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Introduction

〈0.1〉 This course will concern the following triangle of ideas.

The vertices of this triangle represent mathematical objects. They will be
defined in this introduction. The edges from one vertex to another represent math-
ematical constructions: given an object of the first type, we construct an object of
the second type. These constructions will be the subject of the separate Lectures.
The main theorem is that the diagram commutes: the construction on the bottom
is the same as the composition of the two constructions on the top.

The constructions represented by the three edges all involve geometry, but they
are of a completely different character from each other.
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〈0.2〉Guide to reading. The Lectures have been made independent of each other
as much as possible, so as to allow several different points of entry into the subject.
The following is the diagram of dependencies:

The mathematical knowledge required in advance has been kept to a minimum.
*Starred sections and exercises are exceptions to this rule. They have mathematical
prerequisites that go beyond those of the other sections, and are not needed for the
rest of what we will do. The reader is invited to skip the *starred sections on a
first reading.

The exercises are designed to be an integral part of the exposition.

〈0.3〉 Credit and thanks. All of my work on this subject has been joint with
Bob Kottwitz, Mark Goresky, and Tom Braden. A deep study of moment graphs
has been carried out by Victor Guillemin, Tara Holm, and Catalin Zara; Lecture 3
may serve as an introduction to their papers.

I am grateful to Tom Braden and to many participants of PCMI for corrections
and improvements to this exposition.

0.1. Spaces with a Torus Action

〈1.1〉 Definition. The n-torus T is the group

T = T/L = (S1)n.

Here T is an n-dimensional real vector space, which we may take to be Rn. The
space T is a group under vector addition. The subgroup L is a lattice (i.e. a
subgroup which is discrete as a topological space, with the property that T/L is
compact). We may take L to be Zn ⊂ Rn, the subgroup consisting of points whose
coordinates are integers. The group S1 is the unit circle group: the elements of
norm 1 in the complex plane C considered as a group under multiplication. We
may identify R/Z ∼= S1 by the map R −→ C that sends x to e2πix, whose kernel is
Z. From this we get an identification

T/L = Rn/Zn = (R/Z)n = (S1)n.

〈1.2〉 We can visualize the n-torus as an n-cube [0, 1]n with the opposite faces
identified. For example, if n = 1, we have S1 = [0, 1]/ ∼ where ∼ identifies 0 and
1.
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Or, for example, the 2-torus is the square with the opposite edges identified,

which shows why it’s called a torus.

〈1.3〉 Exercise. Show in general that an n-torus as an n-cube [0, 1]n with the
opposite faces identified. Hint: Show every Zn coset in Rn meets the unit cube
[0, 1]n ⊂ Rn, so Rn/Zn = [0, 1]n/ ∼ where x ∼ y when x − y ∈ Zn. Check that ∼
identifies opposite faces.

〈1.4〉 Exercise*. Let T be the n-torus Rn/Zn and let T ′ be the k-torus Rk/Zk.
Every group homomorphism h : Zn −→ Zk extends uniquely to a continuous group
homomorphism h̃ : Rn −→ Rk, and so it passes to a continuous group homomor-
phism h̄ : T −→ T ′. Show that the map Hom(Zn,Zk) −→ Hom(T, T ′) that sends h
to h̄ is an isomorphism. Here Hom(T, T ′) is the set of continuous homomorphisms
from T to T ′.
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〈1.5〉 Definition. A space with a torus
action is a (Hausdorff) topological space
X together with a self map X

t−→ X
for every t ∈ T , notated x �→ tx, such
that composition of homeomorphisms cor-
responds to multiplication in the group
t1(t2x) = (t1 × t2)x, and (t, x) �→ tx is
jointly continuous in x and t. We sym-
bolize this by T X . A quintessential
example will be the circle action on the
2-sphere, where the circle rotates the 2-
sphere about an axis. (Think of the ac-
tion of the 24 hour day on the surface of
the Earth.)

〈1.6〉 Exercise. Suppose that an n-torus T acts on a space X . Show that the
orbit Tx of every point x in X is itself homeomorphic to a k-torus for some k ≤ n.
(Note the special case k = 0, which occurs at the North Pole N and the South Pole
S of the example above.)

〈1.7〉Why are we interested in torus actions T X , rather than the actions of more
general connected Lie groups G X? In fact, computations for G X reduce to
the computations for T X , as explained in §3.8.11.

0.2. Linear Graphs

〈2.1〉 Definition. A linear graph is a finite set of points {vi} in a real vector space
V, called vertices, and a finite set of line segments {ek} in V, called edges such that
the two endpoints of each edge are both vertices.

〈2.2〉 For example, the following are linear graphs:

The first one, in R2, has four vertices and six edges. Note that the edges do not have
to be disjoint: In this example, the two diagonals cross each other. The second one
has six vertices and twelve edges. It is just the vertices and edges of an octahedron
in R3. Any convex polyhedron gives rise to a linear graph by taking the vertices
and the edges.

〈2.3〉 A topological graph is, of course, defined in a similar way, but without the
embedding into a vector space. (For our purposes, a topological graph has at most
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one edge between a pair of vertices, and has no edge going from a vertex to itself.)
So a linear graph is a graph together with a mapping into V in such a way that its
edges are mapped into straight lines.

〈2.4〉 Equivalent linear graphs. We consider two linear graphs G1 and G2 in V

to be equivalent if they correspond to the same topological graph Γ, and for each
edge of Γ, the corresponding line in G1 is parallel to the corresponding line in G2.
For example, these two linear graphs are equivalent:

〈2.5〉 Directions and direction data. We define a direction in V to be a
parallelism class of lines in V, or equivalently, a line through the origin in V. (To
specify a direction, it suffices to give a nonzero vector in D ∈ V. If λ ∈ R is nonzero,
then λD and D determine the same direction, since they determine the same line
through the origin.) To give an equivalence class of linear graphs of graphs in V,
it suffices to give a topological graph with direction data, i.e. for each edge of the
graph, we give a direction D.

〈2.6〉 Exercise. What is the dimension of the space of linear graphs equivalent to
the linear graphs pictured above?

〈2.7〉 Exercise. Suppose an abstract graph is embedded in the plane as a linear
graph. Can you find a formula for the dimension of its equivalence class?

〈2.8〉 Exercise. Consider the triangle graph with the direction data that assigns
to the three edges the following three directions D in R3: (1, 0, 1), (−1, 1, 1), and
(0,−1, 1). Show that there is no linear graph with this direction data.

