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Preface

The lectures below are an expanded form of the notes from a course given by Bernd
Sturmfels in May, 1999 at the COCOA VI Summer School in Turin, Italy. They
are not meant to be a complete overview of the latest research on monomial ideals.
Rather, a few representative topics are presented in what we hope is their most
accessible form, with lots of examples and pictures. Many proofs are omitted or
only sketched, and often we avoid the most general form of a theorem. The reader



who peruses these notes should acquire a feel for some of the recent developments in
monomial ideals and surrounding areas, and be able to apply the theorems in practical
cases, such as those in the exercises of Appendix A. At the very least, these lectures
should provide a guide to the references, for those who wish to explore this exciting
and branching field for themselves.

The lectures can be broken down roughly as follows. After the Basics (definitions
and notation), Lectures I and II give what can be considered as a mostly histor-
ical overview. The standard classes of monomial ideals are introduced, including
squarefree (“Stanley-Reisner”) and Borel-fixed ideals, along with the ways of getting
structural and numerical information about their resolutions and Hilbert series. Lec-
ture IIT accomplishes the transition to recent advances by emphasizing the geometric
ways of thinking about monomial ideals and their resolutions which have been so in-
fluential. Each of Lectures IV through VIII then treats in greater detail some recent
research topic.

Lecture IV introduces a new paradigm for monomial ideals, contrasting with those
of Lectures I and II. This is a notion of genericity which rests on randomness of
exponents on monomials rather than of coefficients in polynomials. It is shown how
the infinite poset of monomials in the ideal can be whittled down in this case to just
a few absolutely necessary elements, and how this reduction reflects the geometry
and combinatorics introduced in Lecture III. In particular, geometric free resolutions
of generic monomial ideals (algebraic Scarf complexes) are constructed using just the
combinatorial data. By deforming exponents on generators, any monomial ideal is
approximated by a generic one, and bounds for Betti numbers of ideals are thus
attained.

Lecture V abstracts the construction of Scarf complexes to more general cellu-
lar resolutions. In particular, the geometry of the Scarf complex is elucidated as a
special case of the hull resolution defined by convexity. This lecture shows how com-
binatorial topology interacts with monomial ideals via cellular complexes which are
not necessarily simplicial.

Lecture VI then covers Alexander duality, illustrating how this topological duality
is manifested in monomial ideals and their homological algebra. First the classical
form for squarefree monomial ideals is reviewed, along with some recent consequences
for resolutions of these. Then, Alexander duality is defined for arbitrary monomial
ideals. The interactions with free resolutions are explored, including what happens
to the numerical information in general, and in particular how the geometry of cel-
lular resolutions demonstrates the duality. Cogeneric monomial ideals, which are
generic with respect to their irreducible components rather than their generators, are
presented as running examples.

Lecture VII connects monomial and binomial ideals via monomial modules. Cer-
tain kinds of binomial ideals—the lattice ideals, which include toric ideals—are viewed
as coming from “infinite periodic” versions of monomial ideals. The cellular methods
of Lecture V apply here as well, with the cell complexes having infinitely many cells
but finite dimension. Taking the quotient by periodicity, the cell complex becomes
a torus, and resolves the lattice ideal. Examples of the theory are provided by the



classes of unimodular Lawrence ideals and generic lattice ideals.

Finally, Lecture VIII relates recent advances in the study of local cohomology
for monomial ideals to the foundational theorem of Hochster on the subject. The
standard notion of local cohomology with supports is reviewed, and calculations of
Hilbert series as well as module structure are given. Using the Cech hull, it is then
shown how these calculations are equivalent to the classical ones.

Acknowledgments. The authors are greatly indebted to Bernd Sturmfels: these
lectures were, after all, originally delivered by him, and he provided many comments
on drafts along the way. Those who attended the summer school will see his influence
throughout, including the exercises in Appendix A. We also wish to thank the students
of the Summer School; in particular, many of the solutions in Appendix B are adapted
from students’ responses solicited for these notes. Finally, we would like to thank the
organizers of the COCOA conference and school, Tony Geramita, Lorenzo Robbiano,
Vincenzo Ancona, and Alberto Conte for inviting us to Italy; our thanks especially
to Tony and Lorenzo, for initiating this written project.

0 Basics

Here we introduce the objects and notation surrounding monomial ideals. Some of
this material is a little technical, and most of it will be review for many readers, who
should proceed to the main Lectures and refer back as necessary.

0.1 Z"-grading
Let k be a field and S := k[x| := k[z1,...,z,] be the polynomial ring in n in-

determinates. A monomial in k[x] is a product x* := z{*z5*--- 2% for a vector
a = (ay,...,a,) € N" of nonnegative integers. An ideal I C k[x]| is called a mono-
mial ideal if it is generated by monomials. A polynomial f is in a monomial ideal
I = (x* ... x*) if and only if each term of f is divisible by one of the given gen-
erators x?. It follows that a monomial ideal has a unique minimal set of monomial
generators, and this set is finite by the Hilbert Basis Theorem.

As a k-vector space, the polynomial ring S is a direct sum S = @, .yn Sa, Where S,
is the k-span of the monomial x®. Since S, -Sp C Saip, We say that S is an N"-graded
k-algebra. More generally, an S-module M is said to be Z"-graded if M = @, ;. My,

is a direct sum of k-vector spaces with S, - My, C Maip.

Example 0.1 The following are all Z"-graded S-modules:
1. Monomial ideals I = D ac; Sa, and quotients S/I = P, azr Sa-

xael
2. The Laurent polynomial module T = Sz, ..., 2, '] = @ypeyn x°. Here, xP is
called a Laurent monomial since the exponent may have negative coordinates.
This module will be important later on, when we discuss monomial modules

(Lecture VII).



3. The localization S[x; '] is Z"-graded, its nonzero components being 1-dimen-
sional in every degree b such that all coordinates are nonnegative except for
possibly b;. More generally, if o C {1,...,n}, the localization

Sx = S[z;']|ico] = @ k- xP

b;>0 if jdo

is Z"-graded. Throughout these lectures, x” = [[,. x; for c C{1,...,n}. O

ico

Given a Z"-graded module M, the Z"-graded shift M[a] for a € Z" is the Z"-
graded module defined by Mla]y, = Mayp. In particular, the free S-module of rank
one generated in degree a is S[—a]. We will sometimes denote the element 1 € S[—ala
by 1a; thus we can write 2P - 1, € S[—a]pia. If a € N", sending 1, to x® induces a
Z™-graded S-module isomorphism between S|[—a] and the principal ideal (x®) C S.

If N is another Z"-graded module, then N ®¢ M is Z™-graded, with degree c
component (N ®g M), generated by all elements n, @ my, with n, € N, and my, € M,
such that a+ b = c. For example, Sla] ®¢ M = M|a], with degree b component
M[a]b = 1—a &® Ma+b-

Every Z™-graded module M is also Z-graded, with M, = @‘a‘: 4 Ma. This transi-
tion is sometimes called “passing from the fine to the coarse grading”.

0.2 Monomial matrices

A homomorphism ¢ : M — N of Z"-graded modules is, unless otherwise stated,
required to be of degree 0; that is, ¢(Myp) C Ny for all b € Z™. For instance, if
M = S[—ay] and N = S[—ay] are free modules generated in degrees a,; and ay,
then there exists a nonzero homomorphism of degree 0 if and only if ay; > ay. (The
“»7” symbol is used to denote the partial order on Z" in which a > b if a; > b; for all

i €{1,...,n}.) This is because the generator of M has to map to a nonzero element
of N in degree ay;. In fact we can map the basis element of S[—ay,] to any element
in N,,,, so

k ifaMiaN
0 ifaM%aN'

Hom(S[-au], S[-a]) = Sl-axlay = {

Therefore, if we want to write down a Z"-graded map S[—ay| — S[—ay]|, we only
have to specify a constant A\ € k, with the stipulation that A = 0 unless a,; = ay.

More generally, if M = P, S[—a,] and N = P, S[—a,] are arbitrary Z"-graded
free modules, then a map M — N can be specified by a matrix with entries Ay, € k.
But we also have to remember the degrees a, and a, in the source and target. To do
this, we make the following

Definition 0.2 A monomial matriz is a matrix of constants Ay, whose columns are
labeled by the source degrees a, and whose rows are labeled by the target degrees a,,
and such that A\, = 0 unless a, = a,.



The general monomial matrix therefore represents a map that looks like

@ Sl—ag] @ Sl—ay].

Sometimes we label the rows and columns with monomials x* instead of vectors a.

Each Z"-graded free module can also be regarded as an ungraded free module, and
most readers will have seen already matrices used for maps of (ungraded) free modules
over arbitrary rings. In order to recover the more usual notation, simply replace each
matrix entry A, by x* 72}, and then forget the border row and column. Because
of the conditions defining monomial matrices, x*~2)\,, € S for all p and q.

0.3 Complexes and resolutions

A homological complex of S-modules is a sequence - - - il F_ & F, «— .. of
S-module homomorphisms such that ¢;_10¢; = 0. In most of the examples from these
lectures, the modules will be Z"-graded and the maps homogeneous of degree 0. A
complex is ezact at the i*" step if it has no homology there; that is, if kernel(¢;_;) =
image(¢;). The complex is ezact if it is exact at the i*® step for all i € Z.

A free resolution of an S-module M is a complex

Oe——}%)efL-fﬂe——----e——}%_i efi-fﬁ — 0

of free S-modules which is exact everywhere except the 0 step, and such that
M = coker(¢y) = Fy/image(¢1). Sometimes we augment the free resolution with

the surjection 0« M Lo Fy, to make the complex exact everywhere. The length of
the resolution, by definition the greatest homological degree of a nonzero module in
the resolution (= t, assuming F; # 0), is called the projective dimension of M.
Every S-module has a free resolution, with length < n. If M is Z"-graded, then
it has a Z"-graded free resolution. If, in addition, M is finitely generated, there is
a Z"-graded resolution M «F. in which all of the ranks of the F; are finite and
simultaneously minimized. Such an F. is called a minimal free resolution of M, and
is unique up to noncanonical isomorphism (see [12, Theorem 20.2 and Exercise 20.1]).
In any Z"-graded free resolution resolution, the i*® term F; has a direct sum

decomposition
F, = @ S[—a]f=.
agzZn

Furthermore, we can write down each map ¢; using a monomial matrix. By definition,
the top border row (source degrees) a, on a monomial matrix for ¢; equal the left
border column (target degrees) a, on a monomial matrix for ¢; ;. (See Example 1.5
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in Section 1.1 for illustration.) The minimal free resolution is then characterized by
having scalar entry Ay, = 0 whenever a, = a, in any of its monomial matrices. Note
that if the monomial matrices are made ungraded as in the previous section, this sim-
ply means that the nonzero entries in the matrices are nonconstant monomials (with
coefficients), and agrees with the usual notion of minimality for Z-graded resolutions.

In the case of a Z"-graded minimal free resolution of M, the number §; a(M) := [ a
is an invariant of the finitely generated module M called the i-th Betti number of M
in degree a. It is readily seen that this number is the dimension of the degree a piece
of a Tor module:

Bia(M) = dimy,(Tor? (k, M),) .

Indeed, tensoring a minimal free resolution of M with k = S/{(xy, ..., x,) turns all of
the ¢; into zero-maps. These Tor modules are the same ones we use to measure the
usual Z-graded Betti numbers. Therefore, the multigraded Betti numbers are more
refined, in the sense that the Z-graded Betti numbers can be obtained from them:
Bia(M) = 32 a=q Bia(M), where [a| = 3. a;. Of course, this can be seen directly
from the minimal free resolution itself, which is already Z-graded.

0.4 Hilbert series

Let M be a Z"-graded module such that dimy(M,) is finite for all a € Z™. The (finely
graded) Hilbert series of M is the formal power series

H(M;x) = H(M;xq,...,2,) = Z dimy(M,) - x*.
aezn

For example,

n

H(S;x) = H

i=1

1 = sum of all monomials in §',

and
Xa

H?:l(l — ;)

for a € Z™. Of course, the primary example for us will be

H(S[~a):x) =

H(S/I;x) = sum of all monomials not in 7/,

where [ is a monomial ideal. For those more accustomed to Z-graded modules, the
usual (coarse) Hilbert series H(M;t, ..., t) is obtained by substituting x; = ¢ for all 7.

Given a short exact sequence 0+« M" «— M «— M’ 0, the rank-nullity theorem
from linear algebra implies that dimg(M,) = dimg (M) + dimg (M) for all a, and
hence H(M;x) = H(M";x) + H(M';x). More generally, if 0« M « Fy«— Fj «— - --
is a finite exact sequence such as a free resolution, then H(M;x) = > _,(—=1)'H(F};x).
In particular, if M is finitely generated, the existence of a finite-rank free resolution
for M implies that the Hilbert series of M is a rational function of x, because it is an
alternating sum of Hilbert series of S|—a] for various a. Moreover, the denominator
can always be taken to be [[,(1 — z;). A running theme of these notes is to analyze
the numerator of the Hilbert series H(S/I;x) for monomial ideals I.
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0.5 Simplicial complexes and homology

An (abstract) simplicial complex A on {1,2,...,n} is a collection of subsets of
{1,...,n}, closed under the operation of taking subsets. We frequently identify
{1,...,n} with the variables {z,...,2,}, as in Example 0.3, below. An element

of a simplicial complex is called a face or simplex. A simplex o € A of cardinality
i+ 1 is called an i-dimensional face or an i-face of A. The empty set, @, is the unique
face of dimension —1, as long as A is not the void complex {} consisting of no subsets
of {1,...,n} (which has no faces at all). The dimension of A, denoted dim(A), is
defined to be the maximum of the dimensions of its faces (or —oo if A = {}).

Example 0.3 The simplicial complex A on {1,2,3,4,5} consisting of all subsets of
the sets {1,2,3}, {2,4}, {3,4}, and {5} is pictured below:

x3 T4

x5
(@)

1 T2

The simplicial complex A

Note that A is completely specified by its facets, or maximal faces, by definition of
simplicial complex. O

Let A be a simplicial complex on {1,...,n}. For i € Z, let F;(A) be the set of
i-dimensional faces of A, and let k¥ (%) be a k-vector space whose basis elements e,
correspond to the i-faces o € F;(A). The (augmented or reduced) chain complex of
A owver k is the complex

Co(Ask): 0e— kP B pRa@) D R L8 pFea@) g

where for an i-face o,
di(es) = Z sign(j, o) eq\ (5} -
j€o
Here, sign(j, o) = (—1)""1if j is the 7" element of the set o, written in increasing
order. If i < —1 or n — 1 < 4, then k*(®) = 0 and 9; = 0 by definition. The reader
unfamiliar with simplicial complexes should make the routine check that 0;00;,1 = 0.
For ¢ € Z, the k-vector space

H(A; k) := kernel(9;) /image (1)

is the i-th reduced homology of A over k. In particular, H,_i(A; k) = kernel(9,_,)
and H;(A; k) = 0fori < 0orn—1 < i, unless A = {@}, in which case H_j(A; k) 2 k
and H;(A; k) = 0 for i > 0. The dimension of Hy(A; k) as a k-vector space is one less
than the number of connected components of A. Elements of kernel(0;) are called
i-cycles and elements of image(0;, 1) are called i-boundaries.



Example 0.4 For A as in Example 0.3, we have

F2(A> = {{17273}}7

F(A) = {{1,2},{1,3},{2,3},{2,4},{3,4}},
Fo(A) = {{1},{2}, {3}, {4}, {5}},

FaA) = {o).

Choosing bases for the k(®) as suggested by the ordering of the faces listed above,
the chain complex for A becomes

-1 -1 0 0 © 1
1 0 -1 -1 0 -1
o 1 1 0 -1 1
o0 0o 0 1 1 0
(1 11 1 1) 0 0 0 0 © 0
0 «— k kS k k «— 0
Ao 01 02

For example, 0y(eq1,2,3)) = €23} — €13} + 1,23, which we identify with the vector
(1,—1,1,0,0). The mapping 0; has rank 3, so f[O(A; k) = f[l(A; k) = k and the other
homology groups are 0. Geometrically, H o(A; k) is nontrivial since A is disconnected
and H 1(A; k) is nontrivial since A contains a triangle which is not the boundary of
an element of A. O

Remark 0.5 We wouldn’t make such a big deal about the difference between the
empty complex {@} and the void complex {} if it didn’t come up so much. Many of
the formulas for Betti numbers, dimensions of local cohomology, and so on depend
on the fact that H;({@}; k) is nonzero for i = —1, while H,({}; k) =0 for all . O

The (augmented or reduced) cochain complex of A over k is the k-dual C'(Ask) =
Homy(C.(A; k), k) of the chain complex. Explicitly, let & () = Homy (k%) k) have
basis {e | o € F;(A)} dual to the basis of k(). Then

Cr(Ak): 0 — kFa@ 2R @) O @) T R @) )

is the cochain complex of A, where for an (i — 1)-face o,

& (e}r) = Z sign(, 0 U j) ;05
j¢o
jUceA
is the transpose of 0.

Example 0.6 The cochain complex for A as in the previous two examples is exactly
the same as the complex in Example 0.4, except that the arrows should be reversed
and the elements of the vector spaces should be considered as row vectors, with the
matrices acting by multiplication on the right. O

9



For ¢ € Z, the k-vector space

H'(A; k) := kernel(0""!) /image(9")

is the i-th reduced cohomology of A over k. Because Homy(—, k) is exact, there is a
canonical isomorphism H'(A; k) = H;(A; k)*, where * denotes k-dual. Elements of
kernel(9"1) are called i-cocycles and elements of image(d°) are called i-coboundaries.

0.6 Irreducible decomposition

An arbitrary ideal in S is called irreducible if it is not the intersection of two strictly
larger ideals. For example, prime ideals are irreducible. The standard noetherian
argument shows that every ideal I C k[z1,...,x,] can be written as an intersection
Q1N ---NQ, of irreducible ideals. Such intersections are of course not unique—it
might be that intersecting all but one of the @); still yields /. Even assuming this
is not so, i.e. that the intersection is irredundant, the irreducible decomposition still
need not be unique. However, an irredundant decomposition of a monomial ideal as
an intersection of irreducible monomial ideals is unique. Although it is elementary
(but cumbersome) to prove this uniqueness directly, it will follow from the uniqueness
of minimal monomial generating sets along with Alexander duality, which we treat in
Lecture VI. But since irreducible decompositions come up many times before then,
we describe now what they look like, and how to find them.

Here’s a fun algorithm to produce irreducible decompositions: if m is a minimal
generator of a monomial ideal I and m = m’m” where m’ and m” are relatively prime
monomials, then I = (I + (m/)) N (I + (m”)). Thus, for example,

I = (na3,z) = (I 4 (21)) N (I + (23)) = (1, 23) N (23, 73).

Iterating this process, it is clear that every monomial ideal can be expressed as an
intersection of ideals generated by powers of some of the variables. It turns out, in
fact, that these are irreducible. Therefore, an irreducible monomial ideal is uniquely
determined by a vector a € N™, just like a monomial: we write m® = (z{* | a; > 1).
This takes the monomial x* and sticks commas between the variables, ignoring those

variables with exponent zero. If ¢ C {1,...,n}, then m? = (z; | i € o) denotes
a monomial prime ideal. We use the symbol m for irreducible ideals because it is
commonly used to denote the maximal ideal (zq,...,x,).

Further reading. The standard reference for Z"-graded modules is the paper by
and Goto and Watanabe [16]. Monomial matrices are defined in [24]. Information
on free resolutions can be found in Eisenbud’s comprehensive book on commutative
algebra [12], but a quicker introduction with monomial ideals partially in mind can be
found in Chapter 0 of Stanley’s green book [32], which is also an excellent reference
for simplicial complexes. If you haven’t had enough of irreducible decompositions by
the time you finish these lectures, look at [23].
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1 Lecture I: Squarefree monomial ideals

1.1 Equivalent descriptions

A monomial x? is called squarefree if every coordinate of a is 0 or 1. A monomial
ideal is called squarefree if it is generated by squarefree monomials. The information
carried by squarefree monomial ideals can be characterized in many ways. Some of
the most important are given in the following

Theorem 1.1 The following are equivalent:

1. Squarefree monomial ideals in klxy, ..., T,]

2. Unions of coordinate subspaces in k™

3. Unions of coordinate subspaces in P"~!

4. Simplicial complexes on {1,...,n} :={1,2,...,n}

Theideal I = I in (1) is called the face ideal or Stanley-Reisner ideal of the simplicial
complex A in (4), and S/Ia is called the face ring or Stanley-Reisner ring of A.

Proof: The general idea is

ideal I «~ affine variety of I «~+ projective variety of [
and
coordinate subspace «~ simplex.

Precisely:

1~~2: Given a squarefree monomial ideal I, let V' (I) C k™ be the algebraic subset
on which it vanishes. From the algorithm in Section 0.6 it follows that / = m?*N---N
m is an intersection of monomial prime ideals. Thus V(1) = V(m?)U---UV (m°") is
a union of coordinate subspaces because V(m?) is the vector subspace of k" spanned
by the standard basis vectors {e; | j € o}.

2~~3: Recall that P"~! = (k™ \ {0})/k* is a quotient of k™. In particular, the
quotient of any nonzero coordinate subspace of k" is a coordinate subspace of P"~!,
This gives a 1-1 correspondence between affine and projective coordinate subspaces
if we agree that the empty set is a projective coordinate subspace, spanned by the
empty set of coordinate points, corresponding to the affine linear subspace {0}.

3~+4: The simplicial complex on {1, ..., n} corresponding to a union of coordinate
subspaces is the one whose faces consist of those sets o C {1, ..., n} such that span(e; |
i € 0) is contained in the union. It is a simplicial complex because if a subspace V is
contained in our union, then so is every subspace of V.

4~~3~>2~~1: The algebraic sets in (3) and (2) are the unions of the subspaces
span(e; | i € o) for which o is in our simplicial complex. Each coordinate subspace
span(e; | i € o) is equal to V(m?), where 7 := {1,...,n} \ o, and the ideal in (1) is
the intersection of these m?. O

Remark 1.2 A little bit of caution is warranted: in 4~+3~~2~-1, it is not always

true that the ideal of polynomials vanishing on a collection of coordinate subspaces
is a monomial ideal! This means that the correspondence in the Theorem is not the

11



Zariski correspondence: there is a problem if k is finite. On the other hand, when k
is infinite, the Zariski correspondence between ideals and algebraic sets does induce
the 1-1 correspondence between squarefree monomial ideals and unions of coordinate
subspaces. At any rate, the Theorem does not depend on k being infinite. O

c d

Example 1.3 The simplicial complex A = N . from Example 0.3, re-
b o

a

placing the variables x1, x9, x3, x4, x5 by a, b, ¢, d, e, has Stanley-Reisner ideal

c < Cd d
A, VA
In = (de) N (a,be) N (a,c,e) N (a,b,c,d)

(ad, ae, bed, be, ce, de).

We have expressed Ia via its irreducible decomposition and its minimal generators.
Above each irreducible component is drawn the corresponding facet of A. O

Given a simplicial complex A, it should be clear by now what the irreducible
decomposition of its Stanley-Reisner ideal In means: each irreducible component
m? corresponds to a facet & := {1,...,n} \ ¢ of A. But what about the minimal
generators? In order for x™ to be in the intersection In = (),_, m?, it is necessary
and sufficient that 7 share at least one element with o; for each ¢ between 1 and 7.
In terms of A, this means that for every facet @ € A, 7 has at least one vertex not
in 7. In other words, 7 is not contained in any facet (and therefore in any face) of
A; we say that 7 is a nonface of A. Thus the squarefree monomials in 5 correspond
precisely to the nonfaces of A:

In=(X"|7¢&A).

Since being a nonface is preserved under taking supersets, the minimal generators
of In are therefore {x” | 7 is a minimal nonface of A}. Alternatively, the nonzero
squarefree monomials of S/Ia correspond to the faces of A. Example 1.3 can be used
as a test case.

