gent fields Collapse Gaussians Escape vectors Distortion CLT

Tutorial 4: Convergence to Gaussian objects

Fzra Miller

Duke University, Department of Mathematics and Department of Statistical Science

ezra@math.duke.edu

joint with Jonathan Mattingly (Duke)

Do Tran (Deutsche Bank (was: Göttingen))

http://arxiv.org/abs/2311.09455

09454

09453

09451

Interactions of Statistics and Geometry (ISAG) II

National University of Singapore

14 - 16 October 2024

gent fields Collapse Gaussians Escape vectors Distortion CL'

<u>Outline</u>

- 1. Random tangent fields
- 2. Tangential collapse
- 3. Stratified Gaussians
- 4. Escape vectors
- 5. Distortion
- 6. Central limit theorems

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $(f(V_1),\ldots,f(V_n))$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- random tangent field $g(V) = g(x,V) = \langle V, \log_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $(f(V_1),\ldots,f(V_n))$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- random tangent field $g(V) = g(x,V) = \langle V, \log_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig]=oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $(f(V_1),\ldots,f(V_n))$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, \mathsf{log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $\big(f(V_1),\ldots,f(V_n)\big)$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- random tangent field $g(V) = g(x,V) = \langle V, \log_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $(f(V_1),\ldots,f(V_n))$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $(f(V_1),\ldots,f(V_n))$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $\big(f(V_1),\ldots,f(V_n)\big)$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- ullet $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E}ig[G(U)G(V)ig] = oldsymbol{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $ig(f(V_1),\ldots,f(V_n)ig)$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{ar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- $G = \mathsf{Gaussian}$ random tangent field with $\mathbb{E} ig[G(U)G(V) ig] = \Sigma(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $ig(f(V_1),\ldots,f(V_n)ig)$ is multivariate Gaussian $\forall \ V_1,\ldots,V_n\in S_{ar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- $G = \mathsf{Gaussian}$ random tangent field with $\mathbb{E}\big[G(U)G(V) \big] = \overline{\Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $ig(f(V_1),\ldots,f(V_n)ig)$ is multivariate Gaussian $\forall\ V_1,\ldots,V_n\in S_{ar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu)=\mathbb{E}ig[ig(g(x,U)-\mathbb{E}g(U)ig)ig(g(x,V)-\mathbb{E}g(V)ig)ig]$, where $\mathbb{E}(\cdots)=\int_{M}\cdots d\mu$

- ullet $G=ar{\sf G}$ aussian random tangent field with $ar{\mathbb{E}}ig[G(U)G(V)ig]=ar{f \Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{\mu}}M$ is a stochastic process $f: \Omega \times S_{\bar{\mu}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{\mu}}M$.

- Gaussian if $\big(f(V_1),\ldots,f(V_n)\big)$ is multivariate Gaussian $\forall~V_1,\ldots,V_n\in S_{\bar\mu}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An *M*-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- ullet random tangent field $g(V)=g(x,V)=\langle V, {f log}_{ar{\mu}} x
 angle_{ar{\mu}}$
- covariance $\Sigma(U,V;\mu)=\mathbb{E}ig[ig(g(x,U)-\mathbb{E}g(U)ig)ig(g(x,V)-\mathbb{E}g(V)ig)ig]$, where $\mathbb{E}(\cdots)=\int_{M}\cdots d\mu$

- ullet $G=ar{\sf G}$ aussian random tangent field with $ar{\mathbb{E}}ig[G(U)G(V)ig]=ar{f \Sigma}(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. *M*-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \stackrel{D}{\to} G$$

Def. A random tangent field on $T_{\bar{u}}M$ is a stochastic process $f: \Omega \times S_{\bar{u}}M \to \mathbb{R}$, so $f(V): \Omega \to \mathbb{R}$ for each $V \in S_{\bar{u}}M$.

