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Motivation and history

Mimic ordinary statistics: assume nonlinear M given; want
® averages: measure pon M ~» mean 1€ M
® variance, PCA
® Law of Large Numbers (LLN), confidence regions
® Central Limit Theorem (CLT)
+ smooth M [Bhattacharya and Patrangenaru 2003, 2005]
+ singular M
- open books [SAMSI Working Group 2013]
- isolated planar singularity [Huckemann, Mattingly, M-, Nolen 2015]
- phylogenetic tree spaces [Barden, Le 2018, w/Owen 2013, 2014]
MCMC methods to draw from M, building on
stochastic analysis on manifolds
Brownian motion in manifolds
diffusion on metric spaces

Gaussians on singular spaces
~ stratified CLT
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Motivation and history

Mimic ordinary statistics: assume nonlinear M given; want
® averages: measure p on M ~» mean 1€ M
® variance, PCA
® Law of Large Numbers (LLN), confidence regions
Central Limit Theorem (CLT)
+ smooth M [Bhattacharya and Patrangenaru 2003, 2005]

+ singular M
- open books [SAMSI Working Group 2013]

- isolated planar singularity [Huckemann, Mattingly, M-, Nolen 2015]
- phylogenetic tree spaces [Barden, Le 2018, w/Owen 2013, 2014]
MCMC methods to draw from M, building on
+ stochastic analysis on manifolds e.g., [Malliavin 1978]
+ Brownian motion in manifolds e.g., [Kendall 1984], [Hsu 1988]
+ diffusion on metric spaces [Sturm 1998]

Goals for today

® Gaussians on singular spaces
® ~ stratified CLT



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields  Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Stratified spaces

Def [Mattingly, M=, Tran 2023]. M is smoothly stratified with distance d if
® M is a complete, locally compact, geodesic space
= Iy M/ has disjoint locally closed Mi
each M
is a manifold with geodesic distance d|
has closure MJ = Ukex M¥ for some subset K C {1,..., Jj}
locally well defined exponential maps that are local homeomorphisms
curvature bounded above by x: M is CAT(k)

Examples
® graph (or network): strata are vertices and edges
® polyhedron: strata are (relatively open) faces
® real (semi)algebraic variety: strata > equisingular loci

Actual examples
e fruit fly wings
® tree spaces
® shape spaces
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Fréchet means

Def. Probability distribution j on any metric space M has Fréchet function

00 =3 [ i)

square measure
distance |nguced

and Fréchet mean i = argmin F,(y). v
yem
M is CAT (k)
= M has tangent spaces (cones)
The logarithm map is
log, : M — T, M

x = d(i,x)V,
where V' = unit tangent to geodesic from /i to x.
M singular at ji < T, M 2% R?

M smoothly stratified
= T,M is a smoothly stratified CAT(0) cone.
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Angles

Def. S, M = unit sphere in T;; M has metric d,. Vectors U, V € S; M have
d(U, V) if
-ang|e4(U,V):{ (U, V) i <m

™ otherwise
* angular pairing (U, V), = [[U]||| V|| cos(£(U, V)).
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Angles

Def. S, M = unit sphere in T;; M has metric d,. Vectors U, V € S; M have

o angle Z(U, V)_{ S(U.V) i <m
™ otherwise
* angular pairing (U, V), = [[U]||| V|| cos(£(U, V)).

Example. y

Example. m

shadow(U) ={V € ;M | Z(U, V) > 7}

CLT
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Def. S, M = unit sphere in T;; M has metric d,. Vectors U, V € S; M have
u,v) if <
o angle Z(U, v) = { (U V) iF <
™ otherwise
* angular pairing (U, V), = [[U]||| V|| cos(£(U, V)).

Example. y

Example. m

shadow(U) ={V € ;M | Z(U, V) > 7}

shadow(U)

CLT
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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so (V) :Q — R foreach V € S, M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S; M
® covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law g yields
e random tangent field g(V) = g(x,V) = (V,log x)
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---)= [, -du
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xq,X,...1.i.d. M-valued variables ~
° g, (V)=1%1_1g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, -Eg) % G
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Random tangent fields

Def. A random tangent field on T;M is a stochastic process f : Q2 x 5, M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V4),...,f(V,)) is multivariate Gaussian V¥ V4,...,V, € S;M
® covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law g yields
e random tangent field g(V) = g(x,V) = (V,log x)
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---)= [, -du
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xx1,Xp,...1.i.d. M-valued variables ~ p
° g, (V)=13"7_,g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, -Eg) % G
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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
® covariance L(U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
e random tangent field g(V) = g(x,V) = (V,log x)
* covariance Y(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
B(-) = fy-di
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
° G = Gaussian random tangent field with E[G(U)G(V)] = Z(U,V; u)
® Xx1,Xp,...1.i.d. M-valued variables ~ p
° g, (V)=13"7_,g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g,—Eg) > G
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Random tangent fields