1.2 Hilbert series

Now we want to write down the Hilbert series of S/Ia for the Stanley-Reisner ring of
a simplicial complex A. We know already from the previous section which squarefree
monomials are not in /5. But because the generators of Ix are themselves squarefree,
a monomial x? is not in I if and only if x*"PP(®) is not in Ix, where supp(a) = {i €
{1,...,n} | a; # 0} is the support of a. Therefore,

H(S/In;x1, ... ) = Z{Xa\aeN" and supp(a) € A}
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— Z Z{xa | a € N" and supp(a) = o}

- I
1
_ . Z; (1_xj)}‘
(=) - (1 =) {c;mlel Jl;!r

S

numerator of the Hilbert series

Example 1.4 Consider the simplicial complex I' depicted below. (The reason for
not calling it A is because I' is the Alexander dual of the simplicial complex A of
Examples 0.3 and 1.3, and calling them both A would be confusing in Lecture VI.)

a

0
L~ > hollow

tetrahedron

d
O

€ c

The simplicial complex I'

The Stanley-Reisner ideal of T' is

Ir = (de,abe,ace, abed)
= (a,d)N{a,e) N {b,c,d) N (b,e) N{c,e) N{(d,e),

and its Hilbert series is

a b c d e ab ac ad
L P i S P W S Wil ey Nl ey Sl e e
ae be bd be cd ce
T e T Toh=a T G=n)(=d) T G=b)i=e) T T=o(=ad T (=o(=e)
abc abd acd bed bee
+ (1—a)(1-b)(1—c) + (1—a)(1-b)(1—d) + (1—a)(1—c)(1—4d) + (1-b)(1—c)(1—4d) + (1-b)(1—c)(1—e)

1 —abcd — abe — ace — de + abce + abde + acde
(1—a)(1=0)(1—-c)(1—=d)(1—e)

See Example 1.5, below, for a quick way to get this last equality. O

The formula for the Hilbert series of S/Ix perhaps becomes a little neater when
we coarsen to the Z-grading. Letting f; := |F;(A)| = the number of i-faces of A
(Section 0.5), we get

d
1 , »
H(S/Iait,... 1) = (1_0“2]2_1#(1—75)"
=0
ho + hit + hat? + - -+ + hyt?

(1—1)
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where d = dim(A)+1 and the vector (hg, h1, ..., hyq), which is defined by this equation,
is the h-vector of A. We will provide no more generalities about the h-vector or the
f-vector (f_1, fo,--., fa) since they are, to some approximation, the subjects of a
whole chapter of Stanley’s book [32].

1.3 Free resolutions

There is no general formula for the maps in a minimal free resolution of an arbitrary
squarefree monomial ideal Ix. However, we can figure out what the Betti numbers are
in terms of the simplicial cohomology of the Stanley-Reisner complex A. Before doing
this, let’s first have a look at some free resolutions. In what follows, it is convenient
and customary to identify the subset o C {1,...,n} with its characteristic vector in
{0,1}", which has a 1 in the i*® slot when i € o. This causes the notation x° = [],., z;
to make even more sense than it did in Example 0.1.3.

€0

Example 1.5 Let I' be the simplicial complex from Example 1.4. The Stanley-
Reisner ring S/Ir has minimal free resolution

abce abde acde abcde abcde
de 0o -1 -1 -1 abce -1
abe 1 1 0 0 abde 1
de abe ace abcd ace | —1 0 1 0 acde -1
1 (1 1 1 1 ) abed 0 0 0 1 abcde 0
0—3S St S S—0

where the maps are denoted by monomial matrices as in Section 0.2. For an example
of how to recover the usual matrix notation for maps of free S-modules, the middle

matrix can be written as
0 —ab —ac —abc

without the border entries.
As a preview to Lecture V, the reader is invited to figure out how the following
labeled simplicial complex corresponds to the above free resolution:

abe

ace

Hint: compare the free resolution and the labeled simplicial complex with the numer-
ator of the Hilbert series in Example 1.4. O

14



Example 1.6 The minimal free resolution of k = S/m is the Koszul complex K.,
and is easiest to describe using monomial matrices. Recall that in the reduced chain
complex of the simplex consisting of all subsets of {1,...,n}, the basis vectors are
called e, for 0 C {1,...,n}. The monomial matrices for the maps in K. are obtained
simply by labeling the column and the row corresponding to e, by o itself (or x7) and
shifting homologically so that the empty set @ is in homological degree 0. If n = 3,
for instance, we get the following resolution (with z1, xo, x3 replaced by z,y, z).

yz Tz Ty Tyz
T 0 1 1 Yz 1
r Yy z Y 1 0 -1 zz | —1
1 (1 1 1) z -1 -1 0 Ty 1
Ke: 00— S S3 S3 S«—20

The method of proof for many statements about monomial ideals is to determine
what is happening in each Z"-graded degree of a complex of S-modules. To illustrate,
we do this now for K. in some detail.

The essential observation is that a free module generated by 1, in degree 7 is
nonzero in degree o precisely when 7 C ¢ (equivalently, when x™ divides x7). It helps
to think of S - 1, as the principal ideal (x7), so the statement becomes

(x")e #0 <= x7 € (x") <= x" divides x7.

The only contribution to the degree 0 part of K., for example, comes from the free
module corresponding to &, which is generated by 14 in degree 0. More generally,
the degree o part of K. comes from those rows and columns labeled by faces of . In
other words, we restrict K. to degree ¢ by ignoring summands S- 1, for which 7 is not
a face of o. Therefore, (K.), is, as a chain complex of k-vector spaces, precisely equal
to the reduced chain complex of the simplex ! This explains why the homology of
K. is just k in degree 0 and zero elsewhere: a simplex ¢ is contractible, so it has no
reduced homology (unless ¢ = @—see Remark 0.5). O

Example 1.7 Instead of using the reduced chain complex of the simplex {1,...,n},
we could use the reduced cochain complex to get another version of the Koszul com-
plex. This time, we denote it by K" and put the label x? on the column and row
corresponding to eX, where @ = {1,...,n} \ 0. Of course, if we want to consider
K* as a free resolution of k, we must shift the homological degrees so that e}, sits in
homological degree n, and more generally eX sits in homological degree n — [7| = |o]|.

As a complex of k-vector spaces, (K'), = P, S[T — 0], is the subcomplex of

the cochain complex C*({1,...,n}; k) spanned by the basis elements {e% | 7 C o} =
{e¢z|7C0o} ={x"-1,_, | 7 Co}. In fact, though,

(K, = C(0)
€y > osign(r,7)er
where sign(7, @) is the sign of the permutation which puts the list (7, ) into increasing
order. This point of view will be essential for the proof of Theorem 1.8. Just as in the
last example, this explains why K has homology k in degree 0 and 0 otherwise. O
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For each o C {1,...,n}, define the restriction of A to o by
Al, ={reA|TCo}.

Hochster’s formula expresses the number of summands generated in degree o at the
™™ stage in a minimal free resolution of S/Ix as follows.

Theorem 1.8 (Hochster [19]) Gi_1,(Ia) = Bio(S/Ia) = dimy, HI==1(A|,; k).

It turns out that all of the syzygies occur in degrees given by some incidence vector
o; we will have a quick and easy proof available as soon as we introduce the hull
resolution in Lecture V (see the comment after Theorem 5.9). For now, we apply this
fact to note that Hochster’s formula accounts for all of the nonzero Betti numbers.

Proof: The first equality is obvious, since a minimal free resolution of I is achieved
by snipping off the copy of S occurring in homological degree 0 of the minimal free
resolution of S/Ix. For the second equality, we use the commutativity of Tor: we can
calculate Tory (k, S/Ia) by tensoring the Koszul complex K* with S/IA as follows.
In each squarefree degree, (S/In ®s K'), is a quotient of (K"), and, as in Ex-
ample 1.7, will be the reduced cochain complex of some simplicial complex. For
7 C o, the basis vector e} = =x" ®1,_, € (K*), becomes zero in the tensor product
S/Ix @ K® if and only if x™ = 0 in S/Ia, and this occurs if and only if 7 & A. There-
fore, the k-basis for (S/In @ K*), is {ef , | 7 € Al,}. Under the isomorphism in
Example 1.7, we find that (S/Ix ®K"), 2 C*(A|,: k), but considered as a homological
complex (decreasing indices) with e}, in homological degree |o|, and more generally
er in homological degree || — |7| = |o| — dim 7 — 1. Taking the i*" homology of this
complex yields HI"==1(A|,: k), as desired. O

Example 1.9 Let I' be as in Examples 1.4 and 1.5. Taking 0 = {a, b, ¢, d, e}, corre-
sponding to the monomial abcde, we have T'|, = I'. Therefore, we can use Hochster’s
formula to compute the dimensions of the cohomology groups of I'. From the label-
ings of the matrices, we see 33 ,(S/Ir) = B2,,(S/Ir) = 1, and the other Betti numbers
in this degree are zero. Thus, H'(I'; k) & H2(T'; k) = k, and the other reduced coho-
mology groups of I are 0. The nonzero cohomology comes from the “empty” circle
{a,b,e} and the “empty” sphere {a,b, c, d}.

For another example, take o = {a, b, ¢, e}, corresponding to the monomial abce.
The restriction I'|, is the simplicial complex

€ C

Hochster’s formula gives H!71=1=2(T'|,: k) = HY(T'|,: k) = k, and the other cohomology
groups are trivial. O
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Remark 1.10 Since we are working over a field £, the reader who wishes may substi-
tute reduced homology for cohomology when calculating Betti numbers, since these
have the same dimension. O

Further reading The standard reference for squarefree monomial ideals is Stanley
[32], but Chapter 5 of the excellent book of Bruns and Herzog [7] is also recommended.

2 Lecture II: Borel-fixed monomial ideals

Squarefree monomial ideals occur mostly in a combinatorial context. Our next mono-
mial ideals, the Borel-fired monomial ideals, have more direct connection to algebraic
geometry, where they arise as fixed points of an algebraic group action on the Hilbert
scheme. But don’t worry: one need not know what the Hilbert scheme is to under-
stand both the group action and the fixed points.

2.1 Group actions

Let’s begin by putting this group action in perspective. Throughout this lecture, the
field k has characteristic 0, and all ideals of S that we consider are Z-graded. We
have the following inclusions of matrix groups:

GL,(k) = {invertible n x n matrices} general linear group
U

B,(k) = {upper triangular matrices} Borel group
U

T.(k) = {diagonal matrices} torus group

The general linear group (and hence its subgroups, as well) acts on the polynomial
ring as follows. For g = (¢g;;) € GL,,(k) and f = f(x1,...,2,) € S, let g act on f by

g-f=flgz1,...,9z,) where gx;:= Zgijxi .
i=1

Given an ideal I C S, we can then set

g-I={g-f|fel},
and this defines the action on the Hilbert scheme, whose points correspond to homo-
geneous ideals of S up to primary components at the irrelevant ideal m = (z1,...,x,).

Being fixed by all of GL,, is awfully difficult for an ideal I; the only way this can
happen is if I = 0 or I is some power m?. At the other extreme, an ideal I is torus
fixed if and only if I is a monomial ideal. This characterization of monomial ideals
was one of the original motivations for studying toric varieties, examples of which
come from the orbit-closures under T, of ideals I. In any case, it explains why we
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are interested in the action of B,,, which will therefore pick out some special kinds
of monomial ideals (but not so special as to be powers of m!). The extra property
enjoyed by a Borel-fixed ideal is that smaller-indexed variables can be swapped in for
larger ones without leaving the ideal (see, for instance, [12, Theorem 15.23]):

Proposition 2.1 The following are equivalent for a monomial ideal I:

1. I is Borel-fized;
2. If m € I is any monomial divisible by x;, then ma;/x; € I fori < j.
To test your understanding, try answering the following questions:
1. An irreducible ideal I = (z{', ..., x{") is Borel fixed if and only if ?

2. Are the primary components of a Borel-fixed ideal Borel-fixed?

2.2 Generic initial ideals

Again let I C S be a Z-graded ideal, and let < be any term order (for an introduction
to term orders and the other material in this Section, see [12, Chapter 15]). Every
g € GL,, determines a monomial ideal in_(g - I'), the initial monomial ideal of g - I for
the term order <. It is a theorem that as a function of g, in.(g - I) is constant on
a Zariski open subset of GL,. The constant value on that open set is called the the
generic initial ideal of I for the term order <, and is denoted

gin (1) :==inc(g-1).
The point of all this is:
Theorem 2.2 gin_(I) is Borel-fized.
See [12, Chapter 15] for a proof.

Example 2.3 Let f, g € k[xy, x2, 3, x4) be generic forms of degrees d, e, respectively.
Here is the ideal M = gin,.((f, g)) for a few cases:

(d,e) = (2,2) M = (23,2123, 2129, 2%)

= (z1,73) N (21, 22, 73)
(d,e) = (2,3) M = (25 2128, v 290}, T1 007373, 11 To 3, T T2, X3)

= (z1,23) N (2}, 22, 28) N (2, 23, 23, 23) N (2}, 23, 23, 23)
(d,e) = (3,3) M = (23,2288 212928 2y 2omai?, ... 23) (26 generators)

2.3 The Eliahou-Kervaire resolution

Throughout this Section, let the monomials my, ..., m, minimally generate a Borel-
fixed ideal, and let u; be the largest index of a variable dividing m;.

Lemma 2.4 Any monomial m € (my,...,m,) can be written uniquely as a product
m = m;m’ such that u; < the smallest index of an indeterminate dividing m’.
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Proof: Uniqueness: Suppose m = mym; = mym/ both satisfy the condition, with
u; < u;. Then m; and m; agree in every variable whose index is < u;. Now if z,
divides m;- then u; = u; by the assumed condition, whence one of m; and m; divides
the other, so i = j. Otherwise, z,, does not divide m/. In this case the degree of z,,
in m; is < the degree of z,, in m;, which equals the degree of z,, in m, so that again
m; divides m; and ¢ = j.

Existence: Suppose that m = m;m' for some j, but that u; > u =: the smallest
index of a variable dividing m'. Then Proposition 2.1 says that we can replace m;
by any minimal generator m; dividing m;z,/x,,. By construction, u; < u;, so either
u; < uj, or u; = u; and the degree of z,, in m; is < the degree of z,, in m;. This
shows that we can’t keep going on making such replacements forever. O

Now apply this lemma to each m = m;x, where v < ;. If m = m;z, = m;m’ as
in the Lemma, then z,e; —m'e; is a syzygy of the ideal. In this way, we get a set of
minimal first syzygies for a Borel-fixed ideal.

Example 2.5 A Borel-fixed ideal and its minimal first syzygies:

(T1797], T1Tox3w3, 1S, TTRXE, a8, T173, z?)
I3 e —[L’Z (S}
T9 € —1} eg
T €y —1ox]er
T3 €5 —13ey
To €9 —1’31’421 €g
I €9 —[L’gl’gl’i ey
To €3 —l’é €y
T €s —18e;
To €y —12eq
I €q —1'21’:23 ey
I €s —ZL’% €g
T €g —ZL’% er

Key Fact: These syzygies form the reduced Grébner basis for the presentation mod-
ule M of the Borel-fixed ideal with respect to any position-over-term (POT) order.
Indeed, the initial terms of the syzygies above are relatively prime by [10, Proposi-
tion 2.9.4]. In the specific example here, the initial module is

in(M) = (z1e1, z2e, w38€4,
T1€2, T2€2, I3€y,
I1€3, I2€3,
T1€4, T2€y4,
I €s,
I 66> C k‘[X]7
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Its resolution is a direct sum of Koszul complexes:

Se; «— S8 — 8§ — S — 0

Sey «— 8§ — S —— S — 0 &
Seg «— 5?2 «— S «— 0 S
Se, «— 82 «— S — 0 D
Ses «— S «— 0 D
Seg «— S «— 0 D

0 «— inM «— S22 —— §% — §2 ¢

The resolution of in(M) is linear and lifts (by adding trailing terms) to the minimal
Eliahou-Kervaire resolution of M C ST and of S7/ M, the given Borel-fixed ideal [14].

4 2 ... 2
(r1m2x] w1T2T3TY x7)

0 «— S ST — S22 8§88 — §2 0

This lifting of linear resolutions of initial modules is a general phenomenon, being a
consequence of the upper-semicontinuity of Betti numbers in flat families. And for
Borel-fixed ideals, the Koszul behavior exhibited above in the resolution of the initial
module is fundamental. Therefore, because we understand the numerics of Koszul
complexes, we understand the numerics of Borel-fixed ideals:

Theorem 2.6 (Eliahou-Kervaire [14]) If [ = (my,...,m,) is Borel-fized and u;
is the largest index of a variable dividing m;, then

1. The number of j-th syzygies of I is Y ;_, (“]_1), and

2. The numerator of the Hilbert series is I equals

T u;—1
i=1 j=1

Example 2.7 Powers m? of the maximal ideal are Borel-fixed and hence resolved by
Eliahou-Kervaire. In the case n = d = 3, we get:

1 3
° T
> 3 VY
° o rYy—- ZB z
2 3 3 4 AR )
° ° ° :Ey—'xyz—’:z:z
2 3 3 3 3/\ \2 \3
° ° ° ° Y yQZ Yz z
Ui (x,y,z>3
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S e S0 e S8 §5 0

1 0 0
11 12 01
111 122 011
1111 1222 0111

The triangles of numbers below the resolution are the (“j_l) of Theorem 2.6; they
indicate how the initial module decomposes as a direct sum of Koszul complexes.
It may seem that any minimal resolution breaks the symmetry under the group S3
permuting the variables, but this is not necessarily so—see [25]. O

2.4 Lex-segment ideals

Let < be a term order and H: N — N the Z-graded Hilbert function of a homogeneous
ideal I. The segment ideal, Iy -, is the ideal k-spanned by the first H (i) monomials
with respect to < in each degree 7. It is Borel-fixed. If < is the lexicographical order,
we get the lez-segment ideal, If1ex. Historically, the reason for studying lex-segment
ideals was because of their supremely bad (good?) numerical behavior.

Theorem 2.8 (Macaulay, [22]) Iy ex has the highest degree generators among all
(monomial) ideals with the same coarse Hilbert function.

In Macaulay’s theorem, it is enough to restrict our attention to monomial ideals, since
any initial ideal of a Z-graded ideal I has generators with at least the degrees of the
generators of I.

The degrees of the generators, of course, are measuring the zeroth Betti numbers.
One can also ask which ideals have the worst behavior with respect to the degrees of
the higher Betti numbers. The ultimate statement is that lex-segment ideals take the
cake, simultaneously for all Betti numbers.

Theorem 2.9 (Bigatti, Hulett [5, 21]) Iy has the most minimal i-th syzygies
for all i, among all (monomial) ideals with the same Hilbert function.

Again, the upper semi-continuity of Betti numbers implies that we need only compare
the lex-segment ideals with other monomial ideals.

3 Lecture III: Monomial ideals in three variables

Squarefree and Borel-fixed ideals each have their own advantages, the former yield-
ing insight into combinatorics, and the latter into extremal numerical behavior in
algebraic geometry. Their utility stems in both cases from our ability to express the
appropriate information in terms of the defining properties of these special classes of
monomial ideals; and in the Borel-fixed case, we are actually able to write down an
explicit minimal free resolution.

However, this is not possible for general monomial ideals, at least not without
making arbitrary choices. Even in the Borel-fixed case, the choices have really already
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been made for us—in the order of the variables, for instance—and it may well be that
an ideal is Borel-fixed with respect to more than one such order (e.g. the powers of the
irrelevant ideal m). This inability to write down explicit canonical minimal (or at least
“small”) resolutions has prompted research into the intrinsic geometric properties of
monomial ideals, resulting from the inclusion of Z" into R™. Consequently, convex
geometric techniques, along with the combinatorial and algebraic topological methods
surrounding them, are now being used to derive ways of expressing information for
general monomial ideals which were until now available only for special classes.

The purpose of this lecture is to give a heuristic introduction to these geometric
ideas, in the case of two and three variables. The details of some of the multiple facets
of this theory in higher dimensions are the subjects of the remaining five lectures.
Many parts of the exposition in this lecture have been adapted from the introductory
article of Miller and Sturmfels [25].

3.1 Monomial ideals in two variables

Let M = (my,...,m,) = (z%y", x%2y> ... 2%y") be a monomial ideal with a; >
ag > --->a, and by < by < --- < b.. The staircase diagram for M shows the bound-
ary between the region of the plane containing the (exponent vectors of) monomials
in M and those not in M:

T

(ar,br)

. M

The black lattice points, contained completely within the non-shaded region, form a
k-basis for S/M. As we have already seen in Section 0.4, the Hilbert series H(S/M; x)
is therefore the sum of all monomials not in M. But for practical purposes, we need
to have H(S/M;x) written as a rational function.

One way to accomplish this is by inclusion-exclusion. Start with all of the mono-
mials in S. Then, for each minimal generator m,;, subtract off the monomials in the
principal ideal (m;) (which looks like a shifted positive orthant). Of course, now
we've subtracted the monomials in (m;) N (m;) = (lem (m;, m;)) too many times, so
we have to add those back in. Continuing in this way, we eventually (after at most
r steps) have counted each monomial the right number of times. But this procedure
produces way more terms than are necessary; almost all of them cancel, in the end.
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There is a more efficient way, though, to do the inclusion-exclusion: after we've
added in the principal ideals (m;), we subtract off not all of the principal ideals
(lem (m;, m;)), but only those which come from adjacent m; and m;. This yields the
Hilbert series after just a couple of steps. We find that the numerator of the Hilbert
series is

(1—a)(1—y) H(S/M;z,y) = (1—-2)(1-y) > o'y

iyl €M
(by inclusion exclusion) = Z (=) lem(ayb | i € 1)
I1C{1,...,r}
T r—1
(more efficient inclusion exclusion) = 1— Z T Z x%gybit
=1 7j=1

= 1 — inner corners + outer corners.

The inclusion-exclusion process is in fact making a highly non-minimal free resolution
of S/M called the Taylor resolution (Section 5.3). Our more efficient way of doing
things in fact yields the minimal free resolution

00— S— 8" «— 8 1e0.

The important point is that the adjacent pairs of generators are the minimal first
syzygies: ybit17bie; — ptiTtitie, .

3.2 Buchberger’s second criterion

Finding minimal sets of syzygies for monomial ideals has an impact on algorithmic
computation for arbitrary ideals. The connection is, of course, through Grobner bases.
Recall that a set of polynomials

fi := m; + trailing terms under term order <, ¢=1,2,...,r
is a Grobner basis under the term order < if each S-pair

1 e
S(fi fy) = mlmemy) o

m; m;

can be reduced to zero by {fi,..., f.} using the division algorithm. Buchberger’s
second criterion says that it’s actually enough to check this reduction to zero only
for the S-pairs S(f;, f;) corresponding to a generating set for the first syzygies on

M = (my,...,m,),
{lcm (mi,mj)e lem(m;, m;) }

2 =
m; m;

Thus, we can ignore those S-pairs S(f;, f;) such that lem (m;, m;) is a multiple of

my for i < ¢ < j or a proper multiple of other my (see [15]). For example, in the
two-variable case, we need only consider the » — 1 consecutive S-pairs instead of all

() pairs.
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One of the original motivations for the definition of generic monomial ideals in
Lecture IV is the way in which Buchberger’s second criterion becomes simplified
in the presence of certain randomness properties for generators of monomial ideals:
genericity implies that whenever lem (m;, m;) is a multiple of my, it is automatically
a proper multiple.

3.3 Resolution “by picture”

Staircase diagrams are also possible to draw for monomial ideals in three variables.

For instance,
z

004

132

040
321 Y

400

T

is a staircase diagram for the monomial ideal M = (z3y%z, 2322, 2223, 2, o, 2%).
Remember that the surface we see is the interface between being in or not in M,
and that the lattice points strictly behind the interface are the ones not in M. Thus
any lattice point which is visible in the staircase diagram is the exponent vector on a
monomial in M. In particular, the dark dots correspond to the minimal generators
of M—mnote how they sit in the “inner” corners.

Consider the graph above, in which we have connected the generators of M accord-
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ing to Buchberger’s second criterion. Each edge and each triangular face is labeled by
the exponent vector of the least common multiple of its vertices. As will be explained
in the following lectures, much of the structure of the monomial ideal can be read
off from this picture. For example, vertices correspond to generators, edges to first
syzygies, and facets to second syzygies. In this particular case, where the monomial
ideal is artinian, the facets also tell us the irreducible components, which correspond
to the white dots on the “outer” corners of the staircase diagram. Overall, the kinds
of information we can get include:

Irreducible decomposition (labels on triangles):
= (@t ) Nty ) Nyt 2 n (et y? %) N
(@ y", 2% N ey 2t 0 (2P, 27)
Minimal free resolution (boundary complex of triangulation):
08580812 87—0.

Numerator of the Hilbert series (alternating sum of all face labels):

1—:,174—...—x2y23+a¢4y4—|—...+xy324—x4y4z—...—x?’ygz?’.