- Gaussian if $(f(V_1), \dots, f(V_n))$ is multivariate Gaussian $\forall V_1, \dots, V_n \in S_{\bar{u}}M$
- covariance $\Sigma(U, V) = \mathbb{E}[f(U)f(V)]$

Def. An M-valued random variable $x = x(\omega) : \Omega \to M$ with law μ yields

- random tangent field $g(V) = g(x, V) = \langle V, \log_{\bar{u}} x \rangle_{\bar{u}}$
- covariance $\Sigma(U,V;\mu) = \mathbb{E}[(g(x,U) \mathbb{E}g(U))(g(x,V) \mathbb{E}g(V))]$, where $\mathbb{E}(\cdots) = \int_{M} \cdots d\mu$

- $G=\mathsf{Gaussian}$ random tangent field with $\mathbb{E} [G(U)G(V)] = \Sigma(U,V;\mu)$
- x_1, x_2, \ldots i.i.d. M-valued variables $\sim \mu$
- $\overline{g}_n(V) = \frac{1}{n} \sum_{k=1}^n g_i(V)$, the average of the fields $g_i(V) = g(x_i, V)$.

$$\sqrt{n}(\overline{g}_n - \mathbb{E}g) \xrightarrow{D} G = \langle ?, V \rangle$$

t fields Collapse Gaussians Escape vectors Distortion CLT

Tangential collapse

Def. Localized μ on smoothly stratified M has fluctuating cone

$$C_{\mu} = \left\{ X \in \mathcal{T}_{\bar{\mu}} M \mid \nabla_{\bar{\mu}} F(X) = 0 \text{ and} \right.$$
 pushforward of μ $X \in \text{convex cone generated by } \sup(\mu \circ \log_{\bar{\mu}}^{-1}) \right\}$

Lemma. Adding mass to μ can only cause $\bar{\mu}$ to move into C_{μ}

Thm [Mattingly, M-, Tran 2023]. M smoothly stratified \Rightarrow some sequence of limit log maps, followed by convex projection to the relevant smooth stratum, is a tangential collapse: a continuous map $\mathcal{L}: \mathcal{T}_{\bar{\mu}}M \to \mathbb{R}^m$ that is

- injective on C_{μ} and
- ullet preserves angles with vectors in $oldsymbol{\mathcal{C}}_{\!\mu}$

fields Collapse Gaussians Escape vectors Distortion CLT

Tangential collapse

Def. Localized μ on smoothly stratified M has fluctuating cone

$$C_{\mu} = \left\{ X \in \mathcal{T}_{\bar{\mu}} M \mid \nabla_{\bar{\mu}} F(X) = 0 \text{ and} \right.$$
 pushforward of μ $X \in \text{convex cone generated by } \sup(\mu \circ \log_{\bar{\mu}}^{-1}) \right\}$

Lemma. Adding mass to μ can only cause $\bar{\mu}$ to move into C_{μ}

Thm [Mattingly, M-, Tran 2023]. M smoothly stratified \Rightarrow some sequence of limit log maps, followed by convex projection to the relevant smooth stratum, is a tangential collapse: a continuous map $\mathcal{L}: \mathcal{T}_{\bar{\mu}}M \to \mathbb{R}^m$ that is

- injective on C_{μ} and
- preserves angles with vectors in C_{μ}

t fields Collapse Gaussians Escape vectors Distortion CLT

Tangential collapse

Def. Localized μ on smoothly stratified M has fluctuating cone

$$C_{\mu} = \left\{ X \in \mathcal{T}_{\bar{\mu}} M \mid \nabla_{\bar{\mu}} F(X) = 0 \text{ and} \right.$$
 pushforward of μ $X \in \text{convex cone generated by } \sup(\mu \circ \log_{\bar{\mu}}^{-1}) \right\}$

Lemma. Adding mass to μ can only cause $ar{\mu}$ to move into \mathcal{C}_{μ}

Thm [Mattingly, M-, Tran 2023]. M smoothly stratified \Rightarrow some sequence of limit log maps, followed by convex projection to the relevant smooth stratum, is a tangential collapse: a continuous map $\mathcal{L}: \mathcal{T}_{\bar{\mu}}M \to \mathbb{R}^m$ that is

- injective on C_{μ} and
- preserves angles with vectors in C_{μ}

open book:

Gaussians

Stratified Gaussians

Smooth $M: T_{\bar{u}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{u}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map \mathcal{L} has a measurable section over $\mathbb{R}^{\ell} = \operatorname{conv}(\operatorname{image} \mathcal{L})$,

 $\Delta:\mathbb{R}^\ell o \mathsf{discrete}$ measures on \mathbb{R}_+ supp $(\mu\circ \mathsf{log}_{ar{\mu}}^{-1})\subseteq \mathcal{T}_{ar{\mu}} \mathcal{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \overline{\mathcal{L}(Y^j)}$.

of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim \mathcal{N}(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Collapse

Gaussians

Escape vecto

Distortion

Stratified Gaussians

Smooth $M: T_{\bar{u}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map $\mathcal L$ has a measurable section over $\mathbb R^\ell=\mathsf{conv}(\mathsf{image}\,\mathcal L)$,

 $\Delta: \mathbb{R}^\ell o \mathsf{discrete}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \mathsf{log}_{ar{\mu}}^{-1}) \subseteq \mathit{T}_{ar{\mu}} \mathit{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim N(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Smooth $M: T_{\bar{u}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map \mathcal{L} has a measurable section over $\mathbb{R}^{\ell} = \text{conv}(\text{image } \mathcal{L})$,

 $\Delta: \mathbb{R}^\ell o \mathsf{discrete}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \mathsf{log}_{\bar{\mu}}^{-1}) \subseteq \mathit{T}_{\bar{\mu}}\mathit{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim N(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Smooth $M: T_{\bar{\mu}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map $\mathcal L$ has a measurable section over $\mathbb R^\ell=\mathsf{conv}(\mathsf{image}\,\mathcal L)$,

 $\Delta: \mathbb{R}^\ell o \mathsf{discrete}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \mathsf{log}_{ar{\mu}}^{-1}) \subseteq \mathcal{T}_{ar{\mu}} \mathcal{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim N(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Smooth $M: T_{\bar{u}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map \mathcal{L} has a measurable section over $\mathbb{R}^{\ell} = \text{conv}(\text{image }\mathcal{L})$,

 $\Delta: \mathbb{R}^\ell o \operatorname{\mathsf{discrete}}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \operatorname{\mathsf{log}}_{\bar{\mu}}^{-1}) \subseteq \mathcal{T}_{\bar{\mu}} \mathcal{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim \mathcal{N}(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Smooth $M: T_{\bar{\mu}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map \mathcal{L} has a measurable section over $\mathbb{R}^{\ell} = \text{conv}(\text{image } \mathcal{L})$,

 $\Delta: \mathbb{R}^\ell o \operatorname{\mathsf{discrete}}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \operatorname{\mathsf{log}}_{\bar{\mu}}^{-1}) \subseteq \mathcal{T}_{\bar{\mu}} \mathcal{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim \mathcal{N}(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Smooth $M: T_{\bar{u}}M \cong \mathbb{R}^m$ already

Singular M: use tangential collapse $T_{\bar{\mu}}M \xrightarrow{\mathcal{L}} \mathbb{R}^m$

Lemma. The map \mathcal{L} has a measurable section over $\mathbb{R}^{\ell} = \text{conv}(\text{image } \mathcal{L})$,

 $\Delta: \mathbb{R}^\ell o \mathsf{discrete}$ measures on $\mathbb{R}_+ \operatorname{\mathsf{supp}}(\mu \circ \mathsf{log}_{ar{\mu}}^{-1}) \subseteq \mathcal{T}_{ar{\mu}} \mathcal{M}$

with $\mathcal{L} \circ \Delta = \mathrm{id}_{\mathbb{R}^\ell}$, where $\mathcal{L}(\lambda_1 \delta_{Y^1} + \cdots + \lambda_j \delta_{Y^j}) = \lambda_1 \mathcal{L}(Y^1) + \cdots + \lambda_j \mathcal{L}(Y^j)$.