0.3. Rings and Modules

〈3.1〉 Our rings R will all be graded algebras over the real numbers R.
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〈3.2〉 Definition. A graded R-algebra is an R-algebra with a direct sum decompo-
sition

R =
⊕
i≥0

Ri

into R vector spaces called the graded pieces, indexed by the non-negative integers,
so that the multiplication is compatible with the grading: If r ∈ Ri and r′ ∈ Rj,
then rr′ ∈ Ri+j . Similarly, a graded module over R module M with a direct sum
decomposition

M =
⊕
i≥0

M i

into R vector spaces, so that if r ∈ Ri and m ∈ M j , then rm ∈ M i+j . Ring and
module homomorphisms are required to respect the gradings.

All of our graded rings and modules will have the property that the odd num-
bered graded pieces are all zero, so R =

⊕
j∈Z,j≥0 R

2j . This perverse factor of 2
comes from the topological side of the story.

〈3.3〉 The polynomial ring O(T). We denote by O(T) the ring of real valued
polynomial functions on the real vector space T. It is the same as the ring of
polynomials with real coefficients in n variables, where n is the dimension of T. This
is a graded ring. The 2j-th graded piece is the space of polynomials of homogeneous
degree j, i.e. the space spanned by monomials of degree j.

〈3.4〉 In all our graded rings and modules, the graded pieces are finite dimensional
real vector spaces. Their dimensions are encoded in the Hilbert series.

Definition. The Hilbert series of R is the power series whose coefficients are the
dimensions of the graded pieces of R

Hilb(R) =
∑
i≥0

xi dim(Ri).

Since all of our graded rings are zero in odd degree, it is conventional to introduce
the variable q = x2.

Hilb(R) =
∑
j≥0

(x2)j dim(R2j) =
∑
j≥0

qj dim(R2j).

〈3.5〉 Proposition. The Hilbert series of the polynomial ring O(T) is

Hilb(O(R)) =
(

1
1− q
)n

where n is the dimension of the vector space T.

〈3.6〉 Exercise. Prove this. Hint: here are two possible strategies:

1) Show directly that the number of monomials
in n variables of degree j is the coefficient of qj in
(q−1)n. For example, the number of monomials
of degree j in 3 variables is the (j+1)-st triangu-
lar number: the number of points in a triangular
array with j+1 points on a side. This is because
the monomials of degree j can be arranged in a
triangular array.

z3

xz2 yz2

x2z xyz y2z

x3 x2y xy2 y3
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2) Or, calculate the Hilbert series of the polynomial ring O(R) of polynomials in
one variable

Hilb(O(R)) = 1 + q + q2 + · · · = 1
1− q

then justify the following manipulations:

Hilb(O(T)) = Hilb(O(R × · · · × R︸ ︷︷ ︸
n factors

) = Hilb(O(R) ⊗ · · · ⊗ O(R)︸ ︷︷ ︸
n factors

) =

= Hilb(O(R)) · · ·Hilb(O(R))︸ ︷︷ ︸
n factors

=
(

1
1− q
)n

〈3.7〉 Exercise. Let R be the ring of continuous functions on the real line R, whose
restriction to the positive reals R>0 and the negative reals R<0 are both polynomial
functions. Show that R is a graded ring isomorphic to the polynomial ring in two
variables x and y divided by the principal ideal generated by the polynomial xy,
i.e. R = R[x, y]/(xy), and that its Hilbert series is (1 + q)/(1− q).





LECTURE 1
Equivariant Homology and Intersection Homology

(Geometry of Pseudomanifolds)

1.1. Introduction

〈1.1〉 In this lecture, we will give a geometric way of defining equivariant homology
and equivariant intersection homology. The standard definitions of these homology
theories, as found in the literature, are good for proving properties, but are perhaps
not so intuitive. In this lecture, we will consider G X : an action of a general Lie
group G on a space X , although in the other lectures we are interested mainly in
the case that G is a torus T .

〈1.2〉 The definitions we present are based on the notion of a pseudomanifold. A
k-dimensional manifold is a space that looks locally like k-dimensional Euclidean
space near every point. A k-dimensional pseudomanifold P is allowed to have
singularities, i.e. points where it doesn’t locally look like Euclidean space. However,
it must satisfy two properties:

(1) The part of P where it is a k-manifold is open and dense in P and it must
be oriented.

(2) The set of singularities has dimension at most k − 2 (i.e. codimension at
least 2).

A pseudomanifold (the pinched torus)
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There are several ways to make this intuitive notion of a pseudomanifold rigorous.
We will use simplicial complexes, because that is the one most in keeping with the
spirit of these notes. Readers who are comfortable with pseudomanifolds can skip
directly to §1.4

〈1.3〉 Equivariant homology theories are difficult to compute directly from the de-
finitions as given in this Lecture. However, the methods of Lectures 3 to 5 provide
effective computations in many interesting cases.

1.2. Simplicial Complexes

Readers familiar with simplicial complexes and orientations can skip this section.

〈2.1〉 A k-simplex Δ is the convex hull of k+1 points p0, . . . , pk in general position
in some Euclidean space. Here general position just means that the points don’t all
lie in any (k − 1)-dimensional Euclidean subspace. The k-simplex is a polyhedron.
Its faces are themselves simplices; they are the convex hulls of subsets of the points
pi. The points pi are the vertices of Δ.

0-simplex 1-simplex 2-simplex 3-simplex

〈2.2〉 Definition. A simplicial complex is a set S of simplices in some Euclidean
space with the properties

(1) Any two simplices in S are either disjoint or intersect in a set that is a
face of each of them.

(2) Any face of a simplex in S is itself in S.

〈2.3〉 Spaces of finite type. We define a space of finite type to be a topological
space homeomorphic to the difference S − S′ where S is a simplicial complex and
S′ is a sub simplicial complex. We will assume without further mention that all
of our spaces are of finite type. Spaces generated by finite operations, such as
real algebraic varieties, or their images under algebraic maps, are all of finite type
(although proving it takes technology developed over many years). On the other
hand, a Cantor set, or Z are not of finite type.

〈2.4〉 An orientation O of a simplex Δ is an ordering of the vertices of Δ, two
orderings being considered equivalent if one is an even permutation of the other.
(This definition doesn’t work for a 0-simplex. An orientation of a 0-simplex is
simply one of the symbols + or −.) Any simplex has exactly two orientations,
these two orientations are called opposite orientations of each other.