3.4 Planar graphs

The graph produced in the previous example by Buchberger’s second criterion can
be embedded nicely into the staircase diagram: each edge consists of two straight
segments connecting the minimal generators m; and msy to the exponent vector on
lem (mq,my). It looks a little better if we replace the two straight segments by a
spline going through my, lem (my, my), and mo:

z

/
)2

Considering the graph as a subset of the 2-dimensional interface between M and
{not M}, each region contains precisely one white dot situated on an outside corner,
each vertex is a dark dot on inside corner, and each edge passes through one corner

T
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which is neither inside nor outside. The label on each vertex, edge, and region is the
vector represented by the corresponding corner.

The monomial ideal above is special: it is generic (Lecture IV). This is why we
didn’t have any choices for where to put the edges—Buchberger’s second criterion
was enough. It turns out that a similar process works more generally, although we
no longer get uniqueness (see [25] for exposition and [27] for details of the proof):

Theorem 3.1 Every monomial ideal M in k[x,y, z] has a minimal resolution by the
bounded regions of a planar graph. That resolution gives irredundant formulas for the
numerator of the Hilbert series and the irreducible decomposition of M.

The vertices, edges, and bounded regions of this planar graph are labeled by their
associated corners as in the example above. The free resolution is created by a method
to be described precisely in Lecture V.

In general, since a planar graph with r vertices has at most 3r —6 edges and 2r —5
bounded regions, we get the following complexity result.

Corollary 3.2 An ideal generated by r monomials in klx,y, z] has at most 3r — 6
manimal first syzygies and 2r — 5 minimal second syzygies.

Conversely to Theorem 3.1, every 3-connected planar graph is the minimial free
resolution of some monomial ideal in three variables [25]. For example, the reader is
invited to find 19 monomials corresponding to the graph below:

Example 3.3 For another example, the monomial ideal below was constructed to
have the given graph as its minimal free resolution:

The graph has been drawn in the staircase diagram in the manner described above.
Notice that the order 8 symmetry of the graph is reduced to order 2 in the monomial
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ideal. Also, we haven’t drawn in the coordinate axes; but the minimal free resolution
only depends on the relative positions of the generators, not the absolute coordinates.
On the other hand, the absolute positions will matter a great deal in Lecture VI. O

3.5 Reducing to the squarefree or Borel-fixed case

In the past, a standard way of treating homological and enumerative questions about
arbitrary monomial ideals was to reduce to the cases we have discussed in previous
lectures: squarefree or Borel-fixed ideals. The ideal

_ 4 4 _4 3,2 3.2 2 3
M_<x7y7zvxyzv'ryzvxyz>

can be reduced to a squarefree monomial ideal through polarization, wherein each
power z¢ of a variable is replaced by a product of d new variables:

M~~In = <$1I2SL’3I47 Y1Y2Y3lYs, 21222324, T1X2X3Y1Y2%1,
T1Y1Y2Ysz1 22, x1x2y121z223> .

However, polarization can make things much more complicated—the 8-dimensional

simplicial complex A has 12 vertices and 51 facets and is hard compared to M itself.
On the other hand, we can reduce the same ideal M to a Borel-fixed ideal through

algebraic shifting:

M) = (', 2%y, 2% ayt o0, 0% 2Py 2® wy’ eyt

2.5 5 .6 3.4 25 6 .7
A VP P A T A TR A TF-ANE A

ginrevlex(
Both ideals have colength 51, but the generic initial ideal is much more complicated
than M itself, and the N? grading is lost.

Compare both of the standard methods of reducing M to “easier” monomial ideals

with the graph for M produced by Buchberger’s second criterion presented earlier in
the lecture. The remaining lectures are devoted to developing the latter point of view.

4 Lecture IV: Generic monomial ideals

We have already seen in Lecture II that monomial ideals derived from certain kinds
of randomness have more concrete homological algebra. In this lecture we show how
randomness of the exponent vectors on the minimal generators of a monomial ideal
has similar consequences.

Before giving the definition, let us recall that the support of a monomial m = x*
is the set supp(m) = {i € {1,...,n} | a; # 0}, and x*"P("™) =[] ) zi- We say

that a monomial m’ strictly divides m if m’ divides m /x5PP(™)

t€supp(m

Definition 4.1 A monomial ideal M = (my,...,m,) is called generic if, whenever
two distinct minimal generators m; and m; have the same positive degree in some
variable z,, there is a third generator m, which strictly divides lem (m;, m;). M is
called strongly generic if no two generators m; and m; have the same nonzero degree
in any .
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For example, (22, zy, y?z, z?) is strongly generic, (x2z, xy,y*z, 2%) is generic but not
strongly generic, and (2%, xy, yz, z%) is not generic.

4.1 The Scarf complex

In the Preface, we promised to pick out finitely many monomials in a generic monomial
ideal M which minimally determine the free resolution. We can actually define this
finite set without assuming M is generic, although the set won’t generally be as useful.

Definition 4.2 For I C {1,...,r}, call the monomial m; = lem (m;,i € I) the label
on I. The Scarf complex of M consists of sets of minimal generators with unique
labels:

Ay = {Ig{l,,r}|m1:mJ:>I:J}

Lemma 4.3 The Scarf complex Ay is a simplicial complex of dimension at most
n— 1.

Proof: For each monomial m that can be expressed as a least common multiple of
minimal generators of M, there is a unique maximal I C {1,...,7} such that m = my;
this I consists of the indices of generators dividing m. In particular, if I € Aj; and
m divides my, then J C I. Suppose that this is the case, and that .J is the maximal
subset of {1,...,7} with label m;. To show that A, is a simplicial complex, we show
that if j € J, then mj; # m;. But this holds because mj; = m;=mp; = m;. A
facet I of Aj; has cardinality at most n because for each index ¢ € I, the generator
m; contributes at least one coordinate to m;—that is, there is some variable x, such
that m; is the only generator dividing m; and having the same degree in z, as m;. O

Example 4.4 Let M = (22 zy,y?z, 2?). The Scarf complex of M is shown below,
with each face accompanied by its monomial label.
2

a:y T
\ ¢
Ty?z LIQZQ
yQZC/ 22

Now we want to see how the minimal free resolution of S/M is obtained from the
Scarf complex for generic M. Using monomial matrices, the construction is easy:

Definition 4.5 The algebraic Scarf complex Fa,, is obtained by putting the reduced
chain complex of Ay, into a sequence of monomial matrices with the face label m;
on the row and column corresponding to I € Ay,.
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One need not start with a generic M in order for this monomial matrix to define a
complex of free S-modules.

It is not hard to describe Fa,, in more familiar terms, without referring to mono-
mial matrices. Introduce a basis vector e; in Z"-graded degree deg m; and homological
degree |I| for each face I of Ay;. Form the free S-module

FAM = @ S-e[
IeA )

with differential
mr

d(er) := Zsign(i, I)
icl
Here, as in Section 0.5, sign(i,I) = (—1)77! if ¢ is the j-th element of I when the
elements of I are listed in increasing order.

ey.
Mo

Example 4.6 Let M = (2% xy,y%z,2%) be as in Example 4.4. The algebraic Scarf
complex Fa,, is given by the sequence of monomial matrices below.

x2yz2 my222
2222 2%y ay’z y?2? wyz? x222 -1 0
22 1 0 0 1 1 2y 1 0
Y3z 0 0 1 -1 0 zy’z 0 1
22 Y22 zy x? Ty 0 1 -1 0 -1 y222 0 1
1 (1 1 1 1) 2 \ -1 -1 0 0 0 xyz> 1 -1
0+— S 54 5o St 0

For an example of the non-monomial matrix way to write things,
O(eg3s) = z€93 + T€34 — Y€y ,
where ey34 is the basis vector in degree zy*2? corresponding to {2, 3,4}c{1,2,3,4}.0

The theorem to which we have been building represents the kernel out of which
grew most of the ideas in the rest of these lectures. It was introduced and proved by
Bayer, Peeva, and Sturmfels [2] for strongly generic monomial ideals. Later, it was
extended to generic ideals by Miller, Sturmfels, and Yanagawa [26]. We avoid giving
the proof here, although parts of it follow from more general theorems on the hull
resolution (whose proofs we also avoid) in Section 5.4.

Theorem 4.7 The algebraic Scarf complex (Fa,,,0) is contained in the minimal free
resolution of S/M. For M generic, (Fa,,,0) is a minimal free resolution of S/M.

Recall that the Fuler characteristic of Ay is the alternating sum >, (—1)¢f, of
the numbers of faces of varying dimensions. If we keep track of the monomial labels
on the faces, then we obtain the numerator of the Hilbert series in terms of the labels
on the Scarf complex.
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Corollary 4.8 The Hilbert series of S/M for a generic monomial ideal M is

1 1
. —DHm, .
12 1—z, > (=)l

IeA ),

The numerator is the negative of the Z"-graded Euler characteristic of Ayy.
Example 4.9 The numerator of the Hilbert series of the quotient S/M is
1—2a%— Ty — y2z — 2242 4+ $2y + ZEy2Z + y2z2 + :L"yz2 — :)32yz2 — a:yzzz,

if M = (z?%, xy,y?z, 2?) is the monomial ideal from the previous two examples. O

4.2 Deformation of exponents

In the previous lecture, we saw how questions about arbitrary monomial ideals could
be reduced to questions about squarefree monomials ideals or about Borel-fixed ideals.
We now introduce a process which transforms arbitrary monomial ideals to generic
monomial ideals. If M = (mq,...,m,) = (x*',...,x?) is not generic, we choose a
“nearby” generic ideal. As with genericity, the concept of deformation was originally
introduced by Bayer, Peeva, and Sturmfels [2] but reworked by Miller, Sturmfels,
and Yanagawa [26] to be more natural (genericity can be characterized in terms of
invariance under deformation). Basically, one wants to add small real vectors to the
exponent vectors on the generators of M without reversing any strict inequalities
between the corresponding coordinates of any two generators. The point is to turn
equalities into strict inequalities which can potentially go either way:.

Definition 4.10 A deformation € of a monomial ideal M = (m4,...,m,) C S is a
choice of vectors ¢; = (€t,... € ) € R™ for each i € {1,...,r} satisfying

’r n
a, <a! = a,+e <al+é€ and at=0 = €=0,

,a.) is the exponent vector of m;. We formally introduce the
monomial ideal (in a polynomial ring with real exponents):

where a; = (d!,...,al

e-> _ <Xa1+e1’xa2+ez

M, = (my-x% my-x? ...,m, X" artery,

S
A deformation € is called generic if M, is a generic monomial ideal.

The Scarf complex A, of the deformation M, still makes sense, as a combinatorial
object, and has the same vertex set {1,...,7} as Ay;. The reader uncomfortable with
real exponents can safely ignore them, since every combinatorial type of deformation
can be obtained using only integers.

For generic €, Ay, gives a simple (but typically non-minimal) free resolution of M.
What we do is form the Scarf complex A, but label each face I € Ay, by my, not
lem (mx,i € I).
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Theorem 4.11 The resulting complex Fy = of free S-modules is a resolution of S/M.

By Lemma 4.3 this resolution has length less than or equal to the bound n provided
by the Hilbert syzygy theorem, but is generally not minimal. Note that, unlike the
reductions to squarefree or Borel-fixed ideals, this reduction to the generic situation
actually produces a free resolution of S/M for any M. (Sticklers may argue that
depolarization of a minimal free resolution of the polarization yields a resolution of
the depolarization, but that’s reducing the problem to one we also can’t solve: finding
the minimal free resolution of a squarefree monomial ideal.)

Example 4.12 The square m? of the irrelevant ideal is not generic, but we can find
a generic deformation as depicted below. The resolution of S/m? afforded by the last
diagram (with labels as in the second diagram) is not minimal.

. 2 2 .
A AN
./— . —\. 2 Ty y2 2 l’yl'l y2 ./—/./—\.
A M M, A,

Note that the Scarf complex Ay, is 1-dimensional, while Ay, is 2-dimensional. O

Seeing as how the Hilbert function is so easy to determine from a resolution, and
how the resolution of a generic ideal is so easy to find, it is possible that generic
deformation provides a useful algorithm for computing Hilbert series.

4.3 Triangulating the simplex

The Scarf complex best reflects the properties of a generic ideal M when M is
artinian, i.e. M contains a power of each variable. Suppose this is the case for
M = <m1,...,mr>,withmi:x§li fori=1,...,n.

Theorem 4.13 The Scarf complex Ay of a generic artinian monomial ideal is a
triangulation of the (n — 1)-simplex with vertices 1,2, ... ,n.

It is not true that every triangulation occurs as the Scarf complex of a generic
artinian monomial ideal. A first condition is that the triangulation be regular, which
means that it is a certain kind of subcomplex of the boundary of an n-polytope. But
even being regular is not enough; see [26]. In any case, regularity of A, implies
that the number of d-faces in the Scarf complex Ay, is bounded above by the largest
number of d-faces in any n-dimensional polytope with r vertices.

Corollary 4.14 The number 3;(M) of minimal i-th syzygies of M is bounded above
by the mazximum number C;,, , of i-faces of any n-polytope with r vertices.
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In fact, the Upper Bound Theorem of P. McMullen (see [39, Theorem 8.23]) asserts
that there is a polytope C,,(r), the cyclic polytope, which simultaneously attains the
maximum possible number C;,,, of i-faces for each i. For n < r, the polytope
C,(r) can be defined as the convex hull of any r distinct points on the curve t +—
(t,12,...,t"). Tt turns out that the combinatorial type of C,,(r) is independent of the
choice of r points, and that the r points are precisely the vertices of the convex hull.

The bounds provided by cyclic polytopes are not sharp, but they are close: G. Ag-
narsson [1] has shown that £, ,,, ~ C;,, asymptotically, for fixed n and i, as r — 0.

One can also ask for slightly less extreme behavior: call M neighborly if 5, (M) =
(g)—that is, if every pair of generators is connected by a first syzygy. Hosten and
Morris [20] have shown that the maximum number of generators of a neighborly
monomial ideal is

n|3 4 5 6 7 8
rl4 12 81 2,646 1,422,564 229,809,982, 112

and they give a combinatorial expression for this number in general.
Example 4.15 (n =4, r = 12) The generic monomial ideal
M = (b, d, a®b’td, a?} S, a3 A d?,
ab*c’d®, a®°d®, a*bcbd”, a"bOcd*, aPb? P d®)
is neighborly. Its minimal free resolution is
0e— Me—§'2 g6 ___ gl8 ___ g3 _

The irreducible decomposition of a generic artinian monomial ideal can be read off
of the triangulation: a facet with label x® corresponds to an irreducible component
m?. Note that a must have full support, simply because it is a facet of the Scarf
complex of an artinian ideal. Using this idea, every generic monomial can have
its irreducible decomposition read off of some Scarf complex. But which? Given any
generic monomial ideal M, make it artinian by adding in high powers of the variables:

M* =M+ {(zP 2D ... 2P, D>0.

rrn
The reader should check that this operation preserves genericity.

Theorem 4.16 Any generic monomial ideal M 1is the irredundant intersection of the
ideals
M[ = <ZI§'CLI

(2

a; = degxl(mf) < D> )
where I runs over all facets of the triangulation Ap«.

Example 4.17 Let M = (2%y?z, 2%y2%, 2y>2?) be the ideal from Section 3.3, but
without any of the artinian generators. The irreducible decomposition of M is
M= (2) N {y) N (z) N (Y% 2%) N (2, 2%) N (@2 %) N (e P, 2%)

The ideal in Section 3.3 plays the role of M* here, and the reader should compare the
irreducible decomposition here with the irreducible decomposition of M* there. The
white dots on the outside corners of the staircase diagram in Section 3.3 should be
reexamined, as well. O
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5 Lecture V: Cellular Resolutions

A number of times in the lectures up until now, we found that the constants in mono-
mial matrices in free resolutions could be described in terms of geometric objects.
Sometimes the geometric object seemed to come from nowhere (like Example 1.5),
and sometimes from combinatorial data hidden in the generators and their least com-
mon multiples. Our aim in this lecture is to show how all monomial ideals “resolve
themselves” via geometric resolutions, as suggested by the following picture. Here,
the 12 vertices, 18 edges, and 8 faces in the polytope correspond to the Betti numbers
12, 18, and 8.

0—S— 82 g8 8. gl 0

5.1 The basic construction

Let X be a polyhedral cell complex with r vertices (see [7, Section 6.2]). For instance,
the cells of X may be the faces of a polytope, or a simplicial complex. Label each of
the vertices of X by the generators x®' ..., x? of a monomial ideal, and then label
each face F' of X by the least common multiple of the labels of its vertices:

X = lem (x*,i € F).

The exponent, ar is called the label of the face F'.
The polyhedral complex X is equipped with a reduced chain complex, which spe-
cializes to the usual reduced chain complex when X is simplicial.

Definition 5.1 The cellular free complex Fx supported on X is the complex of Z"-
graded free S-modules (with basis) given by monomial matrices as follows: use the
boundary complex for X as the scalar entries, labeling the rows and columns by the
face labels on X.

Without using monomial matrices, Fy and its boundary 0 can be described as

Fy=Ps-ar,  oF) = 3 sian(GF) G,

XaaG
FeX facets G of F
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where F' and G are thought of both as faces of X and as basis vectors in degrees ag
and ag. The sign for (G, F') is £1, and is part of the data in the boundary of the
chain complex of X.

Example 5.2 The labeled hexagon

represents the complex Fy, given by monomial matrices as:

a?2c? a?be a2b? ab?c b22  abc? a?b2c?

a’c 1 -1 0 0 0 0 a?c? 1

a?b 0 1 -1 0 0 0 a?be 1

ab? 0 0 1 -1 0 0 a?b? 1

b3c 0 0 0 1 -1 0 ab’c 1

aZc a?b ab?® b2c bc? ac? be? 0 0 0 0 1 -1 b2c? 1

1(1 11 1 1 1) ac® \ —1 0 0 0 0 1 abc? 1

0« S S6 S6 S0

The arrows denote the orientations of the faces, which determine the values of
sign(G, F'). For example, in the alternate way of writing cellular free complexes,

0(@) = b2-‘1_ /+bc~l- -:\+ c2-‘i—j‘

/

ac- ‘+a2~\ “+ab-

5.2 Exactness of cellular complexes

A subset @@ C Z™ is an order ideal if b—a € Q whenever b € Q and a € N". Loosely,
Q@ is “closed under going down” in the partial order on Z". For an order ideal @), we
define a subcomplex of a labeled polyhedral complex X,

Xog ={FeX|areQ}.

As a special case, for each b € Z" define X<y, to be the subcomplex of X consisting
of faces whose degrees are coordinate-wise at most b. For another example, say that
b’ < bif b’ < b and b’ # b, and let X_;, be the subcomplex of X consisting of faces
whose degrees are < b.
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Theorem 5.3 Fx is exact if and only if X<p is acyclic over k (has no reduced ho-
mology) for allb € N"™. In this case, Fx is called a cellular resolution of the monomial
ideal M generated by its vertex labels, and the Betti numbers of M are

ﬁi,b(M) = dlmk Hi—l(X-<b§ k’) .
Proof sketch: The free modules which contribute to the Z"-graded degree b part of
the cellular free complex Fx are precisely those whose generators are in degrees < b;
this proves the statement about acyclicity. The statement about Betti numbers comes
from tensoring Fy with k. The resulting complex in degree b is the relative chain
complex C.(X<p, X<p; k), whose homology is as claimed by the long exact sequence
for relative homology, because X<y, is acyclic—that is, because Fx is a resolution. O

Here is a nice example of how one can use the acyclicity criterion in a specific
case. Recall that a polytope of dimension d is simple if every vertex meets d edges.

Proposition 5.4 Let X be a simple polytope with facets Fi,...,F, and vertices
v1,...,0.. Label each vertex v; of X by the squarefree monomial HvigFj xj. Then
the labeled cell complex X supports a cellular resolution Fx of the monomial ideal I
generated by the labels on its vertices. The resolution Fx 1s minimal and linear.
Proof: A face G of X is contained in a facet Fj if and only if all of its vertices are
contained in F;. Hence, the label on G is

e = ST
HF]» 6T pja
Acyclicity is easy to check: X<y is either empty, or it is the face of X obtained
by intersecting all facets F; for which z; does not divide zP. In particular, X<y, is
contractible for all b.

Minimality and linearity of Fyx are both consequences of the fact that X is a
simple polytope. Indeed, every face of a simple polytope is expressed uniquely as an
intersection of facets. It follows from the equation for mq that the labels on distinct
faces G are unequal, which implies minimality. The formula for mg also shows that
mg is a monomial of degree

deg(mg) = n — dim(X) 4 dim(G)

whence Fx is linear by the definition of the boundary map in Fx. (Minimality also
follows from linearity.) O

Example 5.5 When () is two-dimensional, these resolutions follow the pattern

010
@,

0110 0011

0111

A
1011

1101

AT TR
100 001 1100 1001

O——0
11001 1Ol 40011

Note how the number of variables increases with the number of facets of Q). O
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5.3 Examples of cellular resolutions

Taylor’s resolution [36]. Let X be a simplex whose vertices are labeled by a set
of monomials (my, ..., m,). The resulting cellular free complex is a cellular resolution
of M = (my,...,m,) called the Taylor resolution. Of course, the Taylor resolution
tends not to be minimal: its length is r, and it has rank 2", and these should be
compared with the bounds obtained using Scarf complexes in Lecture IV.

Scarf complex. If M is generic, then the minimal resolution of S/M is cellular,
supported on the Scarf complex Aj;.

CoScarf complex. There are ideals which are opposite to generic ideals, in a sense
to be made precise in Lecture VI. They are called cogeneric monomial ideals, and
their minimal resolutions are also cellular, supported on polyhedral complexes called
coScarf complezes.

Permutohedron ideals. Let u = (uj,us,...,u,) € Z" with u; < ug < ... <
u,. By permuting the coordinates of u, we obtain n! points in Z" C R™ which
are the vertices of an (n — 1)-dimensional polytope called a permutohedron P(u).
The permutohedron ideal is the ideal M (u) minimally generated by the monomials
obtained by permuting the exponents of the monomial x" = z}'x5? - - - 2. Labeling
the vertices of the permutohedron with the generators of the permutohedron ideal in
the natural way, we get a cellular resolution which is the minimal resolution of M (u).

We now describe the degrees associated to each face of P(u). Let [n] :={1,...,n}
and v € R". For each ¢ C [n], define v, := >, . v; and a, = Zlﬂl u;. The
permutohedron has the inequality description

P(u) :={v eR" | vy = o and v, > a, for all ¢ C [n]}.
Each i-dimensional face is determined by a chain of distinct proper subsets of [n]
01 Cog C---C0Op_j_1

by setting v,, = a,, in the inequality description for P(u). Given any such chain,
define 0y = @ and o0,,_; = [n]. The label for the corresponding face F' is then

n—i
max{o;\o;—
XaF:H H by {o5\0; 1}.
j:l éEO’j\O’j,1

The hexagon in Example 5.2 is the minimal resolution of a permutohedron ideal
M(0,1,2). For more on the structure of permutohedra see [6], or check [23, Section 5]
for more details on the connections with cellular resolutions.
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Tree ideals. Let M = ((I],; 2" M @ £ 1 C {1,...,n}) be the tree ideal in
n variables (the name comes from the fact that M has the same number of standard
monomials as there are labeled trees on n + 1 vertices). Its minimal resolution is
cellular, supported on the barycentric subdivision of an (n — 1)-simplex. These will
be investigated in Lecture VI, where we will find a relation to permutohedron ideals.

Irrelevant ideal of a toric variety. For a smooth (or just simplicial) projective
toric variety there is a simple polytope (the moment polytope) whose vertices are
labeled by the minimal generators of the so-called irrelevant ideal of the Cox homo-
geneous coordinate ring [9] as in Proposition 5.4. The corresponding cellular free
complex is acyclic and minimal. We will say more about these ideals in Lecture VI.

The minimal triangulation of RP?. As in [7, Chapter 5|, consider the Stanley-
Reisner ideal of the minimal triangulation of the real projective plane. The cellular
dual to the triangulation is a cell complex X consisting of six pentagons. We label
the ten vertices of X with the minimal generators of the ideal:

be f cef
O O

If chark # 2, then X is acyclic, and the cellular complex Fy is the minimal free
resolution
00— S e— 80— g% g0 0.

If char k = 2, then X is not acyclic, and Fx is not a resolution of the ideal.