Def [Mattingly, M-, Tran 2023]. A Gaussian tangent mass Γ_{μ} is any measurable section of any \mathbb{R}^{ℓ} -valued random variable $\mathcal{N} \sim \mathcal{N}(0, \Sigma)$:

$$\Gamma_{\mu} = \Delta(\mathcal{N}).$$

Perspective shift: continuous variation in Gaussians can come from redistributing weights on unmoving points rather than from spatial variation

Thm [Mattingly, M-, Tran 2023].
$$G(X) = \langle \Gamma_{\mu}, X \rangle_{\bar{\mu}}$$
 for all $X \in C_{\mu}$.

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^i}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t \delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \mu + t\delta$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{y^1} + \dots + \lambda_j \delta_{y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \overline{\mu + t\delta}$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{y^1} + \dots + \lambda_j \delta_{y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \log_{\overline{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{y^1} + \dots + \lambda_j \delta_{y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector
$$\mathscr{E}(\Delta) = \frac{1}{\tau} \log_{\bar{\mu}} (\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^i}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{y^1} + \dots + \lambda_j \delta_{y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M—, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{y^1} + \dots + \lambda_j \delta_{y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

Def. Fix
$$\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$$
, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

Isolated hyperbolic planar singularity: angle sum at apex is $\alpha > 2\pi$ (that is, circumference at radius 1 is α)

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \cdots + \lambda_i \delta_{Y^i}$, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{v^1} + \cdots + \lambda_i \delta_{v^i}$ with $Y^i = \log_{\bar{u}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

Isolated hyperbolic planar singularity: angle sum at apex is $\alpha > 2\pi$ (that is, circumference at radius 1 is α)

• & is convex projection to the fluctuating cone $C_{\mu} = \{ V \in \mathsf{hull} \, \mu \mid \nabla_{\bar{\mu}} F(V) = 0 \}$

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \cdots + \lambda_i \delta_{Y^i}$, a discrete measure on $T_{\bar{u}}M$. If $\delta = \lambda_1 \delta_{v^1} + \cdots + \lambda_i \delta_{v^i}$ with $Y^i = \log_{\bar{u}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

Isolated hyperbolic planar singularity: angle sum at apex is $\alpha > 2\pi$ (that is, circumference at radius 1 is α)

embedded in \mathbb{R}^3 :

• & is convex projection to the fluctuating cone $C_{\mu} = \{ V \in \mathsf{hull} \, \mu \mid \nabla_{\bar{\mu}} F(V) = 0 \}$

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^i}$, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t \to 0} \frac{1}{t} \mathsf{log}_{\bar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

embedded in \mathbb{R}^3 :

• \mathscr{E} is convex projection to the fluctuating cone $C_u = \{ V \in \text{hull } \mu \mid \nabla_{\overline{u}} F(V) = 0 \}$

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \cdots + \lambda_i \delta_{Y^i}$, a discrete measure on $T_{\bar{u}}M$. If $\delta = \lambda_1 \delta_{v^1} + \cdots + \lambda_i \delta_{v^i}$ with $Y^i = \log_{\bar{u}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

Isolated hyperbolic planar singularity: angle sum at apex is $\alpha > 2\pi$ (that is, circumference at radius 1 is α)

embedded in \mathbb{R}^3 :

• & is convex projection to the fluctuating cone $C_{\mu} = \{ V \in \text{hull } \mu \mid \nabla_{\bar{\mu}} F(V) = 0 \}$

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \cdots + \lambda_i \delta_{Y^i}$, a discrete measure on $T_{\bar{u}}M$. If $\delta = \lambda_1 \delta_{v^1} + \cdots + \lambda_i \delta_{v^i}$ with $Y^i = \log_{\bar{u}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

Isolated hyperbolic planar singularity: angle sum at apex is $\alpha > 2\pi$ (that is, circumference at radius 1 is α)

embedded in \mathbb{R}^3 :

• & is convex projection to the fluctuating cone $C_{\mu} = \{ V \in \text{hull } \mu \mid \nabla_{\bar{\mu}} F(V) = 0 \}$

Def. Fix $\Delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^i}$, a discrete measure on $T_{\bar{\mu}}M$. If $\delta = \lambda_1 \delta_{Y^1} + \dots + \lambda_j \delta_{Y^j}$ with $Y^i = \log_{\bar{\mu}} y^i$ then Δ has escape vector

$$\mathscr{E}(\Delta) = \lim_{t o 0} rac{1}{t} \mathsf{log}_{ar{\mu}}(\overline{\mu + t\delta})$$

Note. Γ_{μ} is a random discrete measure of the form Δ .