〈2.5〉 An orientation of a Euclidean space is an ordered set of basis vectors, two
being considered equivalent if one is a continuous deformation of the other. We
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can draw an orientation by representing the basis vectors as arrows, and signaling
the ordering by placing the tail of each arrow at the head of the previous one.
An orientation O of k-simplex Δ determines an orientation of the k-dimensional
Euclidean space E containing Δ as follows: Suppose O = {p0 < p1 < · · · < pk}.
Then {p1 − p0, p2 − p1, . . . , pk − pk−1} is the ordered basis.

Exercise. Show that two orientations of Δ are equivalent if and only if they
determine equivalent ordered bases of E.

〈2.6〉 If Δ is a k-simplex and Δ′ is a (k−1)-simplex, an orientation O of Δ induces
an orientation O′ of Δ′ as follows: Pick an equivalent ordering such that the unique
vertex of Δ not in Δ′ is the last one of the ordering. Then O′ is the restriction of
that ordering to Δ′. (This definition doesn’t work if Δ is a 1-simplex. In this case,
O′ is − if Δ′ is the first vertex of the ordering, and it is + if it is the second one.)

1.3. Pseudomanifolds

〈3.1〉Definition. A k-dimensional pseudomanifold is a simplicial complex together
with an orientation O(Δ) of each of its k-simplices, with the following properties:

(1) Every simplex is a face of some k-simplex.
(2) Every (k − 1)-simplex is the face of exactly two k-simplices.
(3) (The continuity of orientation property) If Δ′ is a (k − 1)-simplex and Δ

and Δ̃ are the two k-simplices that contain Δ′ in their boundary, then the
given orientations O(Δ) and O(Δ̃) induce opposite orientations on Δ′.

A pseudomanifold (the simplicial pinched torus)
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〈3.2〉 The following exercise shows why property 3 is called continuity of orientation.

Exercise. Suppose that Δ and Δ̃ are two k-simplices in a Euclidean k-space, and
that they intersect in a (k − 1)-simplex Δ′. Show that the orientations O(Δ) and
O(Δ̃) induce opposite orientations on Δ′ if and only if the ordered basis for E
determined by Δ as in exercise 1.2.5 can be continuously deformed into the ordered
basis for E determined by O(Δ̃).

A path in the space of ordered bases of the plane

〈3.3〉 Definition. A k-dimensional pseudomanifold with boundary is a simplicial
complex S, an orientation O(Δ) of each of its k-simplices, and a sub simplicial
complex B called the boundary, with the following properties:

(1) The boundary B is a (k − 1)-dimensional pseudomanifold
(2) Every simplex of S is a face of some k-simplex.
(3) Every (k − 1)-simplex Δ′ that not in B is the face of exactly two k-

simplices, and the continuity of orientation property holds for Δ′.
(4) Every (k−1)-simplex Δ′ in B is the face of exactly one k-simplex Δ in S.

The orientation of Δ′ induced from O(Δ) coincides with the orientation
O(Δ′) of Δ′ from the pseudomanifold structure on B.

〈3.4〉 Exercise. Show that the continuity of orientation property for the boundary
B of a pseudomanifold with boundary follows from the other properties in the
definition.

1.4. Ordinary Homology Theory

As a warm up, we will give a definition of ordinary homology theory in the spirit
of the definitions of more complicated theories to come. This definition of ordinary
homology has roots going back to Poincaré and Veblen and the earliest days of
homology theory.

〈4.1〉 Definition. Let X be a topological space. An i-cycle is an i-dimensional
pseudomanifold P together with a map σ : P −→ X .

The idea is that an i-cycle captures the “holes” in a topological space by sur-
rounding them. For example, the following 1-cycle surrounds the hole in the annu-
lus:
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We will refer to the i-cycle σ : P −→ X by the symbol P when there’s no
confusion about what σ is.

〈4.2〉 Definition. If σ1 : P1 −→ X and σ2 : P2 −→ X are two i-cycles, then the
sum P1 + P2 is their union σ : P1 ∪ P2 −→ X where σ|P1 = σ1 and σ|P2 = σ2.

The negative−P of an i-cycle is the same i-cycle P with the opposite orientation
for every i-simplex. As usual, P1 − P2 is P1 + (−P2).

〈4.3〉 Definition. A cobordism between two i-cycles σ1 : P1 −→ X and σ2 :
P2 −→ X is a (i + 1)-dimensional pseudomanifold with boundary C, and a map
σ : C −→ X such that the boundary B of C is P1 − P2 and the restriction of σ to
B coincides with σ1 and σ2. Two i-cycles σ1 : P1 −→ X and σ2 : P2 −→ X are
said to be cobordant if there is a cobordism between them.

The 1-cycles P1 and P2 are cobordant

The idea behind this definition is that if P1 and P2 are cobordant, they surround
the same holes in the same way. For example, if σ has appropriate differentiability
assumptions so that it makes sense, any closed differential i-form will have the same
integral on P1 and on P2, by Stokes’ Theorem.

〈4.4〉 Proposition. Cobordism is an equivalence relation among i-cycles.

Exercise Prove this. For example, if S1 is a cobordism between P1 and P2, and
S2 is a cobordism between P2 and P3, then S1 and S2 can be glued together to
provide a cobordism between P1 and P3.
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〈4.5〉 Definition – Proposition. The i-th homology, notated Hi(X), is the set
of cobordism classes of i-cycles. The operations + and − induce the structure of
an Abelian group on this set. The identity element is represented by the empty
pseudomanifold.

〈4.6〉 For example, if X is the annulus, H0(X) is Z generated by a point, and
H1(X) is Z generated by the cycle P1 or P2 as in the pictures above.

〈4.7〉 Exercise. Show for any X that H0(X) is Zk where k is the number of path
connected components of X .

〈4.8〉 Convention. We write H∗(X) for
⊕

i Hi(X). It’s a summation convention:
wherever a star appears, it means a direct sum over the possible indices i that
might appear there.

1.5. Basic Definitions of Equivariant Topology

〈5.1〉 A topological group G is a set that is simultaneously a group and a topological
space, with the property that the multiplication operation G × G −→ G and the
inverse operation G −→ G are both continuous. G is a Lie group if it is one of our
spaces of finite type §1.2.3 (or, what turns out to be the same thing for topological
groups, if it’s a topological manifold with finitely many connected components.)

〈5.2〉 A space with a group action G X is a topological space X (which for us will
always be of finite type), and an a map G×X −→ X that is continuous, such that
(g · g′)x = g(g′(x)) (§0.1.5).

〈5.3〉The equivariant category. Suppose G X and G′ X ′ are two topological
spaces with a group action. A morphism G X =⇒ G′ X ′ is a continuous group
homomorphism φ : G −→ G′ together with a continuous map ψ : X −→ X ′ such
that ψ(gx) = φ(g)ψ(x).