5.4 The hull resolution

Finally, our road leads to geometry: this section outlines a construction of Bayer and
Sturmfels [4] which demonstrates how a canonical free resolution of a monomial ideal
can be extracted from the way in which the exponents of the monomials sit inside of
R™ Given t € R and a € Z" set t* := (t*,...,t*") € R". For a monomial ideal M
and t € R consider the polyhedron P, := conv{t* | x* € M}.
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Lemma 5.6 The face poset of P; is independent of t for t > 0. The vertices of P,
correspond precisely to the minimal generators of M.

The polyhedron P, is never bounded, since there are monomials of arbitrarily high
degree in any (nonzero) monomial ideal.

Example 5.7 If M = S, so S/M = 0, then P, is the shift by (1,...,1) of the real
nonnegative orthant R%. If M = m = (21,...,,), then P, is obtained from this
shifted positive orthant by chopping off the vertex. O

Definition 5.8 The hull complex, hull(M), is the polyhedral complex of bounded
faces of P, for t > 0. This complex is naturally labeled, with each vertex correspond-
ing to a minimal generator of M.

Theorem 5.9 The cellular free complex Fyanary s a resolution of M.

This hull resolution gives a canonical resolution of length at most n (the number of
variables) for any monomial ideal, though it is usually non-minimal. Also, the free
summands occurring in the hull resolution all have shifts which are least common
multiples of generators, so that, for instance, the Betti numbers of a squarefree ideal
are all in squarefree degrees.

Example 5.10

1. When M = m, the bounded faces are the simplex left by the truncated vertex
in Example 5.7. This again yields a cellular description of the Koszul complex,
as in Section 1.3.

2. The staircase diagram of M = (z,y, 2)° is at left below. For the hull resolution,
look at the convex hull of {(¢/,¢/,*) | i + j + k = 5} from the point (1,...,1),
for t > 1.

The hull resolution of (z,y,2)°, at right above, respects the Sz-symmetry. In

general, the hull resolution of (z,v, 2)¢ has two classes of second syzygies: the
“up” triangles and the “down” triangles. The three edges of any “down” triangle
have the same label (the coordinates of the black dots in the staircase), and are
the reason for non-minimality: there should be two edges in each such degree.

It is always possible to remove edges from a cellular resolution of an ideal in
three variables to get a minimal cellular resolution [27]. In this case, we have
to remove one edge from each “down” triangle. When the power d is congruent
to 0 or 1 mod 3, it is even possible to retain the S3-symmetry [25].
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3. The Scarf resolution of Section 5.3 is the hull resolution if M is generic! This
is nontrivial (see [4]), and will not be proved here.

4. The minimal resolution of a permutohedron ideal (Section 5.3) is the hull reso-
lution.

5. Not every minimal cellular resolution is a hull resolution. We will see systematic
failures in the next lecture, provided by cogeneric monomial ideals. For a specific
counterexample, the cellular resolution of the real projective plane in Section 5.3
is not the hull resolution. It is a good exercise to check this directly by writing
down the hull complex explicitly, but there is a much easier reason: the hull
complex is independent of characteristic, whereas the minimal resolution of the
real projective plane is not.

6. In fact, the cellular resolutions of Proposition 5.4 are usually not hull resolutions,
either. This is essentially because not every simple polytope has the same
combinatorial type as the convex hull of a collection of squarefree vectors (i.e.
vectors in {0, 1}"). O

6 Lecture VI: Alexander duality

The essence of Alexander duality for monomial ideals is the familiar optical illusion in
which isometric drawings of cubes look alternately like they’re pointing “in” or “out”
(see Example 6.12). This duality generalizes the combinatorial notion of Alexander
duality for simplicial complexes, where it is manifested quite simply as a switch
between generators and irreducible components. More generally, this switch works
on resolutions of monomial ideals: the data contained in the common multiples of
generators is similar (but dual) to the data contained in the greatest common divisors
of the irreducible components. The goal of this lecture is to define Alexander duality
for ideals, and give a glimpse of how it is manifested in resolutions.

6.1 Squarefree monomial ideals

The Alezander dual IV of a squarefree monomial ideal I is obtained by switching the
roles of the minimal generators and the prime components. A minimal generator of
the form x? becomes the prime component m?. If I = I is the face ideal of A, then
the simplicial complex AY is defined by Inv = IX. More directly, A = {7 | 7 € A}
consists of the complements of the nonfaces of A. It is straightforward (but very
confusing for the beginner) to check that (IV)Y = I. Perhaps the easiest way to make
this check is by viewing Alexander duality as duality in the boolean lattice of subsets
of {1,...,n}.

Example 6.1 The ideals In and I+ of Examples 1.3 and 1.4 are Alexander dual;
their generators and irreducible components are arranged to make this clear. O
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Example 6.2 There are self-dual simplicial complexes, such as the two-dimensional
simplicial complex consisting of an empty triangle and a single fourth vertex. There
are also complexes which are isomorphic to their duals (after relabeling the vertices),
but not equal. For example, the stick twisted cubic with ideal I = (ab,bc,cd) =
{(a,c) N (b,c) N (b,d) has this property. O

Example 6.3 Let A be the boundary of a simplicial d-polytope @) with n vertices
Fi,...,F, and r facets vy, ..., v, (note the funny names). The irreducible decompo-
sition of the face ideal Ix is

In= () (x| F; vy

facets w;

Since the facets of () correspond to the vertices of the polar polytope X, and the ver-
tices of () correspond to the facets of X, the Alexander dual ideal IX is the irrelevant
ideal introduced in Section 5.3 and studied in Proposition 5.4.

For example, let @ be the octahedron (the toric variety in question is P* x P! x P!)

In = (20, Y0, 20) N {(To, Yo, 21) N {To, Y1, Z0) N (X0, Y1, 21)
ﬁ<3317y0, Zo> N <$1ay0, 21> N <$1ay17 z0> N <$1ay1721>

= <330$17 YoYi, ZOZ1>

20

whose vertices are labeled by variables x;, y;, or z; depending on which axis they lie.
The Alexander dual ideal is

T1Y120 T1Yo<o0

Vv _
]A = <$0y02‘0, ToYo<1, LoY120, LoY1<1,
T1Yo<0, L1Yo21, T1Y1 %0, 931?/121>

= (20, 1) N (Yo, y1) N (20, 21)

ToYiz1 ToYo<1

with the labeling described in Proposition 5.4 on the cube X polar to (). The last
intersection above explains why IX is the irrelevant ideal of P! x P x P!, O

Most readers will have encountered Alexander duality in a topological context, as
an isomorphism between the homology of a closed topological subspace of a sphere and
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the cohomology of the complement. There is a straightforward connection with what
we're doing here. A simplicial complex A is a closed subcomplex of the (n— 2)-sphere
which is the boundary of the simplex spanned by {1,...,n} (aslongas {1,...,n}isn’t
a face of A). The complement of A in this sphere has a deformation retract to the
Alexander dual simplicial complex AY. Therefore, the topological Alexander duality
relation holds between the homology and cohomology of these simplicial complexes:

Theorem 6.4 H,_i(AY; k)= H" 27 (A: k).

Proof: Here’s a fun proof which is also quite apropos. As in the proof of Theorem 1.8,
let’s calculate (3;1(Ia) using the symmetry of Tor, where 1 = (1,...,1). Only this
time, we tensor the Koszul complex K. (whose scalars are the chain complex of a
simplex rather than the cochain complex) with I (rather than with S/Ia). The Z"-
graded degree 1 part (In ® K.); is a chain subcomplex of (K.); = C.({1,...,n}: k)
generated by some of the basis vectors e,, and is therefore the reduced chain complex
for some simplicial complex I". The isomorphism (K.); — C.((n—1)-simplex; k) takes
x7 -1, — ey, SO

cel <= x"®1, € (In®K.); < x"€lp — oA’

whence I' = AY. Since @ sits in homological degree 0 instead of —1, the it" homology
of (In ® K.)1 is H;_1(AY; k). Comparison with Theorem 1.8 completes the proof. O

Remark 6.5 This proof doesn’t use any properties of k, and can be used over Z or
any other ring, since the Koszul complex still resolves Z as a Z[x1, . .., x,]-module. O

We only needed the degree 1 part of In ® K. in the theorem above, but more
generally, we can try calculating the squarefree degree o parts. We find that (/x ®

K.), = C.(linky A'; k) is the reduced chain complex for the link of 7 in AY:
link; A :={r € A |tUT € A and TN7 =2} .

Therefore, the Alexander duality theorem for simplicial complexes is really an appli-
cation of the fact that Hochster’s theorem has two possible statements:

Theorem 1.8 (Dual version) (;,(Ia) = Bit1.0(5/1a) = dimy, H; (links AY; k).

The equality between (co)homology groups in the dual statements of Theorem 1.8
suggests the following enhancement of Theorem 6.4:

Corollary 6.6 The simplicial complezes link, A and A|5 are Alexander dual inside
the simplex @. Therefore,

HIP=24 (A1 k) = H,_y (links A k) .

In this formula, we can switch (i) |o| —2—4 and i —1; (i) H. and H*; (i) A
and AY; or (iv) o and @.

Note that if ¢ ¢ A then link, A = {} = the void complex while AY|5 is the entire
simplex @ with all its faces, and all of the (co)homology in the Corollary vanishes.
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Theorems of Eagon-Reiner and Terai. The interaction of Alexander duality
with commutative algebra has received a lot of attention recently, sparked in large
part by a theorem of Eagon-Reiner [11], and its generalization by Terai [37]. Recall
that the length of the minimal resolution of S/Ix is the projective dimension of S/1x,
denoted pd(S/Ia). This number is at least the codimension of Ix, which equals
the smallest number of generators of any irreducible component. Equality holds if
and only if S/Ix is Cohen-Macaulay. By the Hilbert syzygy theorem, the projective
dimension is no larger than n.

On the other hand, the regularity of In is a measure of how “wide” the free
resolution is:

reg(Is) i= max{|o| — i | Bio(Ls) # O}.

The regularity is at least the degree of the smallest generator of Ix, and I is said to
have linear free resolution if equality holds. The duality theorem of Eagon and Reiner
says that the conditions of minimality in the regularity and projective dimension are
Alexander dual. Terai generalized this to say, in addition, that the defect from achiev-
ing minimality is also transferred by Alexander duality (“length is dual to width”).

Theorem 6.7 S/Ix is Cohen-Macaulay if and only if IX has linear free resolution
[11]. Moreover, pd(S/Ia) = reg(IX) [37].

Their proofs worked by careful use of Hochster’s theorem 1.8 as well as its dual
version, and we will not reproduce them here. We do note, however, that the first
statement follows immediately from the second: this is because the codimension of Ia
is obviously equal to the smallest degree of a generator of IX, by the very definition
of Alexander dual ideal (m? < x7).

There are lots of useful criteria for determining when a face ideal is Cohen-
Macaulay. We will mention two in the examples below, but we say nothing more,
partly because there is a vast literature on the subject. See, for instance, [32] or [7,
Chapter 5.

Example 6.8 The face ideal of any simplicial sphere A is Cohen-Macaulay. In par-
ticular, if A is the boundary of a simplicial polytope @ as in Example 6.3, then I is
Cohen-Macaulay. By Theorem 6.7, IX has a linear resolution. Of course, we already
know from Proposition 5.4 that this linear resolution is cellular, supported on the
polar polytope X. See Example 6.3 for a picture of this linear resolution. O

Example 6.9 The stick twisted cubic of Example 6.2 is Cohen-Macaulay because
the simplicial complex is 1-dimensional and connected. On the other hand, we found
that the Alexander dual of the stick twisted cubic is just another stick twisted cubic,
and therefore also Cohen-Macaulay. Thus Theorem 6.7 implies that the face ideal
has a linear resolution, as well.
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6.2 Arbitrary monomial ideals

For squarefree monomial ideals, Alexander duality can be confusing, with too many
{0, 1} vectors and subsets of {1,...,n} flying around along with their complements.
When the duality is generalized to arbitrary monomial ideals, however, the confu-
sion subsides a little, as the various squarefree vectors begin to take different roles:
we are forced to forgo our conventions of automatically identifying any two objects
representing a subset of {1,...,n}.

Of course, the definition of Alexander dual must necessarily become more compli-
cated. Nonetheless, the basic idea remains the same: make the irreducible components
into generators. Each monomial ideal has two unique irredundant representations, as
a sum principal ideals or as an intersection of irreducible ideals:

I = (x*xP,...,x°
= m*Nm'Nn...nm%

(recall the notation from Section 0.6). This is analogous to the situation with con-
vex polytopes, which can be described either as a convex hull of vertices or as an
intersection of bounding halfplanes.

Let a,b € N”. As usual, we write a = b if a; > b; for 7 = 1,...,n, and in that
case we define a ~. b to be the vector whose i-th coordinate is a; + 1 — b; if b; > 1
and 0 otherwise. For example, (7,6,5) \ (2,0,3) = (6,0,3). Now we can make the
following definition, due to E. Miller [23].

Definition 6.10 Let [ be a monomial ideal and a; € N™ the exponent vector on
the least common multiple of the minimal generators of I. For a > aj, define the
Alezander dual of I with respect to a by

112 = (x> | mP is an irreducible component of I) .
If a=ay, let IV := 21 be called simply the Alezander dual of 1.

Example 6.11 Let a = (4,4,4). Then

I = (2% ay,y2%) I = (@) n =ty Nyt 2%
—
= (2%,y) N (z, 2% = (a%y",2'2%).
Note that (122l = I; see Corollary 6.15. O
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Example 6.12 (Permutohedron ideal and tree ideals.)
The optical illusion of Alexander duality is evident in 3-dimensional staircase dia-
grams. The permutohedron ideal

(253 3.2 22003 2.3 3.9 3 9
I = (zy*2?, xy’2®, 2?yz?, x?y’z, a’y 22, a’y*z) 2y
= <LU3, y37 Z3> N <LU2, y2>ﬁ x2yz3
(22,2%) N (y?, %) N (z) N {y) N (2) zy’2”
3y 2?
2%y3z
23y%z

is Alexander dual to the tree ideal

y4
I\/ = <$yZ>I2y2ax222ay222>I3ay3a23> y222
= (z°,y% 2) N (2%, y, 2°)N
2,3 2 3 222
(@, y%, 2) N (2%, y, 2°)N
<$7y3a 22> N <l’,y2,2’3> yS
x3 $2y2

with respect to the vector a = (3,3,3). To convince yourself of the duality, turn the
page upside-down, and compare the pair of staircase diagrams—there is no difference.
In fact, a shortcut in producing these diagrams is to have the drawing program (xfig)
turn the first staircase upside-down. Note how dots of the same color correspond in
the two staircases.

We have already remarked in Section 5.3 that the minimal free resolutions of these
ideals are cellular. For later reference, these resolutions are drawn at right. A more
general family of examples will be introduced in Section 6.4, below. O

One of the nice things about squarefree Alexander duality is that it takes a set
of minimal generators to a set of irredundant irreducible components. If our general
version is to do the same thing, a prerequisite is that it take incomparable irreducible
ideals to incomparable monomials.

Lemma 6.13 x*>P divides x2>¢ if and only if mP® C m®.

Using this one can show that the generating set for 72 in Definition 6.10 is minimal.

The notation IV introduced above is consistent with its earlier use in the squarefree
case: I} = Iav because b1 = b for b € {0,1}". In that case we found that we
could switch either the generators for irreducible components, or vice-versa. The
same holds here, as shown by Miller [23]:
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Theorem 6.14 With notation as in the definition,
1 = m {m™>P | xP is a minimal generator of I}.

In the squarefree case, we also found that (IV)¥ = I. That is no longer true here (!),
see Exercise A.3.1. But if we fix a, we have an honest duality.

Corollary 6.15 (I2hal =T for any a = ay.

6.3 Duality for resolutions

There are many kinds of duality in commutative algebra and algebraic geometry,
and it seems that they’re all, in their own way, repercussions of the adjointness of
Hom and ®, or more simply, the ordinary duality between a vector space and its
dual. Alexander duality is no exception. It is possible to extend the definition of
Alexander duality to arbitrary N"-graded modules, and even to resolutions, both free
and injective. Instead of developing this theory here, we give in this section some
numerical consequences, including the generalization to arbitrary monomial ideals by
Miller of the theorems of Eagon-Reiner and Terai. An extended geometric example
occupies the next section. Further theory can be found in [23] for monomial ideals,
or [24] for resolutions, especially injective resolutions, which have an elegant and
concrete description in the Z"-graded situation.

The next theorem can be thought of as the reflection for arbitrary monomial ideals
of the fact that Hochster’s theorem 1.8 has two equivalent and dual statements. In
the case where I = Ix and a = (1,...,1), it reduces to the combinatorial Alexander
duality theorem 6.4.

Theorem 6.16 If b € N7} is a vector of strictly positive integers, then (3;p(I) =
ﬁn—i—l,a\b([[a]) .

Example 6.17 The table below lists some instances where the Betti numbers are 1
for the permutohedron and tree ideals of Example 6.12, where a = (3, 3, 3):

i b [3-i-1 axb
0 (L2,3)| 2 (321
1 (1,3,3)] 1 (31,1
2 (3,33 0 (1,11
ﬁi,b(I) = ﬁn—i—l,a\b(l[a}) = ]-7 a= 3>3a 3)

As you look at the pictures in Example 6.12 to verify these equalities, note both the
positions of these degrees in the staircases, and which are the corresponding faces in
the cellular resolutions. O

Theorem 6.7 can’t hold verbatim for arbitrary monomial ideals, since one side of
the equality (projective dimension) is bounded, while the other (regularity) is not.
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On the other hand, regularity is not a particularly Z"-graded thing to measure—the
usual definition requires us to sum the coordinates of the degree b, which is more of
a Z-graded procedure. The generalization of the Eagon-Reiner and Terai theorems
needs a Z"-graded analog of regularity.

Definition 6.18 The support-regularity of a monomial ideal I is

supp.reg(I) = max{|supp(b)| — i | Bin(I) # 0},

and [ is said to have a support-linear free resolution if there is a d € N such that
| supp(m) | = d = supp. reg(I) for all minimal generators m of I.

For squarefree ideals the notions of regularity and support-regularity coincide, since
the only degrees we ever care about are squarefree. In particular, the following theo-
rem of Miller [24] specializes to those of Eagon-Reiner and Terai when a = (1,...,1).

Theorem 6.19 Let a = a;. Then S/I is Cohen-Macaulay if and only if I® has a
support-linear free resolution. More generally, pd(S/I) = supp. reg(Ia).

As in Theorem 6.7, the second statement implies the first, and for the same reason.
The proof can be accomplished using equalities similar to those in Theorem 6.16
but with Bass numbers, which convey the numerics of injective resolutions just as
Betti numbers do for free resolutions. Essentially, the decreases of the dimensions
of the indecomposable injective summands in a minimal injective resolution of S/I
correspond precisely to the increases in the supports of the degrees in the minimal
free resolution of I, and the former detect the projective dimension of S/I.

6.4 Cogeneric monomial ideals

A monomial ideal M is cogeneric if its Alexander dual M"Y is generic, which happens
if and only if Ml is generic for all a as in Definition 6.10. This condition can be
translated into a direct characterization in terms of irreducible components. Let
M = M; N ---N M, be an irredundant irreducible decomposition.

Definition 6.20 A monomial ideal is cogeneric if, whenever distinct irreducible com-
ponents M; and M, have a minimal generator in common, there is an irreducible com-
ponent M, C M, + M; such that M, and M; + M; do not have a minimal generator
in common.

Example 6.21 The permutohedron ideal (Example 6.12 and Section 5.3) is co-
generic. It is perhaps a little easier to check that its Alexander dual, the tree ideal,
is generic. Note, however, that the tree ideal is not strongly generic. O

In what follows, let D > 0 be a fixed large integer, and D = (D,..., D). The
generators of a cogeneric monomial ideal M correspond to the irreducible components
of the generic monomial ideal MIP!. We have already seen in Lecture IV that such
irreducible components can be detected from the Scarf complex, after we add in high
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powers of the variables. Therefore, let M* = MIP! 4 (zP+! 2P +1) 5o that the
facets of the Scarf complex Ay« correspond to the generators of M.

We are going to make a free resolution of M out of Ay« which is related to the
algebraic Scarf complex Fju, . in much the same way that the “coKoszul complex”
K* is related to the usual Koszul complex K. in Section 1.3. Consider the labels
on the Scarf complex as exponent vectors rather than monomials, and subtract each
label from (D +1,..., D + 1). Now make a complex of free S-modules by using the
coboundary complex of Ay« for scalars in monomial matrices, with the new labels
from Ay« on the rows and columns. Then take the submatrices whose rows and
columns are indexed by interior faces of Ay~. More succinctly, the scalars are the

relative cochain complex of the pair (Aps+, 0Ap+), where “0” means “boundary of”.

Theorem 6.22 Suppose M is cogeneric. The monomial matriz whose scalars are
the cochain complex of the interior int(Ays+), with row and column labels as described
above, is the minimal free resolution of M, called the coScarf resolution.

This theorem was proved in various forms and strengths in [34, 23, 26]. The reader
should consult [26] for more on cogeneric monomial ideals. As an application we now
have an algorithm for intersecting a generic collection of irreducible ideals: compute
A+, and read off the facet labels!

Example 6.23 To compute the generators and resolution of

first draw the Scarf complex Ay for M* = MPI 4 (pP+1 P+l 2D+ this has
been done in Section 3.3, with D = 3. Now relabel according to the regimen above,
subtracting all of the face labels from (4,4, 4):

Reading the facet labels tells us that

2

M = <23ay3ax3ay22ax2 ,l’2y,l’y2>,
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and restricting the cochain complex to the interior faces yields the minimal free res-
olution
0e— ST 8%« 830

corresponding to 3 vertices, 9 edges, and 7 facets. O

Remark 6.24 The coScarf resolution is rarely the hull resolution of a cogeneric
monomial ideal. It can happen, though, that they coincide, as they do for the per-
mutohedron ideal. O

The coScarf resolution, though it is defined here to be “relative cocellular”, is
actually cellular, as well (like K* and K.), as is evident for the permutohedron. To get
the general idea, superimpose the hexagon (cellular version of the coScarf resolution
for cogeneric permutohedron ideal) onto the barycentric subdivision of the triangle
(Scarf resolution of generic tree ideal).

Just as the Scarf resolution is a special case of the hull resolution, the coScarf
resolution is a special case of the cohull resolution [23], which does the same thing to
the hull resolution of an arbitrary artinian monomial ideal as the coScarf resolution
does to the Scarf resolution when the ideal is generic. In the cohull construction,
the hull complex of the Alexander dual ideal MV is defined by its facets, which
are labeled by the generators of M, while the vertices correspond to the irreducible
components of M. This contrasts with the usual case, where the facets of the hull
complex of M represent the irreducible components of M, while the vertices represent
the minimal generators. Thus we complete our tour of Alexander duality, by showing
how the statement about minimal generators vs. irreducible components and vertices
vs. bounding half-spaces is really a deep truth rather than a convenient analogy: it
is the principle underlying the interaction of Alexander duality with the geometric
constructions of cellular resolutions.

7 Lecture VII: Monomial modules to lattice ideals

In this lecture and the next we study certain kinds of limits of monomial ideals. Here
the limit will have an action of a lattice L—that is, a finitely generated subgroup
of Z™. This establishes a relation between monomial ideals and binomial ideals: the
quotient by L is a lattice ideal, of which a toric ideal is a special case. The cellular
resolutions and genericity conditions of previous lectures will also prove to be of use.
The general theory in this lecture was developed by D. Bayer and B. Sturmfels in [4],
although genericity for lattice ideals is due to Sturmfels in collaboration with I. Peeva,
and S. Popescu joined Bayer and Sturmfels for the work on Lawrence ideals [3].

7.1 Monomial modules

The Laurent polynomial ring 7 = S[z;',...,2,;!] is a module over S. An S-

submodule M of T which is generated by Laurent monomials, x* with a € Z", is
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called a monomial module. In general, such modules need not be minimally gener-
ated, but every monomial module M in this lecture will have a minimal generating
set of monomials. If this set is finite, then M is a Z"-graded shift of a monomial ideal
of S.

We can still draw pictures, but the usual staircase diagrams for monomial ideals
become infinite staircases for monomial modules.