Example [Huckemann, Mattingly, M-, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at apex is $\alpha>2\pi$ (that is, circumference at radius 1 is α)

embedded in \mathbb{R}^3 :

• \mathscr{E} is convex projection to the fluctuating cone $C_u = \{ V \in \text{hull } \mu \mid \nabla_{\overline{u}} F(V) = 0 \}$

Distortion

Perturbative CLT [Mattingly, M-, Tran 2023]. $\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$

Def. The distortion map is

$$\mathcal{H} = \mathscr{E} \circ \Delta : \mathbb{R}^{\ell} \to T_{\bar{\mu}}M$$

Prop. Distortion \mathcal{H} does not depend on choice of section Δ

Geometric CLT [Mattingly, M-, Tran 2023]. $\lim_{n \to \infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathcal{H}_{\sharp} \mathcal{N}(0, \Sigma)$

Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

$$\mathcal{H} = (\nabla \nabla_{\bar{\mu}} F_{\mu})^{-1}$$

is the inverse Hessian of the Fréchet function

<u>Distortion</u>

Perturbative CLT [Mattingly, M-, Tran 2023]. $\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$

Def. The distortion map is

$$\mathcal{H} = \mathscr{E} \circ \Delta : \mathbb{R}^{\ell} \to T_{\bar{\mu}}M$$

Prop. Distortion \mathcal{H} does not depend on choice of section Δ

Geometric CLT [Mattingly, M-, Tran 2023]. $\lim_{n \to \infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathcal{H}_{\sharp} \mathcal{N}(0, \Sigma)$

Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

$$\mathcal{H} = (\nabla \nabla_{\bar{\mu}} F_{\mu})^{-1}$$

is the inverse Hessian of the Fréchet function

Distortion

Perturbative CLT [Mattingly, M-, Tran 2023]. $\lim_{n\to\infty} \sqrt{n} \log_{\bar{u}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$

Def. The distortion map is

$$\mathcal{H} = \mathscr{E} \circ \Delta : \mathbb{R}^{\ell} \to T_{\bar{\mu}}M$$

Prop. Distortion \mathcal{H} does not depend on choice of section Δ

Geometric CLT [Mattingly, M-, Tran 2023]. $\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathcal{H}_{\sharp} \mathcal{N}(0, \Sigma)$

Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

$$\mathcal{H} = (\nabla \nabla_{\bar{\mu}} F_{\mu})^{-1}$$

is the inverse Hessian of the Fréchet function

Distortion

Perturbative CLT [Mattingly, M-, Tran 2023]. $\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$

Def. The distortion map is

$$\mathcal{H} = \mathscr{E} \circ \Delta : \mathbb{R}^{\ell} \to T_{\bar{\mu}}M$$

Prop. Distortion \mathcal{H} does not depend on choice of section Δ

Geometric CLT [Mattingly, M-, Tran 2023]. $\lim_{n \to \infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathcal{H}_{\sharp} \mathcal{N}(0, \Sigma)$

Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where

$$\mathcal{H} = (
abla
abla_{ar{\mu}} F_{\mu})^{-1}$$

is the inverse Hessian of the Fréchet function

t fields Collapse Gaussians Escape vectors Distortion CLT

Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$$

Variational CLT in a space of measures

CLT 3 [Mattingly, M-, Tran 2023].
$$\lim_{n \to \infty} \sqrt{n} \log_{\tilde{\mu}} \bar{\mu}_n = \nabla_{\!\mu} \mathfrak{b}(\Gamma_{\!\mu}),$$

- the directional derivative, in the space \mathcal{P}_2M of L^2 measures on M,
- of the barycenter map $\mathfrak{b}:\mathcal{P}_2M o M$ sending $\mu\mapsto ar{\mu}$
- ullet at μ
- ullet along any Gaussian tangent mass $lack{\Gamma}_{\!\mu}$