For example, for any G X there is a canonical morphism G X =⇒ 1 X/G.
Here 1 is the one element group; X/G is the quotient space X/∼ where ∼ is the
equivalence relation x ∼ x′ if there is a g ∈ G such that gx = x′; φ : G −→ 1 is the
only thing it could be; and φ : X −→ X/G is the quotient map.

〈5.4〉 G equivariant maps. If G is a fixed group, then the category of G-spaces is
the sub category of the equivariant category where the map φ on G is the identity.
The maps in this category are called G equivariant maps. In other words, if X and
X ′ are both G-spaces, then an equivariant map from X to X ′ is a continuous map
ψ : X −→ X ′ such that ψ(gx) = gψ(x) for all g ∈ G and all x ∈ X . We consider
two G spaces equivalent if they are isomorphic in this category. This means that
the map ψ is a homeomorphism.

〈5.5〉 Free actions. An action of G on X is free if no element of G except the
identity fixes any point in X , i.e. gx = x implies g is the identity.

Another commonly used terminology for the same thing is this: The map
π : X −→ X/G is called a principal G-bundle if and only if the action G X
is free. In this terminology, X/G is called the base of the principal bundle; X is
called the total space; and π is called the projection.

Yet another popular terminology is to say that X is a G-torsor over X/G.
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〈5.6〉 Exercise. Show that every orbit Gx of a free action G X is homeomorphic
to G.

1.6. Equivariant Homology

〈6.1〉 Definition. Let G X be a G-space. An equivariant i-cycle is a diagram

P
π←−−−− E

σ−−−−→ X

where P is an i-dimensional pseudomanifold, E is a G-space with a free G action,
π : E −→ P is the projection on the quotient by the G action (so P = E/G), and
σ is a G equivariant map.

Another way of describing the same thing (see §1.5.5) is this: A i-cycle is an
equivariant map into X of the total space of a G-principal bundle E, whose base
space is an i-dimensional pseudomanifold.

An equivariant 1-cycle for the circle T acting on the torus X

An equivariant 0-cycle for the circle T acting on the torus X

〈6.2〉 When we want to refer to an i-cycle, we use the symbol P for the pseudo-
manifold, even though it is really a 4-tuple of data. The sum P1 + P2 of two
equivariant i-cycles P1 and P2 is P1 ∪ P2 ←− E1 ∪ E2 −→ X . The negative −P
of an equivariant i-cycle is the same i-cycle with the opposite orientation on P .
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〈6.3〉 Definition. A cobordism between two equivariant i-cycles P1 and P2 is a
commutative diagram

C
π←−−−− E

σ−−−−→ X

inclusion as
boundary B

�⏐⏐ inclusion
�⏐⏐ �⏐⏐=

P1 − P2
π1,π2←−−−− E1 ∪ E2

σ1,σ2−−−−→ X

where C is a pseudomanifold with boundary B = P1−P2, E is a G principal bundle
over C, σ is an equivariant map, and E1 ∪ E2 is π−1(P1 ∪ P2).

Two equivariant i-cycles P1 and P2 are said to be cobordant if there is a cobor-
dism between them.

For example, the following picture shows a cobordism between two equivariant
0-cycles. Here T X is a circle rotating the annulus.

〈6.4〉 Proposition. Cobordism is an equivalence relation on equivariant i-cycles.

〈6.5〉 Definition – Proposition. The i-th equivariant homology of G X , which
we will notate Hi(G X), is the set of cobordism classes of equivariant i-cycles.
The operations + and − induce the structure of an Abelian group on this set.

The usual notation for the ith equivariant homology group is HG
i (X), and

Borel’s original notation was Hi(XG).

〈6.6〉 The topological juice of this definition comes in the requirement that the G
action on the cycles and cobordisms be free.

Exercise. Show that if we dropped the requirement that the G action be free from
the definitions of equivariant cycles and cobordisms, then we would just get the
homology of the quotient Hi(X/G).

〈6.7〉 Exercise. Show that if G acts freely on X , then Hi(G X) is, in fact, the
homology of the quotient Hi(X/G).

For example, if T is the 1-torus, X is the 2-torus, and T rotates X as in the
pictures above, then the T action is free and Hi(T X) = Hi(X/T ). Since X/T is
a circle, we have

Hi(T X) =

⎧⎪⎨
⎪⎩

R if i = 0
R if i = 1
0 otherwise
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The two nonzero equivariant homology groups are generated by the equivariant
cycles shown in the pictures above.

Similarly, the equivariant homology of the annulus is nonzero only in degree 0,
where it is generated by the 0-cycle shown in the picture.

In both of these examples, the equivariant homology is smaller than the ordi-
nary homology. For the cases we are going to study later, the reverse is true.

〈6.8〉 Exercise. Show that H0(G X) = H0(X), the free group generated by the
connected components of X .

〈6.9〉 Exercise. Show that Hi(1 X) = Hi(X), where 1 is the one element group.

1.7. Formal Properties of Equivariant Homology

〈7.1〉 Functoriality. Suppose that we have an equivariant map

G X =⇒ G′ X ′.

Then there is an induced map on equivariant homology

Hi(G X) −→ Hi(G′ X ′).

If G = G′ and the map G −→ G′ is the identity, then this map can be defined simply
by composition of G-equivariant maps. The general case is a little complicated: If

P
π←−−−− E

σ−−−−→ X

is a cycle for Hi(G X), then

P
π←−−−− G′ ×G E

σ′−−−−→ X ′

is the corresponding cycle forHi(G′ X ′), whereG′×GE is the “associated bundle”
defined as the quotient space (G′ × E)/G where G acts on G′ × E by g(g′, e) =
(g′ · φg−1, ge). The group G′ acts freely on the associated bundle G′ ×G E by
g′(g′′, e) = (g · g′′, e). The quotient of this G′ action is again P . The map σ′ :
G′ ×G E −→ X ′ sends (g′, e) to g′(ψ(σ(e))). One needs to check that this is well
defined.

〈7.2〉 Coefficients. Suppose that R is a ring containing the integers Z. We can
define the equivariant homology with coefficients in R by

Hi(G X ;R) = Hi(G X)⊗Z R

Assumption. We will assume that our coefficient ring is the real numbers R.
(Actually, any other field of characteristic zero would work as well for everything
we will do.) With these coefficients, the equivariant homology is a real vector space;
we notate it simply by Hi(G X). There are torsion phenomena that are killed by
taking these coefficients, but the most interesting phenomena survive. Many of our
theorems are false, or are at least much more complicated to state, for coefficients
that are not fields of characteristic zero.