Example 7.1 Consider the monomial module in k[z, y][z !,y ~!] generated by the
Laurent monomials ( %)Z for i € Z. The staircase diagram really is a staircase, but an
infinite one:

i €Z)

2y’
2y,

This monomial module can be thought of as the “mother of all powers of the maximal
ideal”: intersecting it with any shift of S produces a power of the maximal ideal. More
generally, a monomial module can be thought of as the limit of the monomial ideals
obtained by intersecting it with shifted positive orthants. O

The construction of the hull complex in Section 5.4 works here mutatis mutandis:
fix £ > 0, and form the unbounded n-dimensional polyhedron P, = conv{t® | x® €
M}. The combinatorial type is independent of the large real number ¢, and its
vertices are precisely the minimal generators of M (this is why we are assuming M
has minimal generators). Again, a complex of free modules Fy(as) is defined, and

the main result still holds; in fact, this is the generality in which it was originally
published [4].

Theorem 7.2 Fy ) is a free resolution of M.

Example 7.3 The hull complex hull(M) for the monomial module in the previous
example is the real line with a vertex at each integer point. O

Example 7.4 A cell complex is said to be locally finite if every face meets finitely
many others. In general, the hull complex of a monomial module need not be locally
finite. For example, consider the monomial module M in three variables x, v, z:
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lﬁm| N

The vertex ¥ lies on infinitely many triangles of hull(M). O

7.2 Lattice modules

In the all of the lectures before this one, we have been interested in monomial modules
whose generating sets are finite. Here, we consider another interesting case, when the
set of generating Laurent monomials forms a group under multiplication. To be
precise, let L C Z"™ be a sublattice whose intersection with N is {0}. This ensures
the existence of a functional with strictly positive coordinates that vanishes on L.

Definition 7.5 The lattice module M, is the S-submodule of T' = S[a; !, ... z]
generated by {x* | a € L}.

The hypothesis on L guarantees that the elements of L form a minimal generating
set for M.

Example 7.6 The monomial module in Example 7.1 is actually the lattice module
M, for the lattice ker(1,1). More generally, the “mother of all maximal ideals” in n
variables is the lattice module for L = ker(1,...,1). For a picture of a finite part of
the staircase of ker(1,1,1), where n = 3, see Example 5.10. O

Because the generating monomials form a group L, that group acts on the mono-
mial module M, the action being given by a - x? = x2™® for a € L and x® € M;.
What would be really nice is if we could find a whole free resolution of My which is
acted on by L. Such an equivariant free resolution is provided by the hull resolution.
The point is that the lattice L permutes the faces of hull(M).
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Example 7.7 The hull complex of the “mother of all maximal ideals” in two variables
(Example 7.3) is obviously acted on by L = Z. In three variables, the hull complex is
the tesselation of R? by triangles, a part of which is depicted in Example 5.10. Note
that in the case of three variables, the action of L = ker(1,1, 1) on the hull complex is
easiest to see in the picture if we view the tesselation as actually sitting in R® L C R3
instead of in the plane. O

Calculating the hull complex is actually a finite thing to do (although it is an open
problem to determine an efficient algorithm), even though it has infinitely many cells.
This is because of the following minor miracle:

Proposition 7.8 The hull complex of a lattice module is locally finite.

In fact, one produces an explicit finite set of edges (a Graver basis for L) such that
the vertex 0 € L meets at most these edges, and hence 0 meets finitely many faces
altogether. But every vertex of hull(M}) is equivalent to 0 under the action of L, so
we only need the local behavior of hull(M) around 0 to determine the entire hull
complex. Thus we reduce the calculation of hull(My) to the computation of hull(7)
for a monomial module I generated by a finite set of elements of L. In other words,
the hull complex of a monomial ideal is enough information to determine hull(M})
modulo the action of L on the faces, which has only finitely many orbits.

7.3 Genericity

A monomial module M C T is generic if all its minimal first syzygies x*e; —xP"e; have
full support, i.e. every variable z, appears either in x® or xP. This definition is the
essence behind genericity for monomial ideals, although for ideals there are “boundary
effects” coming from the fact that N™ is a special subset of Z". To be precise, the
genericity condition on the minimal first syzygies x*e; — xPe; of an ideal requires
only that supp(x®™®) = supp(lem (m;, m;)), as opposed to supp(x*™®) = {1,...,n}
for monomial modules. This definition allows us to treat the boundary exponent 0
differently than the strictly positive exponents coming from the interior of N". Just
like the hull complex, the Scarf complex defined earlier for monomial ideals makes
sense for monomial modules, too, as does the theorem on free resolutions of generic
objects.

Theorem 7.9 For a generic monomial module M, the following coincide:

1. the Scarf complex of M,
2. the hull resolution of M ; and
3. the maunimal free resolution of M.

Example 7.10 The lattice L = ker([4 3 5]) C Z? yields a generic lattice module

My, = (x'y?2F | 4i + 35 + 5k = 0)
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in three variables whose staircase is pictured below.

The hull = Scarf complex is a triangulation of R ® L using L for vertices:

The labeling on every pair of up and down triangles is obtained from the representative
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labeling

(1,2,—2)

by adding some vector in L to all of the labels. O

7.4 Lattice ideals

For a lattice L C Z", define the lattice ideal
I =(x*-x"|a-beLandabecN") CS.

Assume, from now on, that L N N" = {0}, so that the ideal is homogeneous with
respect to some grading where deg(z;) is a positive integer (use a positive functional
which vanishes on L to define the Z-grading). Such ideals arise in a wide variety
of contexts, from integer programming and toric geometry to mirror symmetry and
hypergeometric differential equations (see [33] and [31]). Given L, the fundamental
things we would like to know about I are:

1. generators for I;
2. the Z"/L-graded Hilbert series of S/, as a rational function; and
3. a (minimal) free resolution of S/Iy, over S.
Of course, 3=2=-1, so we'll aim for free resolutions.
The essential idea is to express the lattice ideal I}, as a quotient of the monomial

module M by the action of L. In order to do that, let’s formalize the action by
introducing the group algebra S[L| of L over S. Explicitly, this is the algebra

S[L) =k[x*2° |]ac N"and be L] C S[z, ..., 25,

rn

which carries a Z"-grading via deg(x®zP) = a + b. The action of L on the lattice
module M}, = (x* | a € L) C T defined in the previous lecture can be expressed as
b-x2 = x*™ for b € L and x* € M. This action is reformulated using the group
algebra by stipulating that x2zP = x2*®, making M into a Z"-graded module

My = S[L)/(x* —xz*®|a—b € L and a,b € N")

over S[L], with the image of x* having Z"-graded degree a, as usual. In fact, any
Z"-graded S-module M that has an equivariant action of L (i.e. commuting with

53



the action of S) such that b € L acts as a homomorphism of degree b is naturally
a module over S[L]. This is really quite a general statement. To be precise, the
category of L-equivariant Z"-graded S-modules is isomorphic to the category

A = {Z"-graded S[L]-modules} .

How do we define the quotient of an L-equivariant module = Z"-graded S[L]-
module M by the action of L? We would like to identify m € M with zP-m whenever
b € L, so that the quotient is an S-module whose elements are orbits of the action
of L on My. When M = S[L] itself, this quotient is

SIL]/L = S[L]/{x*z" —x*|a € N"and b € L)
S[L]/(z° —1|b e L)
S.

[ral

But this copy of S is no longer Z"-graded, because x* and x2zP, which have different
Z™-graded degrees a and a+b, map to the same element x*. On the other hand, all of
the preimages in S[L] of x* € S have Z"-graded degrees which are congruent modulo
L, so this copy of S is Z"/ L-graded, with x* having Z"/L-graded degree a (mod L).

For more general Z"-graded S[L]-modules M, our quotient module “M/L” will
similarly be obtained by “setting all elements zP for b € L equal to 1”. Algebraically,
this is just tensoring M over S[L] with S = S[L]/{z°> —1|b € L),

M/L =M ®s1) S[L|/L = M ®gi1, S .

As with S[L]/L, the quotient M/L is no longer Z"-graded, but only Z"/L-graded.
This tensor product therefore defines a functor

m: A— B ={Z"/L-graded S-modules}

of categories. Our motivating example is M, whose image in B is obtained from its
presentation as a quotient of S[L] given above by setting all occurrences of z to 1:

m(My) = S[L]/(x* —x"z* P |a—b¢c Land a,b € N*)|,_; = S/I .

Therefore we have achieved our goal of writing S/ as the quotient of My by the
action of L. The great thing about 7 is that it doesn’t forget anything significant.

Theorem 7.11 The functor = : A — B sending M +— M/L is an equivalence of
categories.

The main idea of the proof is that if L acts equivariantly on a Z"-graded S-module
in such a way that b € L acts as a homomorphism of degree b, then the action of L
is necessarily free—mno nonzero b € L can have any nonzero fixed points. Therefore,
an “inverse” to m is given by taking the universal cover.

Now we can use the functoriality of 7 to do for free resolutions what it did for
modules.
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Corollary 7.12 IfF is a free resolution of My, over S[L], then n(F) is a Z"/L-graded
resolution of S/Iy, over S.

And what is a resolution of My over S[L]? It’s just a resolution of M}, as an S-module
along with a free action of L. These exist because 7 is an equivalence. But we have
already noted that L acts on nice resolutions of My, such as the hull resolution.

Definition 7.13 The hull resolution of S/Iy, is m(Fnun(ay,))-

Theorem 7.14 The hull resolution of S/Iy, is a finite free resolution, of length < n.

Proof: L acts freely on hull(M}), which implies that Fyu(s) is a free S[L]-module.
Since 7(free S[L]-module) is a free S-module, the hull resolution of S/I, is a resolution
by free S-modules. The finiteness is because of the local finiteness of Proposition 7.8.
And the length is < n because hull(M) is a polyhedron inside R™. O

The rest of this section (and lecture) is devoted to examples.

Example 7.15 The hull resolution of a generic lattice ideal is 7(Scarf complex). For
instance, the ideal for the image of the affine monomial curve t — (4¢3, %) is the
generic lattice ideal

2

IL:<xy2_Z ,xz—y?’,yz—z2>,

where L is the kernel of the matrix [4 3 5] over Z. The corresponding lattice module
is the one whose staircase and Scarf complex are drawn in Example 7.10. Modulo the
lattice, we see that the resolution of S/, is a torus

whose fundamental domain is labeled with vectors in Example 7.10. (So 7 really is
a universal cover, as suggested by the proof of Theorem 7.11.) Under the functor m,
the resolution of S/Iy is

y T
X 4
(my2—22 xz—y3 yz—xQ) z  y?

0 «— S S3 5?2 «— 0.

To get the Z3/L = Z-graded Hilbert series, we simply take the alternating sum
of the Z?/L-degrees of the faces of hull(My)/L and divide by the appropriate de-
nominator. Each Z3/L-degree is the dot product of the label in Example 7.10 with
(4,3,5):
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The graded Euler characteristic gives the numerator of the Hilbert series
L—t8 =2 — 10413 -1 1 ,
= —t—t?=) {t'|ieN{435
(1—t4)(1—3)(1— ) 1—1¢ > {t']ie N{4,3,5}}

of S/1Iy, where N{4, 3,5} is the submonoid of N generated by {4,3,5}. The denomi-
nator comes from the Z3/L-graded Hilbert series (1_t4)(1_1t3)(1_t5) of k[z,vy, 2]. O

Example 7.16 Things become much more complicated in four dimensions. The
smallest codimension 1 generic lattice module in 4 variables is determined by the
lattice L = ker([20 24 25 31]) C Z*. The lattice ideal I, is the ideal of the
monomial curve ¢ — (t%,¢2* %5 #31) in affine four-space. The group algebra is
S[L] = kla,b,c,d|[z* | a € L], and

M = S[L]/{a* — bedz*, a*c* — V*d?* z*,a*b® — Ad* z*, ab*c — d° z*,
bt — a’cdz*, b3c? — add?z*, 3 — abd z*) ,

where, for instance the * in a* — bed z* is the vector in L which is 4 times the first
generator minus 1 times each of the second, third, and fourth generators. The hull =
Scarf = minimal resolution of S/Ij, is

00— S +— 8" — 82 g6 0.

Up to the action of L, there are 6 tetrahedra corresponding to the second syzygies
and 12 triangles corresponding to the first syzygies. O

Example 7.17 Suppose that L is unimodular, i.e. for all ¢ C {1,...,n} the coor-
dinate projection Z" /(L 4 ", ., Ze;) of Z" /L is torsion free. Consider the Lawrence
lifting, A(L) = {(u, —u) € Z*" | u € L}, and its corresponding lattice ideal

Iny = (x*y® —xPy* |la—b € L) Cklz, o @n Y1, ooy YUnl -

These unimodular Lawrence ideals have a remarkable rigidity property: all of their
initial ideals are squarefree. In fact, this condition is equivalent to unimodularity for
Lawrence ideals.

The hull resolution of I5(z) is not necessarily minimal, even if L is unimodular.
However, the minimal resolution does come from a cellular resolution of My, and
is described by the following combinatorial construction.
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Step 1. Take the infinite hyperplane arrangement {z; = j |i=1,...,n, j € Z}.
Step 2. Let Hy, be its intersection with L ® R.
Step 3. Form the quotient Hy /L.

In particular, the i-faces of Hy/L are in 1-1 correspondence with the minimal i-th
syzygies of I5(r). A particular example of the resolution described here is the Eagon-
Northcott complex for the 2 x 2 minors of a generic 2 x n matrix [3]. O

8 Lecture VIII: Local cohomology

Among the first homological objects to be calculated explicitly for squarefree mono-
mial ideals I were the local cohomology modules of S/I with support on m. Their
Hilbert series were described in an unpublished theorem of M. Hochster (which finally
found its way into [32]), and their module structure was later described explicitly by
H. G. Grébe [17]. On the other hand, local cohomology with support on the irrelevant
monomial ideal in the Cox homogeneous coordinate ring can be used to compute sheaf
cohomology on toric varieties, in analogy to the case of projective space [13, 28]. This
application has prompted research into local cohomology with support on monomial
ideals in general. N. Terai [38] made the calculation of the Hilbert series of the local
cohomology modules of S with support on I, inspired by the techniques of Hochster;
at the same time, M. Mustata [29] found the module structure. Then, using gener-
alizations of Alexander duality for modules, E. Miller [24] showed that the answers
provided by Terai and Mustata are actually equivalent to those provided by Hochster
and Grabe. Our aim in this final lecture is to present these results, along with the
necessary background, in the spirit of geometry from previous lectures.

8.1 Preliminaries

The Cech complex. Local cohomology has many equivalent definitions, each with
its own role in the theory. Hochster’s local cohomology formula is proved using the
most accessible of these, the Cech complex (more accurately called the stable Koszul
compler),

C':O—>S—>@S[:B[1]—>---—>@S[m‘”]—>---—>5[mfl,... r,1 =0

i=1 lo|=r

(see Section 0.1 for notation). This is to be considered as a cochain complex (upper
indices increasing from the copy of S sitting in cohomological degree 0), with the
map between the summands S[x~?] — S[x~““)] in C" being sign(i, s U14) times the
canonical localization homomorphism.

One way to think about the Cech complex in a Z"-graded way is to replace each
summand S[—o] in the Koszul complex K* by the localization S[x~?]. That this
replacement is possible can be seen from monomial matrices, whose scalar entries can
be used just as easily as maps between localizations as between free modules; in fact
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this was the original motivation for defining monomial matrices in [24]. To write one
down, we employ the symbol * in an exponent vector to indicate that the variable with
that index has been inverted. Thus, if S = k[z,y, 2], the “shift” S[(0, %, 0)] represents
the localization S[y '], while S[(0,0,0)] retains its usual meaning (no variables are
to be inverted).

Example 8.1 The Cech complex in 3 variables looks like

Ok x0% *x0 ok
00 0 1 1 Ok 1
*00 0x0 00 0x0 1 0 -1 #*0x | —1

000(1 1 1) Sz 00« \=1 =1 0/ Sl wo \ 1
@ @

0—5 Sly 1] S[(wz) 7 ———— Sl(ayz) '] — 0,
S S
Slz71] S[(xy) ~']

where the vectors are row vectors and the matrices act by multiplication on the right
(as is natural for the cochain complex—see Example 0.6). O

Definition 8.2 Given a Z"-graded module M, the r** local cohomology module of M
with support on m is the r*® cohomology H" (M) = H"(M @5 C").

The local cohomology of a finitely generated module M with support on m is
related to other homological invariants of M, via local duality. Before stating this
fundamental theorem, we need to say something about Ext and Matlis duality.

Ext modules. Let 0« M «TF. be a free resolution of M. Then Homg(F.,5) is
a cochain complex of free S-modules whose 7" cohomology is Ext(M, S), by def-
inition. Recall that Homg(S[—a],S) = Sla]; thus, in terms of monomial matrices,
Homg(F.,S) is obtained from F. by taking the negatives of the vector labels (inverses
of monomial labels) on the columns and rows while taking the transposes of the scalar
matrices.

Example 8.3 If M = S/I has a cellular resolution supported on the labeled cell
complex X | then the complex Homg(Fx, S) is obtained by using as scalars the cochain
complex of X, with the inverses of the monomial labels. For instance, if I = I
from Example 1.4 which has a cellular resolution Fx given in Example 1.5, then
FX := Homg(Fx,S) is obtained from surrounding the cochain complex of X in a
monomial matrix with the labels at left below.

abed shift by [—1]
A

abcde
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For various reasons, it is common to work with the Z"-graded shift Homg(F., S)[—1] =
Homg(F., S[-1]). It is especially convenient for the case of M = S/I for squarefree
I, because the vector labels in monomial matrices for this shift are again in N" (i.e.
the monomials are again in S), as in the right picture above. The module S[—1] is
sometimes called the canonical module of S, and denoted by ws. O

Matlis duality. A Z"-graded module M is really just a collection of vector spaces
M, indexed by a € Z", along with a given set of maps Aa_p := -X°72 : M, — My
for each pair a,b € Z"™ with a < b. Given M we can make another such collection of
vector spaces and homomorphisms from the k-duals Homy(M,, k) and the transposes
A2 =P Homy,(My, k) — Homy (M, k), as follows.

Definition 8.4 The Matlis dual of M is the module M* whose Z"-graded piece in
degree —a is M*, = Homy(M,, k). For a < b € Z", the action of multiplication
xP~2 . M*, — M*, is by A2~ P,

From the point of view of Hilbert series, Matlis duality simply reverses the grading.

Lemma 8.5 H(M* xy,...,x,) = H(M;z; ", ..., z7").

rrn

If M — N is a homomorphism of Z"-graded modules, then Matlis duality induces
a dual map M* « N*. That is, Matlis duality is a contravariant functor. In addition,
Matils duality is ezact, since in each degree it is the functor Homg(—, k), which is
exact. We are justified in calling this functor a duality, since a k-vector space is
canonically isomorphic to its double-dual, at least when it is finite-dimensional.

Remark 8.6 For those that like the language of categories, a Z"-graded module M
whose Z™-graded degrees are finite-dimensional is a subcategory of the category K
of finite-dimensional k-vector spaces, with the morphisms in M being determined by
monomials in S. Matlis duality is an anti-isomorphism of M with another subcate-
gory M* of K which is induced by the usual anti-isomorphism K — X given by the
transpose Homg(—, k). O

Now we are ready to state the local duality theorem, equating local cohomology
with support on m with the Matlis dual of an Ext module. For references and a
general proof, see [7]; for a special treatment of the Z"-graded case, see [16] or [24].

Theorem 8.7 H (M) = Exty " (M,ws)* if M is finitely generated and Z"-graded.

8.2 Maximal support

The theorem of Hochster [32, Theorem I1.4.1] gives the Z"-graded Hilbert series
H(H](S/Ia);x) for the local cohomology of S/Ix with support on m in terms of
the homology of the links in the Stanley-Reisner complex A.

Theorem 8.8 H(H},(S/1a);x) =Y  dimy H™71 7 (link, As k) [ | . /

oEA jEOT J
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z 1

Let us parse the statement. The product Hj@ 1_;—,1 is the sum of all Lau-
j

rent monomials whose exponent vectors are nonpositive and have support exactly
0. Therefore, the formula for the Hilbert series of H,(S/Ia) is just like the one for
S/I in the third line of the displayed equation in Section 1.2, except that we are
considering monomials with negative exponents, and we have added in nonnegative
constants dim; H"~1°I=!(link, A; k) depending on r and o.

As one might expect from the relation between K* and C°, the proof of Theo-
rem 8.8 is quite similar to that of Theorem 1.8, being accomplished (as usual) by
checking which simplicial complex has its cochain complex in each Z"-graded degree.
The main complication is in determining what relation the module S//x ® S[x~7] has
to the face ring of something (it turns out that the “something” is a link in A). The
reader wishing details should consult [7] or [32].

From Hochster’s Hilbert series formula, we find that whenever b; < —1, the vec-
tor spaces H!(S/Ia), and H[ (S/IA)bte, have the same dimension. It is natural,
therefore, to think that multiplication by z; is an isomorphism between these graded
components. This is indeed the case, as one can check even for the complex S/Ix®C*
whose homology is Hy,(S/1a). But what about when b; = —17 The answer is provided
by an observation of H. G. Gréibe [17].

Theorem 8.9 Identify each graded piece HT,(S/I)p with H™171=2(link, A; k) when-
ever b <0 and supp(b) = 0. Given o € A and i &€ o there are maps

H17Y1 Qink,; Ay k) — H™™1917(link, A; k)

which agree with multiplication by x; on the graded piece H.(S/Ia)w as above when-
ever b; = —1.

The choice of cohomology over homology in the Theorem may seem to be an error,
given that the inclusion link, ; A — link, A of simplicial complexes induces maps on
cohomology the other way. However, Grabe’s maps are not the usual ones induced by
the inclusion; instead, they arise because the cochain complex C*(link,; A; k) can be
made into a subcomplex of C*(link, A; k) by sending e* — sign(i, o Ui)e? ;. The geo-
metric content of such maps is not so easy to describe directly, but see Corollary 8.21,
where they are related to geometry in AV via Theorem 8.12, below.

8.3 Monomial support

An element m in a module M is said to have support on an ideal I if m is annihilated
by some power of /. The reason why H! (—) is said to have support on m is because
T1,...,T, generate m, so the kernel of the map M ® S — @, M ® S[z;”'] is the set
of elements which are annihilated by some power of each x;—that is, those elements
with support on m. If, in the Cech complex on s variables, we replace each variable
x; by a monomial m;, then we get a complex C'(my,..., m,) whose first map is
S — @, S[m;"]. Tensoring C*(my,...,ms) with M, the kernel of this first map
becomes the set of elements in M which have support on I = (mq,...,my).
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Definition 8.10 The 7" local cohomology of a module M with support on I =
(my,...,my) is the r'® cohomology H7(M) of the complex M ®g C*(my,...,ms).

Again, there are many equivalent ways to define local cohomology with support
on I, with the Cech complex being perhaps the most straightforward. One of the
others characterizes H;(M) as the right derived functors of HY(M) = “taking the
set of elements with support on I”. The standard way to calculate such derived
functors is to take an injective resolution of M, apply H?(—) to it, and set H7(M)
to be the r*® cohomology of the resulting complex. (For Z"-graded M and I, a Z"-
graded injective resolution of M suffices.) But because I is finitely generated, H?(M)
depends only on the radical of I, so we can assume [ is a radical ideal whenever we
write H;(—). In this lecture, that means I is a squarefree monomial ideal. We will
mention more of the equivalent characterizations of H;(—) below; in particular, one
of the purposes of Section 8.4 following this one is to show which other complexes
can replace C*(my, ..., my) in the definition.

Inspired by Theorem 8.8 and its proof, N. Terai calculated the following [38].
Theorem 8.11 The Z"-graded Hilbert series of Hj, (S) is

. - . z; 1
H(H;, (S);x) =Y _ dimy, H, -1 (link, A; k) [ | — 11 —
geA icT i jeo J

1
1—x;

This series is interpreted in a manner similar to Hochster’s: ], . % [Iic
is the sum of all Laurent monomials xP whose negative parts b_ := Zbi <0 —bi€;
have support precisely @. Terai’s proof follows the outline of Hochster’s, using
C*(myq,...,ms) in place of C*. Terai’s argument is somewhat more complicated,
though, since the simplicial complexes in his formula have n vertices, while those
obtained from the Cech complex have as many vertices as there are generators of Ix.

Again, it is clear from Theorem 8.11 that many of the multiplication maps -x; are
between vector spaces of the same dimension, and as before, one can verify using the
Cech complex of Ix that these maps are isomorphisms. While Terai made his calcu-
lation, M. Mustata simultaneously and independently observed these isomorphisms

and went further, giving the module structure in terms of simplicial cohomology [29].