Def. A random tangent field on T M is a stochastic process f : Q2 x 5;M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
e random tangent field g(V) = g(x,V) = (V,log x)
* covariance Y(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
B) = fy
Thm [Mattingly, M=, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
* G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xx1,Xp,...1.i.d. M-valued variables ~ p
° g, (V)=13"7_,g(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g,—Eg) > G
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log,x);
covariance ¥(U,V; p) = E[(g(x, U) — Eg(U)) (g(x,V) — Eg(V))], where
E(-)= [, dpu
Fix a localized measure ;1 on M. Let
G = Gaussian random tangent field with E[G(U)G(V)] = £(U,V; )
X1, X2, ... i.i.d. M-valued variables ~ u
g,(V) =137, gi(V), the average of the fields g;(V) = g(x;,V).

Then Vg, —Eg) 2 6
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields

® random tangent field g(V) = g(x,V) = (V,log,x);

® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
B(-) = [y o

Fix a localized measure p on M. Let

G = Gaussian random tangent field with E[G(U)G(V)]| = (U,V; )
X1, X2, ... 1.i.d. M-valued variables ~ p
g,(V) =137, gi(V), the average of the fields g;(V) = g(x;,V).

Then Vg, —Eg) 2 6
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields

® random tangent field g(V) = g(x,V) = (V,log,x);

® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp

Fix a localized measure p on M. Let

G = Gaussian random tangent field with E[G(U)G(V)]| = (U,V; )
X1, X2, ... 1.i.d. M-valued variables ~ p
g,(V) =137, gi(V), the average of the fields g;(V) = g(x;,V).

Then Vg, —Eg) 2 6
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M-, Tran & Lammers, Huckemann]. Fix a localized measure y on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
X1, X2, ... 1.i.d. M-valued variables ~ p
(V) =130 1 &(V), the average of the fields g;(V) = g(x;,V).

Then Vn(g, —E )%
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M-, Tran & Lammers, Huckemann]. Fix a localized measure y on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® x1,X2,...1.i.d. M-valued variables ~ p
(V) =130 1 &(V), the average of the fields g;(V) = g(x;,V).

Then vn(g, —E )2)
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M—, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® x1,X2,...1.i.d. M-valued variables ~ p

° 2,(V)=1%_1g(V), the average of the fields g;(V) = g(x;,V).
Then Vn(g, —E )%



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M—, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xq1,X,...1.i.d. M-valued variables ~
° 2,(V)=1%_1g(V), the average of the fields g;(V) = g(x;,V).

Then Vi, -Eg) > 6
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Random tangent fields

Def. A random tangent field on T, M is a stochastic process f : Q x S; M — R,
so f(V):Q — R for each V € 5; M.

* Gaussian if (f(V1),...,f(V,)) is multivariate Gaussian V V4,...,V, € S;M
* covariance (U, V) = E[f(U)f(V)]

Def. An M-valued random variable x = x(w) : Q — M with law p yields
® random tangent field g(V) = g(x,V) = (V,log;x);
® covariance L(U,V; u) = E[(g(x, U) — Eg(V)) (g(x,V) — Eg(V))], where
E(---) = [, dp
Thm [Mattingly, M—, Tran & Lammers, Huckemann]. Fix a localized measure p on M. Let
® G = Gaussian random tangent field with E[G(U)G(V)] = (U, V; )
® Xq1,X,...1.i.d. M-valued variables ~

° 2,(V)=1%_1g(V), the average of the fields g;(V) = g(x;,V).
Then Vg, -Eg) % G =(7,V)
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History ~ Stratified spaces  Fréchet means and log maps

Tangential collapse

Def. Localized i on smoothly stratified M has fluctuating cone
G = {X € T,M|VzF(X)=0and
X € convex cone generated by supp(u o Iog_l)}
[Lemma. Adding mass to x can only cause /i to move into
Thm [mattingly, M-, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £: T, M — R™ that is

® injective on and
® preserves angles with vectors in
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

G, ={XeT,M|VzF(X)=0and
X € convex cone generated by supp(u o Iog,?l)}

Lemma. Adding mass to x can only cause /i to move into G

M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £: T, M — R™ that is
injective on and
preserves angles with vectors in
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog,?l)}

Lemma. Adding mass to x can only cause /i to move into G

M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £: T, M — R™ that is
injective on and
preserves angles with vectors in
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History ~ Stratified spaces  Fréchet means and log maps

Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o IogEl)}

Lemma. Adding mass to x can only cause /i to move into C,
Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and