〈7.3〉 The Kunneth theorem. Given two spaces with group actions G1 X1 and
G2 X2, we have the Kunneth map

Hi(G1 X1) × Hj(G2 X2) −→ Hi+j((G1 ×G2) (X1 ×X2))

[P1] × [P2] �→ [P1 × P2]
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where P1 × P2 is defined to be the equivariant (i+ j)-cycle

P1 × P2
π1×π2←−−−− E1 × E2

σ1×σ2−−−−→ X1 ×X2

Proposition. The Kunneth map induces an isomorphism

Hi(G1 X1)⊗Hj(G2 X2)
∼=−→ Hi+j((G1 ×G2) (X1 ×X2)).

〈7.4〉 Note on proofs. From here until the end of the lecture, we will state hard

theorems without proofs. What is important is to understand the statements, and
to understand why the various objects and maps are well defined. If you invent
proofs of any of these statements without knowing a lot of topology, that will be
quite an accomplishment.

〈7.5〉 The cohomology ring. The cohomology is the vector space dual of the
homology

Hi(G X) = (Hi(G X))∗ = Hom (Hi(G X),R) .
Consider the diagram

Hi(G X)⊗Hj(G X)
∼=−→ Hi+j(G×G X×X) Δ←− Hi+j(G X)

where Δ : G X =⇒ (G×G) (X ×X) is the diagonal map that sends g to (g, g)
and sends x to (x, x).

Now take the vector space dual of the whole diagram

Hi(G X)⊗Hj(G X)
∼=←− Hi+j(G×G X×X) Δ∗−→ Hi+j(G X)

Proposition. The composed map from the left to the right in this diagram is the
multiplication rule of a ring structure on equivariant cohomology.

〈7.6〉 Signs. The product in cohomology satisfies the following sign rule: If x ∈
Hi(G X) and y ∈ Hj(G X), then xy = (−1)ijyx. The reason for this it that if
P1 and P2 are pseudomanifolds of dimensions i and j, then P1 × P2 = (−1)ijP2 ×
P1. A nice exercise is to figure out how to define precisely the product of two
pseudomanifolds, and to show this commutation rule.

〈7.7〉 Exercise. Use the map 1 X =⇒ G X to show that there is a canonical
map Hi(X) −→ Hi(G X), or dually Hi(G X) −→ Hi(X).

〈7.8〉 Exercise. Let A be the ring H∗(G pt), where pt is a point. Use the map
G X =⇒ G pt to show that there is a map A −→ H∗(G X), so H∗(G X)
is an A-module. We will be interested mainly in actions where this map is an
injection, unlike the illustrative examples considered in the last section.

〈7.9〉 Homology vs. cohomology. There is a psychological dilemma. An equi-
variant cohomology class is hard to imagine. It is an element in a dual space — it
eats a homology class and gives you a number. But the cohomology is an algebra,
which most people find to be an intuitive structure. An equivariant homology class
is easy to visualize, but the homology forms a co-algebra, which is hard to think
about.

Choosing the demons of dual spaces over the demons of co-algebras, our com-
putations will be in equivariant cohomology. Of course, the computation of equi-
variant cohomology is mathematically equivalent to the computation of equivariant
homology, so the information is the same in the end.
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1.8. Torus Equivariant Cohomology of a Point

The ordinary homology of a point p is uninteresting: It is simply a 1-dimensional
vector space in homology degree 0, and zero in every other degree. However, for
Lie groups of positive dimension, the equivariant homology (or cohomology) or
cohomology of a point is quite interesting: It is infinite dimensional.

〈8.1〉Generators of the circle equivariant homology of a point. Suppose T 1

is a 1-torus and pt is a point. Then for every integer k ≥ 0, we have the following
equivariant 2k-cycle:

CPk π←−−−− S2k+1 σ−−−−→ pt

Here S2k+1 is the real unit real sphere in complex (k + 1)-space, given by the
equation |z0|2 + |z1|2 + · · · + |zk|2 = 1. The circle T 1 = S1 ⊂ C acts on it freely
by scalar multiplication. The quotient space CPk is the complex projective k-space
(see §2.3.1), a pseudomanifold (indeed a manifold) of real dimension 2k.

〈8.2〉 It is useful to think about why this 2k-cycle is nonzero. 1. The 2k+ 1 sphere
bounds the 2k+ 2 ball |z0|2 + |z1|2 + · · ·+ |zk|2 ≤ 1. The S1 action extends to the
ball. If k > 0, the quotient is a pseudomanifold with boundary CPk. Why isn’t this
a cobordism to zero? 2. The fibers of the map S2k+1 −→ CPk are all circles S1.
There is a “trivial” example of a map to CPk whose fibers are all circles: if we had
a homeomorphism S1×CPk −→ CPk which is cobordant to zero, since we can take
S1×C(CPk) −→ C(CPk) where C(CPk) is the cone on CPk. So, since our 2k-cycle
is not cobordant to zero, it must not be equivalent to the“trivial” example.

〈8.3〉 Exercise*. Prove that the 2k-cycle above is not 0 in H2k(T 1 pt). Hint:
Use characteristic classes.

〈8.4〉 Proposition. The equivariant homology of T 1 pt, where T 1 is the 1-torus
and pt is a point, is given by

Hi(T 1 pt) =
{

R generated by CPk if i = 2k
0 if i is odd

Dually, the equivariant cohomology ring is

H∗(T 1 pt) = {polynomial functions on T1 = R} = O(T1)

The basis {1, t, t2, . . .} of H∗(T 1 pt) is dual to the basis {CP0,CP1,CP2, . . .} of
H∗(T 1 pt).

〈8.5〉 The torus equivariant homology of a point. A general n-torus T = T/L
is a product of n copies of the circle T 1 = T1/L1. Therefore, we have the product
of spaces with group action

T pt = T 1 pt×T 1 pt× · · · × T 1 pt︸ ︷︷ ︸
n factors
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Applying the Kunneth theorem for cohomology, we have

H∗(T pt) = H∗(T 1 pt)⊗ · · · ⊗H∗(T 1 pt)︸ ︷︷ ︸
n factors

=

⎧⎪⎨
⎪⎩polynomial functions on T1 × · · · × T1︸ ︷︷ ︸

n factors

⎫⎪⎬
⎪⎭

= {polynomial functions on T} = O(T)

where T = Rn is the product of n copies of T1.