Theorem 8.12 FEach graded piece Hj (S)y is isomorphic to H™2(AV |5 k), where
b € Z" and supp(b_) = 7. Fori € &, the maps on simplicial cohomology

H™2 (A5 k) — H™2 (A |75 k)

induced by the inclusions A |z, — A'|5 agree with multiplication by x; on the graded
piece H! (S/Ipn)p whenever by = —1. If b; # —1, then multiplication by z; is an
isomorphism on HJ (S/IA)p.

Upon comparison of Mustatd’s theorem with Terai’s, it shouldn’t be too surprising
that the graded pieces of Hj, (S) can be identified with H""?(AY|5; k); after all,

Hoer o1 (inky A5 k) 2 H72(A )5 K)
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by Alexander duality in the form of Corollary 6.6. We will see in the next section
why the theorems in this section look so similar to those in the previous section, and
why duality enters the picture.

There is another proof of the theorems in this section which exploits cellular
injective resolutions, particularly that of the canonical module wg, whose minimal Z"-
graded injective resolution is a simplex (and Matlis dual to the usual Cech complex
C). The point is that applying H}, (—) directly to the minimal Z"-graded injective
resolution of S = wg([1] yields a cellular complex of injectives whose homology is
automatically given in each degree as the simplicial cohomology of a link in A. In
fact, this proof is almost the same as that of Theorem 1.8; see [27] for details.

8.4 The Cech hull

Mustata’s proof of Theorem 8.12 used cellular resolutions in a particularly nice way,
in combination with the characterization of H;(M) as a limit over ¢ € N of modules
Extg(S/1%, M). He was able to use the Taylor resolution (Section 5.3) to get very nice
finite approximations to the limit. Although we will bypass these limits here, let’s see
what the Taylor resolution of S/I has to do with local cohomology supported on 1.

Recall that the Taylor complex of the squarefree monomial ideal I = (x7*, ..., x%*)
is supported on a simplex X whose s vertices are labeled by the minimal generators.
The label on a face G € X is the monomial mg = x°¢ := lem (x%7, 5 € ), and the
monomial matrices for the Taylor resolution are filled with the boundary maps of X.
On the other hand, the monomial matrices for the Cech complex C*(x7,...,x%) are
filled with the coboundary maps of the same simplex X, while the monomial labels
m¢ are replaced by the vector labels o that have a * in the i*" slot for i € o¢ and
0 otherwise (cf. Example 8.1). The key point is that inverting x% for i € G is the
same thing as inverting mg; i.e. S[x™7% | i € G| = S[x~7¢].

E. Miller showed how this transition from Taylor complex to Cech complex works
for all free resolutions of S/I [24]. When the shifts are squarefree, one can use:

Definition 8.13 Suppose that F. is a free resolution of S/l that has monomial
matrices {A,} with squarefree row and column labels. The generalized Cech complex
Cr is the complex of localizations of S whose monomial matrix A" is obtained from
A, by taking the transpose of the scalar entries and replacing each label o by *o. If
F. is minimal, Cj, is called the canonical Cech complex of I and denoted C;.

Example 8.14 The canonical Cech complexes for polygons look like

0x0
@,

O = O
*00 *0% 00%

*x00% wx 0%k *00%*
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using the cellular minimal resolutions of Example 5.5. In terms of the applications
of local cohomology to sheaf cohomology on toric varieties, these diagrams illustrate
how the canonical Cech complex reflects the geometry particularly well when the toric
variety is projective and smooth (or merely simplicial). O

We have what seems to be a magical way of taking a complex F. of free modules
and producing a complex Cy of localizations of S. But as with other kinds of magic,
the secrets of this procedure become more transparent when it is broken down into
smaller steps. We start by getting the transposes of the scalar matrices to show up,
which they do in F* := Homg(F.,wg) as in Example 8.3. Observe that when S/ «—F.
is a free resolution, the complex F* of free modules has cohomology Extg(S/I,ws).
Now how do we create localizations?

I}eﬁnition 8.15 The Cech hull of an N™-graded module M is the Z"-graded module
C'M whose degree b piece is

(CM)y, = My, where by = Z bie; .

b; >0

Equivalently,
CM = P My @ klz; " | b =0].
beN?

The action of multiplication by z; is

. . identit if b; <0
it (CM)p — (CM)e; 40 = {x : M}; — 4p, if0; >0
i . + e; + =

Note that e; + b, = (e; + b). whenever b; > 0.

This definition was made in [23] for monomial ideals (as part of Alexander du-
ality) where C1T is characterized as the largest monomial module inside of T =
S[z; !, ..., x71] whose intersection with S is precisely I. The staircase diagram of C'I

is obtained by pushing to negative infinity any point on the staircase diagram for I
which touches the boundary of the positive orthant:
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Heuristically, the first description of C'M in the definition says that if you want to
know what C'M looks like in degree b € Z", then check what M looks like in the
nonnegative degree closest to b; the second description says that the vector space M,
for a € N” is copied into all degrees b such that b, = a.

Getting the desired localizations to appear is easy, using the Cech hull:

Lemma 8.16 C(S[—7]) = S[x°][-1].

If \: M — N is a map of N"-graded modules, then there is a map CA : CM — CN
obtained by setting (CA), = Ap . for b € Z". In particular, if F is a complex of
free modules generated in squarefree degrees, then CF is a complex of Z"-graded
localizations of S, by the Lemma. Recall from Example 8.3 that wg = S[—1].

Proposition 8.17 Suppose that F. is a free resolution of S/Ix whose shifts are all
squarefree, and let F* = Homg(F.,wg). Then (CF*)[1] = C;.

Proof: Since taking Homg(—, wg) reverses the arrows (i.e. takes the transposes), the
result follows from the Lemma because Homg(S[—0],wg) = S[—7]. O

The complex CF* depends only on F. and not on the monomial matrix used
to represent it; thus the same is true of Cy by the Proposition. In particular, the
isomorphism class of the canonical Cech complex C;, as a complex of Z"-graded S-
modules, depends only on I. Even better, the Proposition can be used to define Cj,
for any free resolution of S/I. Doing so, Miller proved that there are lots of complexes
of localizations of S which can take the place of C*(x7,...,x%) in Definition 8.10.

Theorem 8.18 Hj (M) = H"(M ® Cg) for any free resolution F. of S/Ix.

If F. is the Taylor resolution, this Theorem agrees with Definition 8.13. It holds even
for Z-graded or ungraded modules M. Taking M = S, we see immediately how to
calculate Hj (S).

Corollary 8.19 Hj (S) = (CExts(S/Ia,ws))[1].

Proof- The Cech hull is ezact—that is, applying C' to an exact sequence yields an
exact sequence—because it copies the degree b, part of any complex into degree b.
In particular, C' commutes with taking cohomology, as does shifting by [1]. ]

Corollary 8.20 Terai’s formula in Theorem 8.11 is equivalent to Hochster’s formula
in Theorem 8.8.

Proof: Ext's(S/1a,ws) = H"(S/Ia)* by Theorem 8.7, so

H(Ext}(S/1n,ws);x) = Y dimy Hy—y o (link, A k) [ 2

ocEA j€o

1—Ij

by Lemma 8.5 applied to Theorem 8.8 (r and [Ej_l have been replaced by n—r and x;).

Note that we replace the superscripts on H by subscripts when we take Matlis duals;
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we will see why in the proof of the next corollary. Relying on the second description
of the Cech hull in Definition 8.15, this yields

1

H(éEth(S/[A, ws); X) = Z dimy, }N[n—r—\a\—l(hnka A; k) H 1 fj H

T-
’Z' .
gEA jEo J ieT

Shifting the input module by [1] multiplies this whole expression by z; - 2! =

n

x"7x 7, and gives the Hilbert series of H}(S) by Corollary 8.19. All of these steps
are reversible, so Hochster’s formula can similarly be derived from Terai’s. O

Corollary 8.21 The theorem of Mustata (8.12) is equivalent to that of Grabe (8.9).

Proof: The proof is the same as the previous corollary, except that we need to keep
track of the multiplication maps between the Z™-graded degrees of the modules in
question. The crux is that the homomorphisms

H 1oV ink s As k) — H* 719171 (link, A; k)
coming from Griabe’s theorem become the transpose homomorphisms
ﬁn—r—\o\—l(hnka A7 k) I ﬁn—r—|crui\—1(hnkaui A7 k)

in the Matlis dual, by definition. Then, by Alexander duality, these agree with the
maps

H™ (A5 k) — H™ (A |75 k)

in Mustata’s theorem. O

The Cech hull had been defined before Theorems 8.11 and 8.12 were known,
although its relation to local cohomology had not been found. The motivation for
Theorem 8.18 was to prove local duality with monomial support [24], which generalizes
Theorem 8.7—this is where one really needs the fact that the canonical Cech complex
has minimal length.

A Appendix: Exercises

The following exercises are derived from those given at the June 1999 COCOA Sum-
mer School in Turin, Italy.

A.1 Exercises from Day 1
Exercise A.1.1 Let n = 6 and let A be the boundary of an octahedron.

(a) Determine In and Iav.

(b) Compute their respective Hilbert series.

(c) Compute their minimal free resolutions.

(d) Interpret the Betti numbers obtained in part (c) in terms of simplicial homology.
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Exercise A.1.2 Explain how CoCoA can be used to calculate the homology of a
simplicial complex.

Exercise A.1.3 Consider a 5 x 5-matrix of indeterminates (x;;) and let /o be the
ideal in k[z;;] generated by all 100 squarefree monomials of the form z;;z; or x;;z;.
The simplicial complex A is called the chessboard complex.

(a) Using Hilbert series in CoCoA, find the number of 2-dimensional faces of A.
(b) Compute the homology groups of A, using your algorithm in Exercise A.1.2.

Exercise A.1.4 Let I be the ideal of the cubic Veronese surface in projective 9-
space. Compute the generic initial ideal of I for reverse lexicographic order and for

purely lexicographic order. How do their minimal free resolutions compare to that of
I itself?

Exercise A.1.5 Give an example of a Borel-fixed ideal which is not the initial mono-
mial ideal of any homogeneous prime ideal in k[zy, ..., z,]. Are such examples rare
or abundant?

Exercise A.1.6 Let I C Cl[z,y, z] be the homogeneous radical ideal of seven generic
points in P%, where C is the field of complex numbers. List all initial monomial ideals
of I, with respect to all term orders.

Exercise A.1.7 Let M be an arbitrary monomial ideal in Clxy,...,z,], and let
B C N” be the set of all vectors b such that xP is not in M. The distraction of M is
the radical ideal Dy, of all polynomials in C[xy, ..., z,] which vanish on the set B.

(a) Determine a finite generating set of D;.

(b) Show that M is the initial monomial ideal of D), with respect to any term
order.

(c¢) Determine the prime decomposition of Dy;.

(d) The number of prime components of D), is called the arithmetic degree of M.
Write a CoCoA program for computing the arithmetic degree.

A.2 Exercises from Day 2

Exercise A.2.1 Let A be the simplicial complex on the set {x1, z2, 3, 24, Y1, Y2, Y3,
Ya, 21, 22, 23, 24} Obtained by polarization of the monomial ideal

M = (z* y*, 2%, 2%y 2, 2y 22, 2Py 2®).
Determine the number of ¢-dimensional faces of A for i = 2,3,4,5,6,7,8.

Exercise A.2.2 Let < be the purely lexicographic term order. Using CoCoA, com-
pute the generic initial ideal gin_(M) and its minimal free resolution, for the ideal
M in the previous Exercise.
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Exercise A.2.3 Pick 100 monomials in x,y, z at random with exponents between 0
and 1000. Compute the minimal free resolution and the Hilbert series of the ideal
they generate. Repeat the experiment ten times. Explain your data. Try again with
more monomials...

Exercise A.2.4 Draw the second barycentric subdivision of a triangle. Construct a
monomial ideal in k[x,y, z] which has that resolution. Such ideals exist by Schnyder’s
Theorem.

Exercise A.2.5 Explain how the Hilbert function command in CoCoA can be used
to compute the Scarf complex of a generic monomial ideal. Apply your method to
compute A, for

M = {a®,°, " d° ab*cd*, a*b*ctd, a’b*cd?, a*bc*d®).
The Scarf complex A, is a triangulation of the tetrahedron; draw it.

Exercise A.2.6 Compute the irreducible decomposition of the monomial ideal M in
the previous Exercise.

Exercise A.2.7 What is the maximum number of irreducible components of an ar-
tinian ideal generated by 10 monomials in 4 variables? Can you find an example that
attains the bound?

Exercise A.2.8 Consider the non-generic monomial ideal M = (z,y, 2)3. Construct
at least three different free resolutions of M by deformation of exponents.

A.3 Exercises from Day 3
Exercise A.3.1 Find a monomial ideal I such that (IV)¥ # I. Characterize such I.

Exercise A.3.2 Alexander duality commutes with taking radicals: vV = (v/I)V.

Exercise A.3.3 Let I be a monomial ideal given in terms of its minimal generators,
and a € N” coordinatewise bigger than the exponent vectors of the generators. What
is the easiest (or fastest) method in CoCoA for calculating the Alexander dual I12?

Exercise A.3.4 The irrelevant ideal of the product of projective spaces P? x P? x P!
is a squarefree monomial ideal M in k[xg, z1, 22, Yo, Y1, Y2, 20, 21]-

Find the minimal generators of M.
Calculate the minimal free resolution of M in CoCoA.

a)
b)
c¢) Interpret the Betti numbers of your resolution in (b) in terms of polytopes.
d)
)

(
(
(
(d) Show that the minimal free resolution of M is a cellular resolution.
(e) Why is the Alexander dual of M Cohen-Macaulay?
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Exercise A.3.5 Draw the minimal free resolution of the cogeneric ideal
(@ yh 2% Nyt 2N N (@t ) 0oty 2% Nty 2%) N (Bt )
Check your result using CoCoA.

Exercise A.3.6 What is the maximal number of minimal generators of an intersec-
tion of 12 irreducible monomial ideals in klxy, z9, 3, 24]7

Exercise A.3.7 Show that the hull resolution of (%, y* 232, 332, 2222, y?22%, 223, y23)
is minimal. What is its irreducible decomposition? Where is this information hiding
in the hull complex?

Exercise A.3.8 Compute the hull resolution of the ideal
I = (2129, 2173, X174, T175, T3, Doy, ToTs, T3Ty, T3T5, T4Ts) -

Can you state a general result for squarefree monomial ideals?

A.4 Exercises from Day 4

Exercise A.4.1 Let M denote the monomial module generated by all Laurent mono-
mials z'yz* with the properties that i + j + k = 0 and not all three coordinates of
(1,7, k) are even. Draw a picture of this module. Determine the minimal free resolu-
tion of M over k[z,y, z|.

Exercise A.4.2 Let L be the kernel of the matrix . Show that the

3 2 10

0 1 2 3
hull resolution of the monomial module M, is minimal. What happens modulo the
action by the lattice L?

Exercise A.4.3 Describe the canonical module of the ring k[t3, 1, 7] as the quotient
of a lattice module in k[z*! y*!, 2*] by a lattice action. Is there a relation to
Alexander duality?

Exercise A.4.4 Using CoCoA, compute the Z-graded Hilbert series of the algebra
E[t%0,¢*4,¢% ¢3'] in the form
p(t)
(1 —20)(1 —¢24)(1 — ¢25)(1 — ¢31)

Give a polyhedral explanation for each term appearing in the polynomial p().

Exercise A.4.5 Suppose you travel to a country whose currency has four coins val-
ued 20, 24, 25, and 31. What is the largest amount of money which cannot be
expressed by these coins?

Exercise A.4.6 Explain how the hull complex of a generic lattice ideal can be
computed in CoCoA. Apply your procedure to compute the hull complex for the ideal
I1, of the 2-dimensional sublattice L of Z* spanned by the vectors (-7, —5,3,8) and
(4,-7,9,—1).

Exercise A.4.7 Compute the hull resolution for the ideal of 2 x 2-minors of a generic
2 X 4-matrix.
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B Appendix: Solutions

Many of the solutions below were contributed by students of the 1999 COCOA Sum-
mer School in Turin, Italy, although their solutions have been edited for clarity and for
technical reasons. When the printed solution has more than one author, the contribut-
ing author is labeled with an asterisk (*). When more than one group contributed
solutions which were subsequently amalgamated by the authors of these lectures, each
group has been parenthesized. All exercises which include computations refer to the

program CoCoA [8].

B.1 Solutions for Day 1

Solution B.1.1 By (Bahman Engheta, Leah Gold*, Ed Mosteig),
(Kimberly Presser*®), (Gerhard Quarg®), and (Carolyn Yackel*)

In fact, these ideals appear in Lecture VI (Example 6.3). Here, we prefer to label the
vertices of the octahedron as indicated in the picture:

21

In order to get the ideal In, write down the minimal nonfaces of the octahedron,
which are the edges connecting variables on the same axis:

In = (2129, 1Y2, 2122) -
For Iav, just switch the roles of the minimal generators and prime components:
IAV = <LU1, yl) N <y17 y2> N <Zl7 Z2>
= <l’2y222,x1y222,x2y122,:61y1z2,xzyzzl,I1y221,x2y121,x1y121)-

The Hilbert series for S/Ix can be calculated by hand from the polytopes as described
in Lecture I or read off of the minimal free resolution calculated below:

1 — 2120 — y1Y2 — 2122 + T1T2Y1Y2 + T1X22122 + Y1Y22122 — T1T2Y1Y22122
(I —=2)(1 = 22)(1 —y1)(1 = y2)(1 — 21)(1 — 22)

We get the coarse Hilbert series by setting all variables equal to ¢:

1-324+3t"—1°  14+3t+3°+¢°
(=5 (1=
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Similarly for Iav: the numerator of the Hilbert series of S/Iav is

1 — muyiz1 — Tayi21 — T1yaz1 — TaYaz1 — T1Y122 — TalY122 — T1Y222 — Tala2o

ToYo2122 + T1Y22122 + TaY12122 + T1Y12122 + ToY1Y222 + T1Y1Y222

+ -

T1XoY229 + T1ToY122 + ToY1Y221 + T1Y1Y221 + T1X2Y221 + T1X2Y121
— ToY1Y2z122 — T1Y1Y2z122 — X1X2Y22122 — X1X2Y12122 — L1X2Y1Y2%2
—  T1XoY1Y221 + T1ToY1Y22122 ,

while the coarse Hilbert series of Iav is

1— 865+ 12t — 6° + 15 1+ 2+ 32 — 4* + ¢*
(1-1)° N (=)

One may calculate the coarse Hilbert series with CoCoA as follows:

Use S ::= Q[x[1..2]y[1..2]z[1..2]];

I := Ideal(x[1]x[2],y[1]ly[2],z[1]1z[2]);

IDual := Intersection(Ideal(x[1],x[2]),Ideal(y[1],y[2]),
Ideal(z[1],z[21));

IDual;

Ideal(x[2]y[2]z[2], x[1ly[2]z[2], x[2]y[1]z[2], x[1ly[1]lz[2],

x[2]y[2]z[1], x[1ly[2]z[1], x[2]y([1]z[1], x[1]y[11=z[1])

Poincare(S/I);

(1 + 3x[1] + 3x[1]"2 + x[1]1°3) / (1-x[1])"3

Poincare(S/IDual);

(1 + 2x[1] + 3x[11°2 - 4x[1]1°3 + x[11°4) / (1—x[11)"4

One may use CoCoA to calculate the minimal free resolutions. Continuing from above:

Res(S/I);
0 -—> S(-6) --> 8°3(-4) --> 8°3(-2) -—> 8

Describe It;

Mat [
[z[1]z[2], yl[1ly[2], x[1]x[2]]
]
Mat [
[y[1ly[2], x[1]x[2], 0],
[-z[1]z[2], O, x[1]1x[21],
[0, -z[1]1z[2], -y[1ly[2]]
]
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Mat [
[x[11x[2]],
[-y[1ly[2]],
[z[1]1z[2]]

Using monomial matrices the minimal free resolution of S/Ix is

Y1Y2z12z2 T1T22122 T1T2Y1Y2 T1T2Y1Y22122
2122 1 1 0 Y1Y22122 1
Z122 Y1Yy2 T1x2 Y1y2 -1 0 1 T1T22122 -1
1 ( 1 1 1 ) 172 0 -1 -1 T1T2Y1Y2 1
0«— 39 S3 53 Sl——0

The alternating sum of the column labels is the numerator of the Hilbert series of
S/IA.

The minimal free resolution of S/Iav is
0e— S e— S8 e— G20 gl 0.

The matrices are too big to fit comfortably on the page (either in monomial matrix
form or usual form). However, we note that the monomial matrices are filled with
the boundary maps of the cube (Proposition 5.4)—observe the reflection of this fact
in the total Betti numbers (1,8,12,6,1) of S/Iav.

Use Hochster’s formula (Theorem 1.8), 3;,(S/Ia) = dimy H="2(Al,; k), to
relate the Betti numbers with simplicial homology. For each incidence vector o—
which we identify with a subset of the vertices of the octahedron—the Betti number
Bio(S/Ia) is 1 precisely when x7 is a column label for the i-th monomial matrix
appearing in the minimal free resolution of S/Ia; otherwise it is 0. Thus, for instance,
from the column label x;292129 appearing in the middle matrix of the resolution
displayed earlier we see that

Bo.p = dimy H773(A|,: k) = dimy, H (A]; k) = dimyg HiA|,; k) = 1.

Here, o corresponds to the four vertices of the octahedron labeled z1, x2, 21, and z.
Hence, Al, is the boundary of a square. Since the column label x1x921 25 only appears
once in the resolution, Hochster’s formula shows that the reduced homology of Al,
is 0 in every other homological degree, as expected.

When o = 1 is defined by X7 = x129y1y22122, we get Al, = A. Using Hochster’s
formula, we see that H 2(A; k) =2 k and the other homology is zero.

Solution B.1.2

Although CoCoA doesn’t readily calculate Z"-graded Betti numbers, the only Betti
numbers we need to find the homology of a simplicial complex A are 3; 1, 1)(S/1a),
and these are the only Betti numbers in total (Z-graded) degree n = #variables.
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Therefore, we can calculate dimy H;(A; k) = Bn—i—1,1,..,1)(S/1a) (Theorem 1.8) sim-
ply by reading off the number of summands of the form S(—n) at the i*" step in the
minimal free resolution of S/Ix.

Solution B.1.3

First create the 5 x 5 chessboard complex and calculate its Hilbert series:

N :=5;
Use S ::= Q[x[1..N,1..N]1];
G := []; -- generators for the ideal

For I := 1 To N Do
For J := 1 To N Do
For L := 1 To N Do
If J <> L Then
G := Concat(G, [x[I,J]x[I,L],x[J,I1x[L,I11);

End;
End;
End;
End;
Len(Set(G)); -- just to make sure we get 100 monomials
100
IDelta := Ideal(G); -- create the ideal
Poincare(S/IDelta);

(1 + 20x[1,1] + 110x[1,1]"2 + 140x[1,1]"3 -
95x[1,1]°4 - 56x[1,11°5) / (1-x[1,1]1)"5

Now compute the f-vector:

-- function for computing the f-vector
Define FVector(I)
L := HVector(CurrentRing()/I);
D := Dim(CurrentRing()/I);
Using Qt Do
H := Sum([L[N]Jt"(N-1) | N In 1..Len(L)]1);
E := Subst(H,t,1);
F := [E];
For N := 0 To D-1 Do

H := (H-Ext~(D-N))/(1-t);
E := Subst(H,t,1);
F := Concat([E],F);

End;

End;

72



Return [LC(X) | X In F]; -- LC used to suppress printing of ’Qt’
End;

FVector (IDelta);
[1, 25, 200, 600, 600, 120]

Hence, there are 25 vertices, 200 edges, 600 two-dimensional faces, etc.

In theory we should be able to calculate the homology using the CoCoA command
Res(S/IDelta) and looking for the number of summands of the form S(—25) in each
degree. Unfortunately, the calculation does not terminate successfully in CoCoA. For
the 3 x 3 case, go back and set N := 3. We get

FVector (IDelta);
[1, 9, 18, 6]

Res(S/IDelta);
0 --> 874(-9) --> 8727(-8) --> 8°72(-7) -—> S79(-5) (+)S~90(-6) -—>
$°45(-4) (+)3745(-5) --> 8748(-3) (+)S"9(-4) --> 8718(-2) -—> S

which according to Solution B.1.2 means that dimy, f]l(A; k) = (7(S/IA) = 4 and the
other homology groups are zero.

