0A R - T,M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. limp_y00 v/1l0g}; fin LS H.N(0,X)
Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

H=(VV; FM)71

is the inverse Hessian of the Fréchet function

Note. Hessian not defined in singular settings, but inverse Hessian is
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023]. imp_yo0 Vnlog;, fin 4 a(ry)

Variational CLT in a space of measures

CLT 3 [mattingly, M-, Tran 2023].  lim +/nlog, fin = V,,b(I,,),
n—o0

e the directional derivative, in the space P, M of L% measures on M,
® of the barycenter map b : P,M — M sending u +—

® at i

® along any Gaussian tangent mass [,

Variational CLT in a space of functions

CLT 4 [Mattingly, M—, Tran 2023]. lim \/E'Og ,[_L,, g VFMoexp %(G),
n— o0

® the directional derivative, in the space of continuous maps C(T;M,R),
® of the minimizer map B : C(T,M,R) — T, M that sends f — argmin f(X)
® at F,oexp xe

® along the Gaussian tangent field G = G(-) = ([, - )z induced by p
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023]. imp_yo0 V/nlog;, fin 4, A()

Variational CLT in a space of measures

CLT 3 (Mattingly, M-, Tran 2023].  lim +/nlog;; fi, = V,,b(T ),
n—oo

® the directional derivative, in the space P, M of L2 measures on M,
® of the barycenter map b : P, M — M sending 1 +— ji

® at

® along any Gaussian tangent mass [,

Variational CLT in a space of functions

|i>m \/ﬁ|0g /_1,,, ng“oexp %(G)*
the directional derivative, in the space of continuous maps C(T;M,R),
of the minimizer map B : C(T;M,R) — T, M that sends f — argmin f(X)
at F, oexp xe
along the Gaussian tangent field G = G(-) = (I',, - )5 induced by p

CLT
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023]. liMp_s00 v/N110g}; fin LS A

Variational CLT in a space of measures

CLT 3 [Mattingly, M-, Tran 2023]. Ii_}m Vnlog, fi, = V,b(I,),

® the directional derivative, in the space P»M of L? measures on M,
® of the barycenter map b : PoM — M sending p +— /1

®atpu

® along any Gaussian tangent mass [,

Variational CLT in a space of functions

CLT 4 [Mattingly, M—, Tran 2023]. lim \/E'Og/7 [in g Vpuoexp, %(G),
n—oo a

the directional derivative, in the space of continuous maps C(Tp M, R),

of the minimizer map B : C(T;M,R) — T;M that sends f — argmin f(X)
® at Foexp;, X€G

along the Gaussian tangent field G = G(-) = (I',, - )5 induced by
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Next lecture: proof via continuous mapping thm
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