1.9. The Equivariant Cohomology of a 2-Sphere

〈9.1〉 Homology of the fixed point set N ∪ S. Suppose that the circle T 1 acts
on the 2-sphere X = S2 by rotation as in §0.1.4. There are two fixed points, the
North pole N and the South pole S. The space N ∪ S is just two points, so its T 1

equivariant homology is just two copies of the equivariant homology of a point:

Hi(T 1 (N ∪ S)) =

{
R[(CPk)N ]⊕ R[(CPk)S ] = R2 if i = 2k
0 if i is odd

The equivariant map N ∪ S ↪→ X is T 1 equivariant, so it induces a map on equi-
variant homology Hi(T 1 (N ∪ S)) −→ Hi(T 1 X).

〈9.2〉 Circle equivariant homology of the 2-sphere. Proposition. The map

Hi(T 1 (N ∪ S)) −→ Hi(T 1 X)

is an isomorphism for all i > 0. For i = 0, there is one relation [CP0
N ] = [CP0

S ]
given by the following cobordism whose boundary is CP0

N − CP0
S .

Cobordism giving the relation in H0(T 1 X)
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The boundary of this cobordism

〈9.3〉 Exercise*. This result says that every equivariant cycle for T X is cobor-
dant to one that maps into just the two fixed points N and S. The corresponding
statement in ordinary homology (i.e. 1 X) is false. Can you see geometrically why
this is true?

〈9.4〉 Translating this calculation to equivariant cohomology. In summary,
the equivariant homology of X is a quotient of the equivariant homology of N ∪ S;
i.e. we have the exact sequence of graded vector spaces

0 −−−−→ R
q−−−−→ H∗(T 1 (N ∪ S)) −−−−→ H∗(T 1 X) −−−−→ 0

where the map q sends 1 to [CP0
N ]− [CP0

S ] . Dualizing, the equivariant cohomology
ofX is a sub of the equivariant cohomology of N∪S; i.e. we have the exact sequence
of rings:

0 ←−−−− R
q∗

←−−−− H∗(T 1 (N ∪ S)) ←−−−− H∗(T 1 X) ←−−−− 0.

Here H∗(T 1 (N ∪ S)) = H∗(T 1 N) ⊕ H∗(T 1 S) which is two copies of the
ring O(T1) of polynomials on T1. The map q∗ sends the difference of the identity
elements of the two copies of the polynomial ring 1N − 1S to 1 ∈ R.

In other words, H∗(T 1 (N ∪ S)) is the ring of pairs (fN , fS) of polynomial
functions on T1 = R. The ring H∗(T 1 X) is pairs (fN , fS) such that fN (0) =
fS(0).

〈9.5〉 The torus equivariant cohomology of a sphere. Now suppose that an
n torus T acts on the sphere X = S2 by rotating it. By changing coordinates in
the torus, we can arrange things so that T = T 1 × T n−1 where the circle T 1 acts
on X as in the discussion above and the torus T n−1 acts trivially. Therefore, we
have the product of spaces with group action

T X = T 1 X × T n−1 p.

Applying the Kunneth theorem, we get

H∗(T X) = H∗(T 1 X)⊗H∗(T n−1 pt)
=
{
(fN , fS) ∈ O(T 1)⊕O(T 1) such that fN |0 = fS |0

}⊗O(Tn−1)

=
{
(fN , fS) ∈ O(T 1 × Tn−1) such that fN |Tn−1 = fS |Tn−1

}
In Lecture 3, this simple calculation will lie at the root of all of our calculations

of equivariant cohomology (and ordinary cohomology) of many complicated spaces.
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1.10. Equivariant Intersection Cohomology

In this section, we will sketch the construction of intersection cohomology, so the
reader can get the flavor.

Intersection cohomology is an invariant of pseudomanifolds. If the pseudoman-
ifold is a manifold, then the equivariant intersection cohomology is the same as the
ordinary cohomology. If the pseudomanifold is singular, then often it is the inter-
section cohomology (equivariant or otherwise) that is important for applications,
rather than the ordinary cohomology.

〈10.1〉 Suppose X is a k-dimensional pseudomanifold of finite type. Consider the
group H X of self-homeomorphisms of X . The group H is infinite dimensional,
but its orbits in X are of finite type because X is of finite type. The space X
will be “uniformly singular” along the orbits of H X . For example, if X is “the
suspension of ∞”, we get this picture:

Orbits of the group of homeomorphisms, H X

Let Xc be the union of all the orbits of codimension c, i.e of dimension k − c.
The largest orbit X0 is an open dense k-manifold in X . X1 is empty because X is
a pseudomanifold. We assume that Xc is empty unless c is even. This assumption
holds for many spaces of interest — particularly for complex algebraic varieties,
where Xc is a complex manifold, and therefore of even real dimension.

〈10.2〉 Allowable cycles and cobordisms. Now suppose G X is a group of
finite type acting on X . The group G will necessarily preserve the decomposition
X =
⋃

cXc into H X orbits, since G is a subgroup of H. An allowable i-cycle is
a diagram

P
π←−−−− E

σ−−−−→ X

as in the definition of an equivariant i-cycle §1.6.1, that satisfies the allowability
condition

codimσ−1(Xc) <
c

2
where codimσ−1(Xc) is the codimension of σ−1(Xc) in E .

Similarly, an allowable cobordism between two allowable equivariant i-cycles
P1 and P2 is a diagram

C
π←−−−− E

σ−−−−→ X

inclusion as
boundary B

�⏐⏐ inclusion
�⏐⏐ �⏐⏐=

P1 − P2
π1,π2←−−−− E1 ∪ E2

σ1,σ2−−−−→ X
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as in the definition of a cobordism §1.6.3 satisfying the same allowability condition

codimσ−1(Xc) <
c

2

〈10.3〉 Definition. The equivariant intersection homology IHi(G X) is the al-
lowable i-cycles modulo allowable cobordism. The ordinary (non-equivariant) in-
tersection homology IHi(X) is IHi(1 X), where 1 is the one element group.

〈10.4〉 Remark. The allowability condition, and particularly the appearance of c
2 ,

is unintuitive at first. As usual, the solution is to look at lots of examples.

〈10.5〉 As before, we will take real coefficients by tensoring with R. The intersection
cohomology IHi(G X) is the vector space dual of the intersection homology. It
is no longer a ring, but IH∗(G X) is a graded module over the graded ring
H∗(G X). We get the ordinary intersection homology by taking the group to be
1: IHi(X) = IHi(1 X).