® preserves angles with vectors in C,



Distortion CLT

Tangent fields  Collapse Gaussians Escape vectors

History ~ Stratified spaces  Fréchet means and log maps ~ Angles

Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone
C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog;l)}
Lemma. Adding mass to x can only cause /i to move into C,

Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and
® preserves angles with vectors in C,

Example

® kale:
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone
C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog;l)}
Lemma. Adding mass to x can only cause /i to move into C,

Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and
® preserves angles with vectors in C,

eI ES

® kale:

® nonconvex quadrants:
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Tangential collapse

Def. Localized 1 on smoothly stratified M has fluctuating cone

C.={XeT:M|VzF(X)=0 and pushforward of
X € convex cone generated by supp(u o Iog;l)}

Lemma. Adding mass to x can only cause /i to move into C,
Thm [Mattingly, M—, Tran 2023]. M smoothly stratified = some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map £ : T;M — R™ that is

® injective on C, and

® preserves angles with vectors in C,
e open book:

eI ES

® kale:

® nonconvex quadrants:
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Stratified Gaussians

Smooth M: T, M = R™ already
M use tangential collapse T, M Ly Rm
The map £ has a measurable section over R = conv(image L),
A : R — discrete measures on R, supp(p o log ') € T, M
with £ o A = idge, where L(A18y1 + -+ + Njdys) = ML(YD) + -+ + NL( V).

L

=
Example. A
(_

A Gaussian tangent mass [, is any measurable section
of any R*-valued random variable N ~ N(0, X):

M, =AW).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

G(X) = (., X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
The map £ has a measurable section over R = conv(image L),

A : R — discrete measures on R, supp(p o log ') € T, M
with £o A = idge, where L(A1dy1 + -+ 4+ Ndys) = ML(Y) + - + N L(YY).

L

=
Example. A
(_

A Gaussian tangent mass [, is any measurable section
of any R*-valued random variable N ~ N(0, X):

M, =AW).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

G(X) = (., X)p forall X €



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ 0 A = idge, where £(A1dy1 + -+ \idys) = ML(YE) + -+ NL(YI).

c

—
Example. A
<—

A is any measurable section
of any R¥-valued random variable N ~ N(0, X):

(N

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ 0 A = idge, where £(A1dy1 + -+ \idys) = ML(YE) + -+ NL(YI).

c

—
Example. A
<—

A is any measurable section
of any R¥-valued random variable N ~ N(0, X):

(N

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

M= AWN).

continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

M, = AWN).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

(X) = (I, X)p forall X €
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Stratified Gaussians

Smooth M: T, M = R™ already
Singular M: use tangential collapse T, M LLRm
Lemma. The map £ has a measurable section over RY = conv(image L),
A : R® — discrete measures on R supp(p o Iog;l) cT M
with £ o A = idge, where L(A1dy1 + -+ 4+ Nidys) = ML(Y?) + - + NL(YY).
c

—

JAN
—

Example.

Def [mattingly, M-, Tran 2023]. A Gaussian tangent mass [, is any measurable section
of any Rf-valued random variable A" ~ N(0, X):

M, = AWN).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

Thm mattingly, M-, Tran 2023]. G(X) = ([, X); for all X € C,.
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

N I ——
“(A) = lim ~log; (i + )

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Escape vectors

Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

(D) = p+ 6

Note. T,

is a random discrete measure of the form A.
EXample [Huckemann, Mattingly, M—, Nolen 2015]

® |solated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

® £ is convex projection to the
={Vehulp|VzF(V)=0}
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Def. Fix A = Mby1 4+ -+ + Ajdyi, a disc'rete measure on T.M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

N I ——
“(A) = lim ~log; (i + )

Note. T,

is a random discrete measure of the form A.
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Escape vectors

Def. Fix A = Ady1 + -+ \jdys, a discrete measure on T, M. If
§ =M1 + -+ b, with Y' =log,y’ then A has escape vector

1 I
2(A) = lim =log .
£(A) tl|_n>10 tlogﬂ(pH- td)
Note. I, is a random discrete measure of the form A.

Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

is convex projection to the
={Vehulp|VzF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
§ = M0y + -+ Ny with Y/ = Iogﬂy" then A has escape vector

@ _n 1 L +5
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015]

® [solated hyperbolic planar singularity: angle sum at
apex is @ > 27 (that is, circumference at radius 1 is a)

is convex projection to the
={V ehullp|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
§ = M0y + -+ Ny with Y/ = Iogﬂy" then A has escape vector

@ _n 1 L +5
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \O& > 2m

® [solated hyperbolic planar singularity: angle sum at
apex is @ > 27 (that is, circumference at radius 1 is a)

is convex projection to the
={V ehullp|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

is convex projection to the
={V ehullp|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

® £ is convex projection to the fluctuating cone
={V ehullp|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

® £ is convex projection to the fluctuating cone
C,={Vehullpy|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

® £ is convex projection to the fluctuating cone
C,={Vehullpy|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.