Variational CLT in a space of functions

CLT 4 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{=} \nabla_{F_{\mu} \circ \exp_{\bar{\mu}}} \mathfrak{B}(G),$$

- the directional derivative, in the space of continuous maps $\mathcal{C}(T_{\bar{\mu}}M,\mathbb{R})$,
- ullet of the minimizer map ${\mathfrak B}: {\mathcal C}(T_{ar\mu}M,{\mathbb R}) o T_{ar\mu}M$ that sends $f\mapsto \operatorname{argmin} f(X)$
- at F_µ ∘ exp_µ
- along the Gaussian tangent field $G=G(\,\cdot\,)=\langle \Gamma_{\mu},\,\cdot\,
 angle_{ar{\mu}}$ induced by μ

fields Collapse Gaussians Escape vectors Distortion CLT

Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$$

Variational CLT in a space of measures

CLT 3 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n = \nabla_{\mu} \mathfrak{b}(\Gamma_{\mu}),$$

- the directional derivative, in the space \mathcal{P}_2M of L^2 measures on M,
- of the barycenter map $\mathfrak{b}:\mathcal{P}_2M o M$ sending $\mu\mapsto ar{\mu}$
- ullet at μ
- ullet along any Gaussian tangent mass $lack{\Gamma}_{\!\mu}$

Variational CLT in a space of functions

$$\mathsf{CLT}\ 4\ [\mathsf{Mattingly},\ \mathsf{M-},\ \mathsf{Tran}\ 2023].\ \lim_{n\to\infty} \sqrt{n}\log_{\bar{\mu}}\bar{\mu}_n\stackrel{d}{=} \nabla_{\!F_\mu\circ\mathsf{exp}_{\bar{\mu}}}\mathfrak{B}(\mathsf{G}),$$

- ullet the directional derivative, in the space of continuous maps $\mathcal{C}(\mathcal{T}_{ar{\mu}}M,\mathbb{R})$,
- ullet of the minimizer map ${\mathfrak B}: {\mathcal C}(T_{ar\mu}M,{\mathbb R}) o T_{ar\mu}M$ that sends $f\mapsto \operatorname{argmin} f(X)$
- at F_µ ∘ exp_{π̄}

 $\in C_{\mu}$

• along the Gaussian tangent field $G=G(\,\cdot\,)=\langle \Gamma_\mu,\,\cdot\,
angle_{ar\mu}$ induced by μ

fields Collapse Gaussians Escape vectors Distortion CLT

Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{\to} \mathscr{E}(\Gamma_{\mu})$$

Variational CLT in a space of measures

CLT 3 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n = \nabla_{\mu} \mathfrak{b}(\Gamma_{\mu}),$$

- the directional derivative, in the space \mathcal{P}_2M of L^2 measures on M,
- of the barycenter map $\mathfrak{b}:\mathcal{P}_2M\to M$ sending $\mu\mapsto \bar{\mu}$
- ullet at μ
- ullet along any Gaussian tangent mass $lack{\Gamma}_{\!\mu}$

Variational CLT in a space of functions

CLT 4 [Mattingly, M-, Tran 2023].
$$\lim_{n\to\infty} \sqrt{n} \log_{\bar{\mu}} \bar{\mu}_n \stackrel{d}{=} \nabla_{F_{\mu} \circ \exp_{\bar{\mu}}} \mathfrak{B}(G),$$

- the directional derivative, in the space of continuous maps $\mathcal{C}(T_{\bar{\mu}}M,\mathbb{R})$,
- of the minimizer map $\mathfrak{B}: \mathcal{C}(T_{\bar{\mu}}M,\mathbb{R}) \to T_{\bar{\mu}}M$ that sends $f \mapsto \operatorname{argmin} f(X)$
- at $F_{\mu} \circ \exp_{\bar{n}}$
 - along the Gaussian tangent field $G = G(\,\cdot\,) = \langle \mathsf{\Gamma}_{\mu},\,\cdot\, \rangle_{\bar{\mu}}$ induced by μ

Next lecture: proof via continuous mapping thm