〈10.6〉 Caveat. This definition should give the right answer ([10], [23]) but it is
unproved at present. What can be proved to give the right answer at the moment
differs from this in two respects that are conceptually minor but technically major:

(1) The spaces Sc ⊂ X are taken as strata in some appropriate stratification
theory. (There are various possible choices.) The strata are provably a
finer decomposition than the decomposition by orbits of H X .

(2) The space X and the cycles P are taken to have extra structure like a sub-
analytic structure or a piecewise linear structure, and the maps preserve
this structure. Nevertheless, the resulting groups are provably homeomor-
phism invariants.

A precise statement, discovered jointly with T. Braden, is in [13].

〈10.7〉 Exercise. Consider the example where X is two spheres with the North
pole of one glued to the South pole of the other, and T is circle group which rotates
both spheres simultaneously.

The various types of homology groups of X that have been defined in this lecture
are given in the following table:

Type of
homology i odd i = 0 i = 2 i even, i ≥ 4

Hi(X) 0 R R2 0

Hi(T X) 0 R R3 R3

IHi(X) 0 R2 R2 0

IHi(T X) 0 R2 R4 R4
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Give explicit cycles generating these groups, and give plausibility arguments that
these calculations are correct. (The hardest ones are the 4 generators of IHi(T X)
for i ≥ 2 and even. Each generator of IH2(T X) may be represented as a 3-sphere
with a free T action, mapped into X is such a way that the inverse image of a fixed
point in X is a single T orbit. This has codimension 2 in the 3-sphere, so it satisfies
the allowability condition 1.10.2.)

This example actually comes up. It is a generalized Schubert variety §4.7.3,
and it is a Springer variety §5.4.6. The calculation methods of Lectures 3, 4, and 5
all apply to this example.



LECTURE 2
Moment Graphs

(Geometry of Orbits)

〈0.1〉 In this Lecture we will consider a space X with an action of a torus T
satisfying certain conditions. We will associate to T X a linear graph called its
moment graph. (Or more accurately, we will associate to T X an equivalence
class of linear graphs). It turns out that interesting torus actions give rise to
beautiful linear graphs. This is perhaps the first indication that the moment graph
construction is a natural one to consider. We will construct the moment graphs of
several classes of spaces: projective spaces, quadric hypersurfaces, Grassmannians,
Lagrangian Grassmannians, flag manifolds, and toric varieties.

〈0.2〉 Notation. Our torus is T/L where T is an n-dimensional real vector space
and L is a lattice, as in §0.1. We denote by t an element of T and by t̄ its coset in
T = T/L. We reserve the symbol V for the dual vector space to T so we have an
evaluation map

T × V −→ R

t × v �→ < t, v > .

In most of our examples, T will naturally be Rn and L will be Zn. In this case, V

is also naturally Rn. We write t = (t1, . . . , tn) and v = (v1, . . . , vn) so

< t, v >= t1v1 + · · ·+ tnvn

We can also think of T as (S1)n. We will denote an element of (S1)n by z =
(z1, . . . , zn), so zj = e2πitj .

2.1. Assumptions on the Action of T on X

The action of the n-torus T on X decomposes it into orbits Tx each of which has
a dimension that is at most n. (In fact, each orbit Tx is a k-torus where k ≤ n.)

〈1.1〉 Definition. The k-skeleton of T X is the union of all the orbits of X that
are of dimension at most k.

For example, the 0-skeleton is the union of the fixed points {x ∈ X | tx =
x for all t ∈ T }. The n-skeleton is X itself. The k-skeleton is preserved as a set by
the action of T on X , so the k-skeleton is itself a space with a T action.

343
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〈1.2〉 Definition. A balloon T B is a 2-
sphere B = {x, y, z ∈ R3 | x2 + y2 + z2 =
1} together with a linear function D(B) :
T −→ R taking L to Z such that T = T/L
acts on B as follows: If t ∈ T, then the pro-
jection t̄ of t in T rotates the sphere about
the z axis by an angle of 2πDB(t), i.e.

t̄ =

⎡
⎣cos 2πDB(t) − sin 2πDB(t) 0

sin 2πDB(t) cos 2πDB(t) 0
0 0 1

⎤
⎦ .

〈1.3〉 Exercise. Suppose T acts on S2 so that the orbits are the North pole
N = (0, 0, 1), the South pole S = (0, 0,−1) and the circles of constant latitude
z = c where c is a constant between −1 and 1. Show that T S2 is equivalent to
a balloon.

〈1.4〉 Exercise*. Show that any action of a torus T on S2 is either a balloon or
else it’s the trivial action, where every point of T leaves every point of S2 fixed.

〈1.5〉 Definition. A balloon sculpture is a space with a torus action such that is a
finite union of balloons Bj such that any two balloons are either disjoint or intersect
a fixed point of the torus action.

A balloon sculpture Y

〈1.6〉 Assumption. We will assume that the 1-skeleton of T X is a balloon
sculpture (until Lecture 5). 〈1.7〉 Exercise. If X is compact, show that this

assumption is equivalent to the assumption that the T acts with finitely many fixed
points, and the 1-skeleton with the 0-skeleton deleted is a 2-dimensional manifold.

2.2. The Moment Graph

〈2.1〉 If T Y is a balloon sculpture, then the quotient space Y/T is a graph whose
vertices correspond to the fixed points of T , and whose edges correspond to the
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balloons. The graph Y/T is obtained by collapsing each balloon down to a line
segment.

The graph Y/T

〈2.2〉 We want to enhance the graph Y/T to a linear graph in a vector space V, as
in §0.2. To do this, we need direction data §0.2.5: To each edge of the graph, we
need to give a direction D ∈ V. The idea is to use DBj as the direction. It is a
vector in the vector space Hom(T,R), the space of all of linear maps T −→ R, i.e. V

is the dual vector space T∗. We will call DBj the direction vector of the balloon Bj

or of the corresponding edge of the graph Y/T

Definition [13]. The moment graph of T X is the linear graph in V = Hom(T,R)
obtained from the graph Y/T , where Y is the 1-skeleton of T X , by associating
the direction vector DBj to the edge corresponding to the balloon Bj . We notate
the moment graph G(T X).

〈2.3〉 Existence and uniqueness. The moment graph can be defined only up to
equivalence §0.2.4 because we have specified it by direction data.

The direction data for the moment graph is well defined. By changing the
identification of Bj with S2, the actual direction vector DBj could be changed, but
the direction in V would still be the same, by §2.2.6.

A moment graph will not always exist (§2.2.7). Remarkably, it does exist for the
most interesting examples. We will construct it for many examples in this lecture.
The general phenomenon of existence of the moment graph will be discussed in
§2.9.