Examp|e [Huckemann, Mattingly, M—, Nolen 2015] \a > 2m

® Isolated hyperbolic planar singularity: angle sum at
apex is a > 27 (that is, circumference at radius 1 is «)

embedded in R3: 4

® £ is convex projection to the fluctuating cone
C,={Vehullpy|ViF(V)=0}



History ~ Stratified spaces  Fréchet means and log maps ~ Angles  Tangent fields ~ Collapse  Gaussians  Escape vectors  Distortion ~ CLT

Escape vectors

Def. Fix A = A1dy1 + -+ + A\;ys, a discrete measure on T, M. If
0= A1dy1 + -+ \jd,; with Yi= Iogﬂy" then A has escape vector

1
“(A) = lim ~log; (i + )

Note. I, is a random discrete measure of the form A.
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Distortion

Perturbative CLT [Mattingly, M-, Tran 2023]. lim,— oo \/ﬁ|0gﬁ [ —d) é”(ru)

Def. The is
=&o0A:R - T, M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. lim,_,o0 \/N1l0g, fin LS N(0,X)
Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
=(VV, F.)™*
is the inverse Hessian of the Fréchet function

Note. Hessian not defined in singular settings, but inverse Hessian is
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Distortion

Perturbative CLT [Mattingly, M-, Tran 2023]. limp_y00 Vnlog, fi 4 A(0)
i fin — 1)’
Def. The distortion map is
H=~Eo0A R - T,M
Prop. Distortion 7/ does not depend on choice of section A
limp o0 /7110, fin = 7. N(0, )
Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
= (VViF)™
is the inverse Hessian of the Fréchet function

Hessian not defined in singular settings, but inverse Hessian is
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Perturbative CLT [Mattingly, M-, Tran 2023]. limp_y00 Vnlog, fi 4 A(0)
i fin — 1)’
Def. The distortion map is
H=E0A:R - T:M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. liMp_y00 v/N110g}; fin 2, H-N(0,X)
Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
= (VViF)™
is the inverse Hessian of the Fréchet function

Hessian not defined in singular settings, but inverse Hessian is
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Distortion

Perturbative CLT Mattingly, M-, Tran 2023]. limp_,o0 v/nlog;; fin < (1)
“Vn(fin — 1)
Def. The distortion map is
H=~Eo0A R - T,M
Prop. Distortion 7/ does not depend on choice of section A
Geometric CLT [Mattingly, M-, Tran 2023]. limp_y00 v/1l0g}; fin LS H.N(0,X)
Cor. Smooth CLT [Bhattacharya and Patrangenaru 2003, 2005], etc., where
H= (VV,7 FM)71
is the inverse Hessian of the Fréchet function

Note. Hessian not defined in singular settings, but inverse Hessian is
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023]. imp_yo0 Vnlog;, fin 4 a(ry)

Variational CLT in a space of measures

CLT 3 [mattingly, M-, Tran 2023].  lim +/nlog, fin = V,,b(I,,),
n—o0

e the directional derivative, in the space P, M of L% measures on M,
® of the barycenter map b : P, M — M sending 1 +—

e atpu

® along any Gaussian tangent mass [,

Variational CLT in a space of functions

CLT 4 [Mattingly, M—, Tran 2023]. lim \/E'Og ,l_L,, g VFMoexp %(G),
n— o0

the directional derivative, in the space of continuous maps C(T;M,R),

® of the minimizer map B : C(T,M,R) — T, M that sends f — argmin f(X)
® at F,oexp xe

® along the Gaussian tangent field G = G(-) = ([, - )z induced by p
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® at

® along any Gaussian tangent mass [,

Variational CLT in a space of functions
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the directional derivative, in the space of continuous maps C(T;M,R),
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M-, Tran 2023]. liMp_s00 v/N110g}; fin LS A

Variational CLT in a space of measures

CLT 3 [Mattingly, M-, Tran 2023]. Ii_}m Vnlog, fi, = V,b(I,),

® the directional derivative, in the space P»M of L? measures on M,
® of the barycenter map b : PoM — M sending p +— /1

®atpu

® along any Gaussian tangent mass [,

Variational CLT in a space of functions

CLT 4 [Mattingly, M—, Tran 2023]. lim \/E'Og/7 [in g Vpuoexp, %(G),
n—oo a

the directional derivative, in the space of continuous maps C(Tp M, R),

of the minimizer map B : C(T;M,R) — T;M that sends f — argmin f(X)
® at Foexp;, X€G

along the Gaussian tangent field G = G(-) = (I',, - )5 induced by
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