Solution B.1.4

Here is some CoCoA code to accomplish the task. Unfortunately, this code will prob-
ably not finish in a reasonable amount of time, except for the reverse lex gin.

S ::= Qx,y,z];

T ::= Q[x[1..10]]; --Default order Reverse Lex

U ::= Q[x[1..10]], Lex;

Use T;

Using S Do -—Create a matrix whose columns
M := Ideal(Indets())"3; --are the exponent vectors of the
L := [Log(J) | J In MinGens(M)]; --10 degree 3 monomials
L := Transposed(L);

End;

I := Toric(L); --Form the toric ideal for this matrix

Define Gin(I)
RandLin(N) := [Sum([Rand(-100,100) J | J In Indets()]) | M In 1..N];
J := Eval(I,RandLin(NumIndets()));
Return(LT(J));

End;
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The following is the result of taking the reverse lex initial ideal:

Use T;

Gin(I);

Ideal (x[1]1°2, x[11x[2], x[2]"2, x[11x[3], x[2]1x[3], x[3]1°2, x[11x[4],
x[2]x[4], x[3]1x[4], x[4]"2, x[1]1x[5], x[2]x[5], x[31x[5], x[4]1x[5],
x[5]1°2, x[1]x[6], x[2]x[6], x[3]1x[6], x[4]1x[6], x[5]x[6], x[6]"2,
x[(1)x[7], x[2]1x[7], x([3]1x[7], x[4]1x[7], x[5]1x[7], x[6]x[7], x[7]1"3)

Solution B.1.5 By Carolyn Yackel

Any nonradical ideal I whose radical is /I = m = (zy,...,2,) cannot be an initial
ideal of a homogeneous prime. Indeed, any homogeneous ideal J having initial ideal
I is artinian, and therefore has support on m. The Hilbert function of such a J gives
away the fact that J is not radical. In particular, I can be Borel-fixed—for instance,
I can be a power of m. In general, Borel-fixed ideals which are primary to ideals
generated by initial subsets of the variables will have the same problems.

Solution B.1.6 By Mircea Mustata and Greg Smith*

Every initial ideal can is the result of taking an initial with respect to a weight order
[12, Chapter 15]. We start by finding a list of weight vectors which give different
initial ideals. Without loss of generality, it is enough to consider vectors of the form
(A,2,1): because the ideal is homogeneous the initial ideal remains the same if one
adds or subtracts (1,1, 1) and if one multiplies by a scalar. We may assume the first
entry of (A,2,1) is larger than the second and that the second is larger than the third,
as long as we remember to apply all permutations of the variables when we’re done.

LL := [J;
For A := 3 To 20 Do
W := Mat[[A,2,1]];
S ::= Q[abc], Weights(W);
Using S Do
L := GenericPoints(11);
L := Tail(Tail(Tail(Tail(L))));
I := IdealOfProjectivePoints(L);
J = [Log(X) | X In Gens(LT(I))];
If Not (J IsIn LL) Then
Append(LL, J);
Print([A,2,1]);
End;
End;
End;
Print (LL);

From this we obtain four vectors: (3,2,1), (4,2,1), (6,2,1) and (8,2,1). Now we
determine the interval associated to each vector, using the fact that if two different
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A return the same initial ideal then so do all intermediate A. For instance, let’s see
what happens when we increase A from 3 to 5.

W o= [3,2,1];
S ::= Z/(32003) [abc], Weights(W);
Define TestWeight ()
Using S Do
L := GenericPoints(11);

L := Tail(Tail(Tail(Tail(L))));
I := IdealOfProjectivePoints(L);
G := ReducedGBasis(S/I);
End;
Return(LT(G));
End;
TestWeight ) ;

[S :: ab™2, S :: a™2b, S :: a3, S :: b~4]
W := [301,200,100];

S ::= Z/(32003) [abc], Weights(W)
TestWeight ) ;

[S:: a2c, S :: a™2b, S :: a”3, S :: ab™2c, S :: ab~3, S :: b~5]

[

W = [5,2,1];
S ::= Z/(32003) [abc], Weights(W);
TestWeight ) ;

[S:: a2c, S :: a™2b, S :: a”3, S :: ab™2c, S :: ab~3, S :: b~5]

W := [501,200,100];

S ::= Z/(32003) [abc], Weights(W);

TestWeight ) ;

[S :: a2c, S :: a™2b, S :: a”3, S :: ab™2c, S :: ab~3, S :: abc~3,
S :: b’6]

Note that we had to use [301,200,100] in place of [3.01,2,1] since CoCoA requires
integers for weights. The above CoCoA session shows that the initial ideal is constant
for 3 < A < 5, but changes when A = 3 or A > 5. Doing this for the four critical
values of A found above, the intervals are

2<A<3, 3<AL<S H<ALT, T<A.

One checks easily that applying the permutations of the variables to the initial ideals
for A =3,5,7,8 doesn’t produce any ideal twice (look at what happens to the powers
of variables in these ideas). Therefore, there are 6 - 4 = 24 distinct initial ideals.
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Solution B.1.7

Distractions are covered to some extent in the other lectures in this volume, so we’ll
just give some sketches and references. A finite generating set is obtained from the
minimal generators of M by replacing each occurrence of 2z by x;(x; — 1)(z; —
2)---(z; —b; +1). Thus Dy, is generated by the distractions D(m) of the mono-
mials m generating M, where, for example,

D(2’y'z) = x(z — 1) (z = 2)y(y — )(y — 2)(y — 3)=.

Every scalar in k is less than every variable in a term order, so the initial term of
a distraction D(m) is m itself. This implies that M is contained in any initial ideal
of Dy;. If M is artinian then M is the initial ideal of D), with respect to all term
orders because S/M and S/Dys have the same length (k-vector space dimension). In
particular, the distraction of the minimal generating set of M is a Grobner basis if M
is artinian. For general M, introduce powers of the variables so high that they cannot
interfere with Buchberger’s algorithm on the distractions of the minimal generators
of M. Since we know for artinian M that the distractions form a Grobner basis, it
must be that Buchberger’s criterion applies without the presence of the distractions of
the introduced high powers of variables. Therefore, { D(m) | m is a minimal generator
of M} is a reduced Grébner basis for every term order.

The prime decomposition of D(M) is given by the set of standard pairs [35], which
refine the information in irreducible decomposition. However, our CoCoA routine to
calculate the arithmetic degree will be based simply on irreducible decomposition and
some counting, without listing the standard pairs.

The ideal M used as the test case below is the Permutohedron ideal of Example 6.12,
whose irreducible components have varying dimensions. It is also a good idea to test
its Alexander dual,

Ideal(xyz,x"2y~2,y72z72,x722"2,x73,y73,2z"3) },
which has only one primary component that splits into lots of irreducible components.

M := Ideal(xy~2z"3,x"2y"3z,x"3yz"2,x"2yz"3,x 3y 2z,xy"32"2);
A:= Log(LCM(Gens(M)));

The next function Pos is a CoCoA command for supp(L), when applied to vectors
L € N". The command Artinian throws in the high coordinate of A to the exponent
vector B whenever B has a zero there. We’'ll need this to compute the irreducible
decomposition via Alexander duality, and to reduce everything to finite-dimensional
k-vector spaces, later on.

Pos(L) := [Min(Concat(X,[1])) | X In List(Transposed(Mat(L)))];

Define Artinian(A,B)
Cc :=[1;
For N :

o~

1 To Len(A) Do
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If B[N] = O Then Output := A[N]+1
Else Output := B[N];
End;
Append (C,Output) ;
End;
Return(C) ;
End;

The following AlexDual command is one of those submitted by Robert Forkel for
Solution B.3.3.

Define AlexDual(...)
N:=NumIndets();
I:=Minimalized (ARGV[1]);
If Len(ARGV)=2 Then A:=ARGV[2]
Else A:=Log(LCM(Gens(I)))
End;
I:=Mat([[1|K In 1..N]-Log(M)+AIM In Gens(ARGV[1])1);
If Len(ARGV) > 2 Then Error(’Too many arguments in AlexDual’) End;
L:=[];
For K:=1 To Len(I) Do
Append (L, [(Indet(M))"I[K,M]IM In 1..N And I[K,MI<=A[MID);
End;
Return IntersectionList([Ideal(M)|M In L])
End;

Getting the irreducible decomposition from the Alexander dual is easy.

BToTheA(A,B) := A + [1 | X In Indets()] - Artinian(A,B);
Define IrrDecomp(I)

J := AlexDual(I);

A := Log(LCM(Gens(J)));

Return([BToTheA(A,Log(B)) | B In Gens(J)]);
End;

Irr := IrrDecomp(M); Irr;
[[O, O, O, 1], [O, 3, 3, 3]’ [O, O, 1, O]’ [O, 1, O, O],
[O, O, 2’ 2], [O’ 2’ O, 2]’ [O, 2, 2, O]]

We have now fixed an ordering of the irreducible components. For each () primary
to P on the list we write down (i) the other components on the list whose associated
primes are strictly contained in P, plus (ii) those associated to P which appear after Q).

Divides(Y,X) := Mod(LogToTerm(Y) ,LogToTerm(X)) = O;
—-True if X divides Y
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PartOrder (Irr):=
[[Irr[N] | N In 1..Len(Irr) And Divides(Pos([Irr[M]]),Pos([Ixrr[N]]))
And (Pos([Irr[M]])<>Pos([Irr[N]]) Or N >= M)] | M In 1..Len(Irr)];

PO := PartOrder(Irr); PO;

[cro, o, o, 111,

tco, o, o, 11, (o, 3, 3, 31, [0, O, 1, O], [0, 1, O, O],
(o, o, 2, 21, [0, 2, O, 2], [0, 2, 2, 011,

(o, o, 1, 011,
(fo, 1, o, oll,
tfo, o, o, 11, o, o, 1, ol, [0, O, 2, 217,
(o, o, o, 11, [0, 1, 0, 01, [0, 2, O, 211,
(fo, o, 1, o1, [0, 1, 0, 01, [0, 2, 2, 0]]]

For each irreducible component in the list corresponding to @), we add artinian gen-
erators coming from A, except that we ignore the variables not in P.

A(A,Q):= Artinian(A,[1|X In Indets()]-Pos([Q]))-[1 | X In Indets()];

Art(A,Ir,P0):=[[Artinian(A(A,Ir[N]),Q)|Q In PO[N]]IN In 1..Len(PO)];
APO := Art(A,Irr,PO);

The intersection of these “artinianized” components has finite codimension as a k-
vector subspace of the polynomial ring. Omitting the artinianized version of @ itself
from the intersection still leaves us with an ideal of finite codimension, less than the
codimension with () included. The difference of these codimensions is the contribution
from the irreducible component ().

M(B) := Ideal([Indet(N)"B[N] | N In 1..NumIndets()]);

WithQ(APQ) :=[IntersectionList ([M(B)IB In X]) | X In APO]; WithQ(APQ);
[Ideal(t, x, y, z), Ideal(t, z"4, y~4, x"4, xy°2z"3, x"2yz~3, xy~3z"2,
x"3yz~2, x"2y"3z, x"3y~2z), Ideal(t, x, y, z), Ideal(t, x, y, 2z),
Ideal(x, t, yz"2, y 2z, z"4, y~4), Ideal(y, t, xz"2, x"2z, z"4, x74),
Ideal(z, t, xy~2, x"2y, y 4, x74)]

WithoutQ(A,APO,Irr) :=[IntersectionList([M(B) | B In APO[N] And
B <> Artinian(A(A,Irr([N]),Irr[N])])
| N In 1..Len(APO)];
WithoutQ:= WithoutQ(A,APO,Irr); WithoutQ;
[[ ], Ideal(t, z"4, y~4, x74, xy~2z"2, x"2yz~2, x"2y°22), [ 1, [ ],
Ideal(x, t, yz, z"4, y~4), Ideal(z"4, x74, y, t, x2),
Ideal(xy, y 4, x74, z, t)]
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Define Mult(I)
If Type(I) = IDEAL Then Mult := Multiplicity(CurrentRing()/I)
Else Mult := 0;
End;
Return(Mult);
End;

DegWithQ:= [Mult(X) | K In WithQ(APO)]; DegWithQ;

[1, 48, 1, 1, 8, 8, 8]

DegWithoutQ:= [Mult(K) | K In WithoutQ]; DegWithoutQ;
(0, 44, 0, 0, 7, 7, 7]

Degrees:= DegWithQ - DegWithoutQ; Degrees;

(1, 4, 1, 1, 1, 1, 1]

ArithDeg:= Sum(Degrees); ArithDeg;

10

The contribution of a single irreducible component to the arithmetic degree is only
well-defined after choosing an ordering of the irreducible components. However, the
total contribution from a given associated prime is well defined.

B.2 Solutions for Day 2

Solution B.2.1 By (Bahman Engheta, Leah Gold*, Ed Mosteig),

(Kimberly Presser®), (Gerhard Quarg®), and (Carolyn Yackel*)
The following CoCoA code uses the function FVector, defined as in Solution B.1.3.
We assume this function has already been entered into CoCoA.

Use S ::= Q[x[1..4]1y[1..41z[1..4]];

-- the polarization appears next:

IDelta := Ideal(x[1]x[2]x[3]x[4],y[1]y[2]y[3]y[4],z[1]z[2]z[3]z[4],
x[11x[2]1x[31y[1]ly[2]1z[1],x[1]y[1]1y[2]y[3]1z[1]z[2],
x[11x[2]y[11z[1]1z[2]1z[3]);

FVector (IDelta);

[1, 12, 66, 220, 492, 768, 837, 609, 264, 51]

Thus, A has 12 vertices, 66 edges, etc.
Gerhard Quarg found another way to calculate the f-vector. First calculate the
Hilbert series.
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Poincare(S/IDelta);
(1 + 3x[1] + 6x[1]°2 + 10x[1]°3 + 12x[1]1°4 + 12x[1]°5 + 7x[1]°6) /
(1-x[11)"9

Now use the formula
1 12
Ht) = ——— (1 — )

Multiply by (1 —¢)'? to get the numerator we need and compute the f vector using
the CoCoA function GenRepr. The indeterminate x[1] plays the role of t.

F := (1-x[1])"12(1 + 3x[1] + 6x[1]1°2 + 10x[1]1°3 + 12x[1]1°4 +
12x[1]1°5 + 7x[1]1°6) / (1-x[1])"9;

GenRepr (F,Ideal ([x[1]°I (1-x[1]1)"(12-I) | I In 0..12]));

[1, 12, 66, 220, 492, 768, 837, 609, 264, 51, 0, 0, 0]

Solution B.2.2 By Kimberly Presser

Define Generic(I)

Help ’The CurrentRing() should be Q[x[1..N]] where N is the number of
indeterminates.’;

J:=I;

N:=NumIndets();

For K:=1 To N Do
F:=DensePoly(1);
L:=Randomized (F) ;
J:=Subst (J,x[K],L);

End;

Gin:=LT(J);

Return Gin;

End;

Use R::=Q[x[1..3]],Lex;

M:=Ideal(x[1]°4,x[2]"4,x[3]"4,x[1]"3x[2]"2x[3],x[1]1x[2]"3x[3]"2,
x[1]1°2x[2]x[3]"°3);

G:=Generic(M);

G;

Ideal (x[1]174, x[1]17°3x[2], x[1]1°3x[3], x[1]1"2x[2]"3, x[1]"2x[2]"2x[3],

x[1]72x[2]1x[3]"2, x[1]1"2x[3]"4, x[1]1x[2]"5, x[1]x[2] 4x[3],

x[11x[2]"3x[3]"2, x[1]x[2]"2x[3]"3, x[1]x[2]x[3]"4, x[1]x[3]"5,

x[2]°7, x[2]"6x[3], x[2]°56x[3]"2, x[2]"4x[3]"3, x[2]"3x[3]74,

x[2]72x[3]°5, x[2]x[3]"6, x[3]"7)
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Res(R/G);

0 -=> R(-6) (1)R"2(-7) (+)R"6(-8) (+)R"7(-9) -->
R~3(-5) (+)R"5(-6) (+)R"13(-7) (+)R"15(-8) -—>
R~3(-4) (+)R"3(-5) (+)R"7(-6) (+)R"8(-7) --> R

Solution B.2.3

Clearly we will not be printing the solution to this one. However, the reader may find
the following command useful.

RandMon(N,Exp) := [LogToTerm([Rand(0,Exp) | L In 1..NumIndets()])
| M In 1..N];

It generates N random monomials with exponents between 0 and Exp.

Solution B.2.4 By Burckhard Zimmerman

The second barycentric subdivision of a triangle is at left below, and resolves the
generic ideal with the staircase at right. Recall that the tree ideal (Section 5.3)
has cellular minimal resolution supported on the first barycentric subdivision of a
simplex. The above staircase is constructed roughly by arranging a bunch of tree
ideals around a central inner corner. This arrangement is easiest to see by looking at
the six hexagonal groups of white dots = irreducible components. [The first author
of these Lectures was quite surprised when Mr. Zimmerman found precisely the same
solution to this problem as he did. Most people think that the staircase is aesthetically
more pleasing upside-down, representing the cogeneric Alexander dual.]

&

A4 Ao A4

Solution B.2.5
(oCoA’s standard use of Poincare is to give the Z-graded Hilbert-Poincare series of a
quotient S/M in reduced terms, so that the denominator is (1—variable)?, where d =
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dim(S/M). If we could somehow convince CoCoA to give us the multigraded Hilbert
series, the Scarf complex would consist of the monomials in the numerator. It turns
out that CoCoA does have a feature for using Poincare when the variables have linearly
independent weights, and this allows CoCoA to use finer gradings. Unfortunately, the
first row of the WeightsMatrix must consist of positive integers, so we are not allowed
to assign the weight e; € Z" to the i*® variable. As a meager substitute, we add a
new homogenizing variable at the top of the list, and proceed to forget about it later.
In our case, we need 4 variables a, b, ¢, and d, so we use t as the “zeroth” variable:

Use S ::= Q[t,a,b,c,d], Weights(Mat([[1,1,1,1,1],

[0,1,0,0,0],

[0,0,1,0,0],

[0,0,0,1,0],

[0,0,0,0,111));
M:=Ideal(a"5,b"5,c"5,d°5,ab"2c"3d"4,a"2b"3c"4d,a"3b"4cd"2,a"4bc"~2d"3) ;
P:=Poincare(S/M);

It looks like P is a rational function, but really it’s a list of coefficients and exponent
vectors, as the command

Describe(P);

demonstrates. The elements of A, are uniquely determined by their vector labels,
which are obtained from the exponent vectors in the numerator of the Hilbert series
by leaving off the exponent of t:

N := [Tail(X[2]) | X In P[1]];

N;

[[5, 5, 5, 11, [5, 5, 4, 21, [5, 4, 4, 31, [5, 3, 5, 3], [4, 4, 4, 4],
[3, 5, 4, 4], [4, 3, 5, 4], [2, 5, 5, 4], [5, 5, 1, 5], [5, 4, 2, 5],
(4, 4, 3, 5], [3, 5, 3, 5], [6, 1, 5, 5], [4, 2, 5, 5], [1, 5, 5, 5],
(5, 5, 5, 0], [5, 5, 4, 11, [5, 4, 4, 21, [5, 3, 4, 31, [4, 4, 4, 3],
(4, 3, 5, 3], [4, 4, 3, 4], [3, 5, 3, 4], [4, 3, 4, 4], [3, 4, 4, 4],
[2, 5, 4, 4], [4, 2, 5, 4], [1, 5, 5, 4], [5, 5, 0, 5], [5, 4, 1, 5],
(4, 4, 2, 5], [3, 4, 3, 5], [5, 0, 5, 5], [4, 1, 5, 5], [0, 5, 5, 5],
(5, 3, 5, 11, [3, 5, 4, 21, [5, 4, 2, 31, [4, 3, 4, 3], [5, 1, 5, 3],
[3, 4, 3, 4], [2, 3, 5, 4], [3, 5, 1, 5], [4, 2, 3, 5], [1, 5, 3, 5],
(5, 3, 4, 1], [2, 5, 5, 11, [5, 5, 1, 21, [3, 4, 4, 2], [4, 4, 2, 3],
(4, 1, 5, 3], [4, 2, 3, 4], [1, 5, 3, 4], [2, 3, 4, 4], [3, 4, 1, 5],
(5, 1, 2, 5], [1, 2, 5, 5], [2, 5, 4, 1], [5, 4, 1, 2], [1, 2, 5, 4],
(4, 1, 2, 51, [2, 3, 5, 1], [3, 5, 1, 21, [5, 1, 2, 31, [1, 2, 3, 5],
(5, 5, o, ol, [5, 0, 5, 0], [0, 5, 5, o1, [2, 3, 4, 11, [3, 4, 1, 2],
4, 1, 2, 31, [1, 2, 3, 41, [5, 0, 0, 5], [0, 5, 0, 5], [0, O, 5, 5],
(5, o, o, o], [0, 5, 0, 0], [0, O, 5, 0], [0, O, O, 5], [0, O, O, 0]1]

If you want to know how the faces of Ay, are described as least common multiples
of minimal generators, just determine, for each element N[I] in the list N, which
generators of M divide the monomial (a, b, c, d)N[I]:
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G := Gens(M);
D := [[J In 1..Len(G) | Mod(LogToTerm(Concat([0],N[I])),G[J]) = 0]
| T In 1..Len(N)];

D;

(r1, 2, 3, 61, 1, 2,6, 71, [1, 6, 7, 81, [1, 3, 6, 81, [5, 6, 7, 8],
[2, 5, 6, 7], [3, 5, 6, 8], [2, 3, 5, 6], [1, 2, 4, 7], [1, 4, 7, 8],
(4, 5, 7, 8], [2, 4, 5, 71, [1, 3, 4, 8], [3, 4, 5, 8], [2, 3, 4, 5],
(1, 2, 31, 1, 2, 61, [, 6, 7], [1, 6, 8], [6, 7, 8], [3, 6, 8],

(5, 7, 81, [2, 5, 7], [5, 6, 8], [5, 6, 7], [2, 5, 6], [3, 5, 8],

(2, 3, 51, [1, 2, 4], [1, 4, 7], (4, 7, 8], [4, 5, 7], [1, 3, 4],

(3, 4, 81, [2, 3, 41, [1, 3, 6], [2, 6, 71, [1, 7, 8], [1, 3, 8],

(3, 5, 61, [2, 4, 7], [4, 5, 8], [2, 4, 5], [2, 3, 6], [1, 2, 7],

(1, 4, 81, [3, 4, 5], (6, 81, [5, 71, [1, 6], [6, 71, [7, 8],

(3, 81, [5, 8], [2, 5], [5, 6], [4, 7], [2, 6], [1, 7], [38, &],
(4, 81, (3, 6], [2, 71, [1, 8], [4, 5], [1, 2], [1, 3], [2, 3],
(1, 41, (2, 4], (3, 41, (6], (71, [8], (5], [11, (2], (3], (4], [1]]

Don’t forget about the zeroth variable t, which is the reason for the Concat! This
Scarf complex is the Schlegel diagram for the 4-dimensional cross-polytope (higher-
dimensional analog of the octahedron), which can be expressed abstractly as the
convex hull of the points +e; for i € {1,2,3,4}.

Solution B.2.6 By Carolyn Yackel

All we need is the exponent vectors on the facets of the Scarf complex from the
previous exercise. Continuing the CoCoA session from there, we want the elements of
N whose corresponding element of D has length 4:

Irr := [N[I] | I In 1..Len(N) And Len(D[I]) = 4];

Irr;

[(5, 5, 5, 11, [5, 5, 4, 21, [5, 4, 4, 31, [5, 3, 5, 31, [4, 4, 4, 4],
3, 5, 4, 4], [4, 3, 5, 4], [2, 5, 5, 4], [5, 5, 1, 5], [5, 4, 2, 5],
4, 4, 3, 5], [3, 5, 3, 5], [5, 1, 5, 5], [4, 2, 5, 5], [1, 5, 5, 5]]

These 15 = 16 — 1 = 2* — 1 facets of the cross-polytope correspond to all but one of
the vertices of the hypercube, which is polar to the cross-polytope.

Solution B.2.7 By Carolyn Yackel

We may assume the ideal is generic, since deformation only makes the Betti numbers
go up, and the number of irreducible components of an artinian ideal is the last
nonzero Betti number. An upper bound for the number of irreducible components of
a monomial ideal in n variables with r generators is given by one less than the number
of facets of the cyclic n-polytope with r vertices. By a theorem of G. Agnarsson [1],
this upper bound is attained if n < 3 or n = 4 and r < 12. Thus the upper bound
34 for n = 4 and r = 10 is attained by some monomial ideal. For example, leave out
the last two generators of the ideal in Example 4.15.
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Solution B.2.8
This is best done by the reader, following the model of Example 4.12.

B.3 Solutions for Day 3

Solution B.3.1 By (Abdul Jarrah*),
(Bahman Engheta, Leah Gold*, and Ed Mosteig)

Given a monomial ideal 7, let a; be the exponent on the least common multiple of
the minimal generators of I, so IV = I Tt follows directly from the definition
of Alexander dual ideal that a;v < a;. The definition also implies that if a # a’
are both = ay, then & £ 1 because their corresponding generators are different.
Therefore, since (I2)&1 = T it follows that (IV)V = I if and only if a; = av.

Claim B.1 a; = a;v if and only if for each i € supp(ay) there is a minimal generator
xP of I with b; = 1.

Proof: =>:  Let a; and b, be the it" coordinates of a; and a; . b. If there is some xP

with b; = 1, then b = a; by definition, so there is an irreducible component of IV with
x* as one of its minimal generators. It follows from the algorithm in Section 0.6 for
computing irreducible decompositions that a; is the exponent on x; in some minimal
generator of IV.

<: 1If z{" is the power of z; in some minimal generator of IV, then z; is a
minimal generator of some irreducible component of I, because (IV)21] always equals I
(Corollary 6.15). As before, this implies that z; appears with exponent 1 in some
minimal generator of I. O

Solution B.3.2

This follows from the definitions, using the following two observations.

1. supp(a~ b) =1 ~ supp(b) = supp(b).
2. /mP = VmP = msuwrrb),
Solution B.3.3 By Robert Forkel

The function AlexDual?2 below is an implementation of the one-step algorithm [23,
Theorem 2.1]. It tends to work faster in computer algebra systems (such as Macaulay
2 [18]) designed for calculating kernels of matrices. The remaining two functions
AlexDual3 and AlexDual4d are straightforward, and work faster in programs (like
CoCoA) which deal well with monomials. Two examples and speed tests are given at
the end.

Define AlexDual2(...)
I:=Minimalized (ARGV[1]);
If Len(ARGV)=2 Then A:=ARGV[2]
Else A:=Log(LCM(Gens(I)));
End;
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If Len(ARGV)>2 Then Error(’Too many arguments in AlexDual’) End;
M:=Ideal([Indet(N) "~ (1+A[N])IN In 1..Len(A)]);
J:=Colon(M,I);
Return(Ideal ([X In Gens(J) |Max(Log(X)-A)<=0]));
End;-- AlexDual by Ezra Miller

Define AlexDual3(...)
N:=NumIndets();
I:=Minimalized (ARGV[1]);
If Len(ARGV)=2 Then A:=ARGV[2]
Else A:=Log(LCM(Gens(I)))
End;
I:=Mat([[1|K In 1..N]-Log(M)+A[IM In Gens(ARGV[1])1);
If Len(ARGV)>2 Then Error(’Too many arguments in AlexDual’) End;
L:=[];
For K:=1 To Len(I) Do
Append (L, [(Indet(M))"I[K,M]IM In 1..N And I[K,MI<=A[M]]);
End;
Return IntersectionList([Ideal(M)|M In L])
End; -- AlexDual by Robert Forkel

Define AlexDual4(...)
N:=NumIndets();
I:=Minimalized (ARGV[1]);
If Len(ARGV)=2 Then A:=ARGV[2]
Else A:=Log(LCM(Gens(I))) End;
I:=Mat([[1|K In 1..N]-Log(M)+A[IM In Gens(ARGV[1])1);
If Len(ARGV)>2 Then Error(’Too many arguments in AlexDual’) End;
L:=[[Indet(M) "I[K,M]IM In 1..N And I[K,M]<=A[M]]I|K In 1..Len(I)];
Return IntersectionList([Ideal(M)|M In L])
End; -- AlexDual by Robert Forkel

Use S::=Q[abcd];

I:=Ideal(a"9, b~9, c"9, d°9, a"6b~7c~4d, a~"2b~3c~8d"5, a~5b"8c~3d"2,
ab~4c~7d"6, a“8b~"5c~2d"3, a"4bc"6d"7, a“7b~6cd"4, a"3b~2c"5d"8);
A2:=AlexDual2(I);

A3:=AlexDual3(I);

A4:=AlexDual4(I);

A2=A3 AND A3=A4;

Cpu time = 9.70, User time = 10
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Cpu time = 7.53, User time =7

Use S::=Q[uvtxyz];
I:=Ideal(u~8t~4xy~2z,tyz"3,x72z72,t"6z"5,v"5u"3xy,u"9,v 7xy) ;
A:=[10,10,10,10,10,10];

Set Timer;

A2:=AlexDual2(I);

A3:=AlexDual3(I);

A4:=AlexDuald(I);

A2=A3 AND A3=A4,

Cpu time = 6.88, User time =7

Solution B.3.4

Most of this exercise is a specific example of Proposition 5.4 and Example 6.8, where
the polytope is triangle x triangle x segment. The vertices are labeled by the minimal
generators of M = (z;y;2;, | i,j € {0,1,2} and k € {0, 1}) by putting the label z;y;z
on the vertex x; X y; X z.

Solution B.3.5
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-- Current ring is R = Q[t,x,y,z]

M := Ideal(z"6, xz"b, xyz~4, xy 2z"3, y~4z"2, xy~3z"2, y~5z, y’6,
x"4y~2, x76, x"3y"2z"2, x"2y°5, x75z74);

Res (M) ;

0 -—> R"2(-9) (+)R"3(-11) (+)R(-12) -->

R°7(-7) (+)R"6(-8) (+)R(-9) (+)R"4(-10) --> R~10(-6) (+)R"2(-7) (+)R(-9)

Thus CoCoA agrees with the picture, since there are 24341 = 6 regions, 7+6+1+4 =
18 edges, and 10 + 2 4+ 1 = 13 dark vertices.

Solution B.3.6 By Moira McDermott, Hal Schenck,

Greg Smith, and Carolyn Yackel*
Use Alexander duality: the maximal number of minimal generators of an intersection
of 12 irreducible ideals in k[zi,z9, x3,24] is the same as the maximal number of
irreducible components of an ideal generated by 12 monomials in k[xq, 9, 23, 4].
Moreover, the generic ideal in Example 4.15 attains the bound of 53 = C5412 — 1.
The “—17 is because the Scarf complex of a generic artinian ideal is obtained from a
polytope by leaving off at least one face.

Solution B.3.7
The hull resolution can be computed by hand to be

and yields a minimal resolution because none of the faces have the same label. The
irreducible decomposition

(xhyt z) N (2P P, 2%) N (2%, 9, 2°) N ()

has three terms appearing on the facets of the hull complex. The last component
(x,y) “wants” to appear in the truncated top corner of the triangle, but fails to
because it isn’t artinian. Throwing in an extra generator z* to the ideal makes this
last component appear.

Solution B.3.8

The hull complex is a truncated 4-simplex which is the convex hull of the exponent
vectors of I. For any squarefree ideal I whose generators all have the same Z-degree,
the hull complex is the convex hull of the exponents on the minimal generators; see
[4, Corollary 2.13].
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The hull resolution is not minimal: hull(M,) is obtained from the cell complex above
by introducing three short edges into each large “triangle”, leaving only hexagons
and small triangles. The hull resolution can be made minimal by removing any one
of the three edges from each resulting small “down” triangle, but we have chosen the
method in the diagram for aesthetic reasons.

Solution B.4.2

The hull complex of My, consists of shifts of the up and down triangles below.

0,—-1,2,—1

0,1,2,0 0,172,—1
0,0,0,0 ()

0,1,1,0
~1,1,1,—1

0,2,0,0 0,2,1,0

—1,2,1,0

~1,2,-1,0

Since the labels are all distinct, the resolution is minimal. Notice how the opposing
edge labels naturally become identified when the matrix defining L is applied to them.

Solution B.4.3

The canonical module w is spanned as a k-vector subspace of k(¢,¢ 1) by the mono-
mials t72,¢71 ¢, 42,3, ... (with t° = 1 missing). These powers of ¢ are the inverses of
the powers of ¢ that aren’t in k[t3, ¢4, t°]; see [7, Corollary 4.3.8]. Therefore, w is the
image under the functor 7 of the monomial module M, which is k-spanned by the
inverses of the Laurent monomials not in M, where L = ker([4 3 5]). What does
this have to do with Alexander duality? A picture of the monomial module M, is
obtained from the picture of M in Example 7.10 by turning the page over. This
is the same instruction you were supposed to follow to get the Alexander dual ideal
from the original in Example 6.12. And remember the definition of Alexander dual
simplicial complex: A" consists of the complements of faces that are not in A. For
more on these connections, see [23].

Solution B.4.4 By Bahman Engheta, Leah Gold*, and Ed Mosteig

Finding the Hilbert series of k[t?°, 24, %° t31] is equivalent to finding the Hilbert series
of the isomorphic ring Qla, b, ¢, d]/I, where L is the lattice generated by the kernel
of the matrix [20 24 25 31] and the variables have degrees 20, 24, 25, and 31. The
following CoCoA routine calculates the Hilbert series of Qla, b, ¢, d]|/I.

Use S ::= Q[t,x,y,z], Weights(20,24,25,31);
Poincare(S/Toric([[20,24,25,31]1]);
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We find that the numerator p(t) is

_ 4183 _ 4178 _ 4177 _ 4167 _ 4166 _ 4161

+t158 + t153 + t152 + t147 + t146 + t143 + t142 + t141 + t137 + t136 + t135 + t130
_t122 o t112 o tllO o t96 o t93 o t80 _ t75 +1.

Each term t¢ appearing in the above polynomial corresponds to a face of hull(1y).
The exponent d gives the degree of the face in Z*/L = Z. Hence there are 7 edges
with degrees 75, 80, 93, 96, 110, 112, and 122; 12 faces of dimension 2 with degrees
130, 135, 136, 137, 141, 142, 143, 146, 147, 152, 153, and 158; and 6 faces of dimension
3 with degrees 161, 166, 167, 177, 178, and 183.

Solution B.4.5 By Bahman Engheta, Leah Gold*, and Ed Mosteig

Let S = Q[t*°,t**,¢%,#3!]. Then to find the largest amount of money which cannot
be expressed by the 4 coins, we simply need to find the largest d for which t? is not
in S. That is, find the largest d such that dimg(S;) = 0. The Hilbert series for S,
which we found in the previous Solution can be written as

O A ol e e S 2 o 2 o S i o A S i N A L A S A N
A e A e A e A e A e A e A e A e A e A e A N i S A S A

+ st

As we know, the coefficient of t? in the Hilbert series is dimy(Sy). Hence, the largest
amount of money which cannot be expressed by the 4 coins is 83 units. This number
is most simply calculated as the degree of the Hilbert series as a rational function—
that is, the degree of the numerator (= 183) minus the sum of the degrees of the
variables (= 100).

Solution B.4.6

This exercise is analogous to, but more complicated than, Exercise A.2.5. Since L is
generic, the hull complex is the Scarf complex, which makes things easier. Here’s the
problem: although the terms in the numerator of the Z"/L-graded Hilbert series of
S/, are in bijection with the faces of hull({;) for generic L, it’s harder to get the
partial order information on the faces from the same source. Therefore, we prefer to
get the partial order on the face labels before quotienting hull(My) by L. We will
accomplish this by choosing a WeightsMatrix which records the finer Z"-grading in
a coherent way.

First things first: let’s find generators for I;,. We need to have a positive functional
which vanishes on L, since CoCoA requires homogeneity with respect to the first row
of the WeightsMatrix in order to apply the operator Toric.

Mat([[_7,_5,3’8] Py [4:_7:9’_1]]);
LinKer (M) ;

—,aN N =
i

(-3, o, 1, -3], [-5, 25, 22, 3]]
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K[2] - 2K[1];
[1, 25, 20, 9]

As in Solution B.2.5, we now define our ring with one dummy variable t to make
things homogeneous. The rest of the WeightsMatrix keeps track of the Z"-grading.
For now, the ideal J is defined by the binomials coming directly from the two row
vectors of M.

Use S ::= Q[t,a,b,c,d], Weights(Mat([[1,1,25,20,9],
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,0],
[0,0,0,0,111));

Pos(V) := 1/2(V + [Abs(X) | X In V]);

Neg(V) := -1/2(V - [Abs(X) | X In V]);

J := Ideal([LogToTerm(Concat([0],Pos(X)))

- LogToTerm(Concat ([0] ,Neg(X))) | X In M]);
J;
Ideal(-a"7b"5 + ¢~3d"8, a~4c”"9 - b~7d)

The lattice ideal I = I}, contains J, and is obtained from J by saturation with respect
to the product of all the variables. CoCoA has a new built-in command to do this:

I := Toric(Gens(J));

I;

Ideal(-a"7b"5 + ¢~3d"8, a"4c”9 - b"7d, a“11c"6 - b~2d"9, -a~18b~3c"3 +
d~17, -a”3b"12 + ¢~12d4°7, -b~19 + ac~21d76)

The faces of hull(I;) = hull(My)/L are represented once each in the Z"/L-graded
Hilbert series of S/, and our Weights are set up to give us Z"-graded labels for them,
listed in Scarf (along with the corresponding +1 coefficient in the Hilbert series).

P := Poincare(S/I);

P;

--- Non-simplified HilbertPoincare’ Series --—-

( - t7487a"7b"12c”9 + t7484a"4b~12c”9 + t7478a"3b"19 - t~475b"19 -
t7316a"11b"5c”9 + t7312a"7b"5c”9 + t7307a"7b"12 - t7303a"3b"12 -
t7263a718b"5c”"6 + t7256a"11b"5¢c"6 + t7213a"18b"3c”"6 +
£7203a718b"5¢c"3 + t7191a”11c”9 - t7184a"4c”9 - t7153a"18b"3c"3 -
t7131a"11c™6 - t7132a"7b75 + 1) / ( (1-t) (1-ta) (1-t725b) (1-t~20c)
(1-t~9d) )
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Scarf := [[X[1],Tail(X[2])] | X In P[1]1];

Scarf;

(-1, (7, 12, 9, o011, [ 1, [4, 12, 9, 011, [ 1, [3, 19, 0, 011,
(-1, [0, 19, o0, 011, [-1, [11, 5, 9, 011, [ 1, [7, 5, 9, 011,
(1, [7, 12, 0, 011, [-1, [8, 12, 0, 011, [-1, [18, 5, 6, 0]],
(1, [11, 5, 6, 011, [ 1, [18, 3, 6, 011, [ 1, [18, 5, 3, 0I],
(1, [11, 0, 9, 011, [-1, [4, o0, 9, 011, [-1, [18, 3, 3, 0I],
(-1, [11, o, 6, 011, [-1, [7, 5, 0, 011, [ 1, [ O, O, O, 0111

Hopefully the lifts to Z™ we have chosen for the labels are coherent enough that the
partial ordering on them is the desired Scarf complex. For each face X of hull(1}),
Leq picks out the other faces whose labels divide the label on X and whose dimension
is of opposite parity (this is just a convenience which avoids listing too many faces).

Divides(Y,X) := Mod(LogToTerm(Y),LogToTerm(X)) = 0;
Leq(X,Scarf) := [Y[2] | Y In Scarf And Divides(X[2],Y[2])
And X[1] = -Y[1] And Y[2] <> [0,0,0,011;
PartOrder := [[X[2],Leq(X,Scarf)] | X In Scarf];
PartOrder;
tctz, 12, 9, o1, [([4, 12, 9, 0], [7, 5, 9, o], [7, 12, 0, 0111,
(4, 12, 9, o1, [[3, 12, 0, 01, [4, 0, 9, 0111,
(s, 19, o, o1, ([0, 19, O, O], [3, 12, 0, 0111,
(o, 19, o, ol, [ 11,
(f11, 5, 9, o1, (fv, 5, 9, o], [11, 5, 6, O], [11, O, 9, O]]1],
(7, 5, 9, o0l, [[4, o0, 9, o], [7, 5, 0, 0111,
(v, 12, o, ol, [[3, 12, 0, 01, [7, 5, 0, 0111,
(3, 12, o, ol, [ 11,
(rs8, 5, 6, ol, [([11, 5, 6, 0], [18, 3, 6, 0], [18, 5, 3, 0]1],
((11, 5, 6, 01, [[11, O, 6, O], [7, 5, 0, 0111,
(f18, 3, 6, 01, [[18, 3, 3, 0], [11, O, 6, 0111,
(18, 5, 3, o1, [[18, 3, 3, 0], [7, 5, 0, 0111,
((11, 0, 9, 01, [[4, o0, 9, o], [11, O, 6, 0111,
(4, o, 9, 01, [11,
(a8, 3, 3, ol, [ 11,
([11, 0, 6, 01, [ 11,
({r, 5, 0, 01, [ 11,
(o, 0, 0, o], [ 11]

This information is enough to draw a picture, although we will see that there’s still
some partial ordering left to do.
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 (—1,19, 21, —6)

If B is the simplicial complex outlined in bold and containing {3 triangles plus an
edge}, then the diagram is supposed to look like the cone over B. The complex
hull(1;) is obtained by removing B from the above cone, and consists of 3 tetrahedra,
8 triangles, 6 edges, and 1 vertex; check Res(S/I) for verification. Each face of B is
identified in hull(1;) with a face appearing elsewhere in the diagram. For instance,

{(4,-7,9,-1), (7,5, -3, -8), (3,12, 12, -7) } = {(0,0,0,0), (3,12, —12,-7), (-1, 19, —21, —6) } ,

is an equivalence modulo L, as is

{(11, -2,6,-9), (18,3,3, -17), (7,5, -3, —8) } = {(4, -7,9, -1), (11, -2, 6, -9), (0,0,0,0) } .

The labels in PartOrder are the least common multiples of the labels on the vertices.

You may notice something strange about PartOrder: it not quite complete. In
particular, each tetrahedron seems to have only 3 facets, and each triangle only 2
facets. The Z"-grading has “forgotten” that the triangle

{(0,0,0,0), (3,12, =12, =7), (=1, 19, —21, —6) }

is a face of the tetrahedron

{(0,0,0,0), (4,-7,9,-1), (7,5, -3, —8), (3,12, =12, -7) }

after we quotient by L. In general, we have to add to the partial order the relations
determined by the fact that every face in hull(I;) has one of its boundary faces in B.
See [30] for details.

Question for further thought: Were we lucky that the lifting of the Z" / L-grading
gave us a partially ordered set that was already a simplicial complex, without having
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to fill in more faces, or is this a general phenomenon? What choices did we make
(implicitly or otherwise) that made things come out right? To understand the question
better, look what happens to the last diagram in Example 7.10 if we choose the Z"-
graded lift (1,0, 1) for the interior edge instead of (0, 3,0).

Solution B.4.7 See Example 7.17; we do not give details here.

References

1]

2]

[7]

[10]

[11]

[12]

G. Agnarsson. The number of outside corners of monomial ideals. J. Pure Appl.
Algebra, 117/118:3-21, 1997. Algorithms for algebra (Eindhoven, 1996).

D. Bayer, 1. Peeva, and B. Sturmfels. Monomial resolutions. Math. Res. Letters,
5:31-46, 1998.

D. Bayer, S. Popescu, and B. Sturmfels. Syzygies of unimodular lattice ideals.
Preprint math.AG/9912247, 1999.

D. Bayer and B. Sturmfels. Cellular resolutions of monomial modules. J. Reine
Angew. Math., 502:123-140, 1998.

A. M. Bigatti. Upper bounds for the Betti numbers of a given Hilbert function.
Comm. Algebra, 21(7):2317-2334, 1993.

L. J. Billera and A. Sarangarajan. The combinatorics of permutation polytopes.
In Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994),
pages 1-23. Amer. Math. Soc., Providence, RI, 1996.

W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

A. Capani, G. Niesi, and L. Robbiano. CoCoA, a system for doing computations
in commutative algebra. Available by anonymous ftp at cocoa.dima.unige.it.

D. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom.,
4:17-50, 1995.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergradu-
ate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. An
introduction to computational algebraic geometry and commutative algebra.

J. A. Eagon and V. Reiner. Resolutions of Stanley-Reisner rings and Alexander
duality. J. Pure and Appl. Algebra, 130:265-275, 1998.

D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

94



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21

22]

23]

[24]

[25]

[26]

D. Eisenbud, M. Mustata, and M. Stillman. Cohomology of sheaves on toric
varieties. Preprint, 1998.

S. Eliahou and M. Kervaire. Minimal resolutions of some monomial ideals. J.
Algebra, 129(1):1-25, 1990.

R. Gebauer and H. M. Moller. On an installation of Buchberger’s algorithm. J.
Symbolic Comput., 6(2-3):275-286, 1988. Computational aspects of commutative
algebra.

S. Goto and K. Watanabe. On graded rings, Il (Z"-graded rings). Tokyo J.
Math., 1(2):237-261, 1978.

H.-G. Gréabe. The canonical module of a Stanley-Reisner ring. J. Algebra, 86:272—
281, 1984.

D. Grayson and M. Stillman. Macaulay 2. Available by at the website
http://www.math.uiuc.edu/Macaulay2/. A software system for algebraic ge-
ometry and commutative algebra.

M. Hochster. Cohen-Macaulay rings, combinatorics, and simplicial complexes.
In B. R. McDonald and R. Morris, editors, Ring Theory II, number 26 in Lect.
Notes in Pure and Appl. Math., pages 171-223. Dekker, New York, 1977.

S. Hosten and W. Morris, Jr. The order dimension of the complete graph. Dis-
crete Math., 201:133-139, 1999.

H. A. Hulett. Maximum Betti numbers of homogeneous ideals with a given
Hilbert function. Comm. Algebra, 21(7):2335-2350, 1993.

F. S. Macaulay. Some properties of enumeration in the theory of modular sys-
tems. Proc. London Math. Soc., 26:531-555, 1927.

E. Miller. Alexander duality for monomial ideals and their resolutions. Preprint
(math.AG/9812095), 1998.

E. Miller. The Alexander duality functors and local duality with monomial
support. Submitted; available at http://www.math.berkeley.edu/ enmiller,
1999.

E. Miller and B. Sturmfels. Monomial ideals and planar graphs. In M. Fossorier,
H. Imai, S. Lin, and A. Poli, editors, Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, number 1719 in Springer Lecture Notes in Computer
Science, pages 19-28. Springer Verlag, 1999. Proceedings of AAECC-13 (Hon-
olulu, Nov. 1999).

E. Miller, B. Sturmfels, and K. Yanagawa. Generic and cogneric monomial ideals.
J. Symbolic Comp., To appear.

95



[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. N. Miller. Resolutions and Duality for Monomial Ideals. PhD thesis, University
of California at Berkeley, 2000.

M. Mustata. Vanishing theorems on toric varieties. Preprint math.AG/0001142,
1999.

M. Mustata. Local cohomology at monomial ideals. Preprint math.AG/0001153,
2000.

I. Peeva and B. Sturmfels. Generic lattice ideals. J. Amer. Math. Soc., 11:363—
373, 1998.

M. Saito, B. Sturmfels, and N. Takayama. Grdébner Deformations of Hyper-
geometric Differential Equations, volume 6 of Algorithms and Computation in
Mathematics. Springer-Verlag, Berlin, 1999.

R. P. Stanley. Combinatorics and Commutative Algebra, volume 41 of Progress
in Mathematics. Birkhauser, second edition, 1996.

B. Sturmfels. Grobner Bases and Convex Polytopes, volume 8 of AMS University
Lecture Series. American Mathematical Society, Providence RI, 1995.

B. Sturmfels. The co-Scarf resolution. In D. Eisenbud, editor, Commutative Alge-
bra, Algebraic Geometry, and Computational Methods, pages 315-320. Springer
Verlag, Singapore, 1999.

B. Sturmfels, N. V. Trung, and W. Vogel. Bounds on degrees of projective
schemes. Math. Ann., 302:417-432, 1995.

D. Taylor. Ideals Generated By Monomials in an R-sequence. PhD thesis, Uni-
versity of Chicago, 1961.

N. Terai. Generalization of Eagon-Reiner theorem and h-vectors of graded rings.
Preprint, 1997.

N. Terai. Local cohomology modules with respect to monomial ideals. Preprint,
1999.

G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-
Verlag, New York, 1995.

96