〈2.4〉 Notation in V. When T is identified with Rn, we will identify V = T∗ =
(Rn)∗ as well. We denote the standard basis for V by e1, . . . , en, where ei is the
point where vi = 1 and all of the other vj are 0. Considered a linear map T −→ R,
we have < (t1, . . . , tj , . . . , tn), ej> = tj .

〈2.5〉 Exercise. Suppose that T B is a balloon and that D′
B : T −→ R is a

nonzero linear map such that if D′
B(t) = 0 then t̄ fixes every point of B. Then D′

B

is some scalar multiple of DB, so D′
B and DB determine the same direction in V.

〈2.6〉 Exercise. Suppose that B is displayed as a balloon in two different ways,
i.e. there are two different homeomorphisms equivariant homeomorphisms from B
to a sphere as in the definition of a balloon. Suppose that DB and D′

B are the
corresponding functions from T −→ R. Show that DB and D′

B determine the same
direction. (You can use exercise 2.2.5.) In fact, D′

B = ±DB.
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〈2.7〉 Exercise. Construct an example T X where the moment graph does not
exist. (Hint: Take X to be the balloon sculpture whose direction data coincides
with that of exercise 0.2.8.)

2.3. Complex Projective Line and the Line Segment

Most of the rest of this Lecture will be devoted to explicit computation of moment
graphs for specific torus actions T X .

〈3.1〉 Definition. The complex projective k-space Pk is the quotient space Ck+1 −
{0}/C× where C× is multiplicative group of the complex numbers acting on Cn

by scalar multiplication. A point in Pk is denoted by homogeneous coordinates
(x1 : x2 : · · · : xk+1) where the xj are complex numbers, not all of which are zero,
and (λx1 : λx2 : · · · : λxk+1) represents the same point in PK as (x1 : x2 : · · · : xk+1)
if λ is a nonzero complex number.

〈3.2〉 The projective line. Complex 1-space is called the projective line. Topo-
logically, it is a 2-sphere, called the Riemann sphere in complex analysis. We may
identify P1 − (0 : 1) with the complex plane C by sending (x1 : x2) to x2/x1. We
may identify the 2-sphere minus the north pole N with the complex plane C by
stereographic projection.

Stereographic projection takes rotation about the z axis to rotation in the complex
plane about 0, i.e. to multiplication by a complex number on the unit circle S1.

Now, suppose that the 2 torus acts on the projective line by the formula

z(x1 : x2) = (z1x1 : z2x2).

Proposition. With this action, P1 is a balloon B where the direction vector DB

is e1 − e2 in V. (Here ei is the standard basis as in §2.2.4.)

This proposition gives us the moment graph of
P1. We must send the two vertices correspond-
ing to the two fixed points F1 = (1 : 0) and
F2 = (0 : 1) to points p1 and p2 in V = R2 so
that the straight line from p2 to p1 is parallel to
the direction vector e1 − e2. An obvious choice
is p1 = e1 and p2 = e2, so the moment graph
is a line segment between e1 and e2, as in this
picture.

G(T CP1)
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Proof. We compute the action of T in P− (0 : 1) = C

z2x2

z1x1
=
e2πit2x2

e2πit1x1
= e2πi(t2−t1)

(
x2

x1

)
= e2πi(e2−e1)(t1,t2)

(
x1

x2

)
= e2πi(e2−e1)t

(
x1

x2

)
which means that t̄ gives a rotation of (e1 − e2)(t) Alternatively, the proposition
can be seen by §2.2.5: If (e2 − e1)(t1, t2) = 0, then t1 = t2 so (e2πit1x1 : e2πit2x2)
is the same point as (x1;x2) because both homogeneous coordinates are multiplied
by the same number.

〈3.3〉 Exercise. More generally, show that if an n-torus T acts on the projective
line by t̄(x1 : x2) = (e2πiφ1(t)x1 : e2πiφ2(t)x2) for φ1, φ2 : T −→ R, and φ1 �= φ2,
then P1 is a balloon with DB = φ1 − φ2.

〈3.4〉 Almost all of the balloons in the 1-skeleta of the T X we will consider in
this Lecture are themselves a copy of P1 embedded in the space X . So the analysis
of this section will be used repeatedly in what follows.

2.4. Projective (n− 1)-Space and the Simplex

We generalize the discussion P1 above. The “standard” action of the n-torus on
Pn−1 is

z(x1 : · · · : xn) = (z1x1 : · · · : znxn)

where z = (z1, . . . , zn) and zj ∈ S1 ⊂ C.

〈4.1〉 The fixed points are the n points Fi where all the homogeneous coordinates
are zero except the i-th one.

〈4.2〉 The balloons. Let i and j be any pair of distinct indices 1 ≤ i, j ≤ n. Then
the balloon Bij is where all the homogeneous coordinates are zero except the i-th
one or the j-th one. It connects the fixed points Fi and Fj .

〈4.3〉 Remark: balloons and C∗ orbits. The action of T = Sn
1 on Pn−1 extends

to an action of TC = (C∗)n where C∗ is the nonzero complex numbers considered
as a group under multiplication. The action of TC is given by the same formula
z(x1 : · · · : xn) = (z1x1 : · · · : znxn) where zj ∈ C∗. Each balloon consists of
three TC orbits: the two fixed points and one more, of complex dimension 1. So the
classification of balloons is the same as the classification of complex one dimensional
orbits of the TC action.

〈4.4〉 The direction vector of Bi,j is ei − ej.

〈4.5〉 The moment graph. If we send Fi to ei, then the straight line connecting
Fi to Fj is parallel to ei − ej. So the moment graph G(T Pn−1) of Pn−1 is the
1-skeleton of the (n − 1)-simplex Δn−1. (The (n − 1)-simplex Δn−1 is the convex
hull of the basis vectors e1, . . . , en, or alternatively

Δn−1 = {(v1, . . . vn) | v1 + · · ·+ vn = 1 and vj ≥ 0}).
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〈4.6〉 The proofs. The points Fi are fixed by the equivalence relation on homo-
geneous coordinates. The sets Bi,j are projective lines, so they are spheres. The
action of T on Bi,j is very similar to the action of §2.3.2, so the direction vectors
can be computed in a similar way. Alternatively, §2.3.3 can be used directly. The
only real challenge is to show that the 1-skeleton is the union of the balloons Bij .
This follows from the following exercise.

〈4.7〉 Exercise. Show that if x ∈ Pn has k nonzero homogeneous coordinates, then
the dimension of the orbit Tx is k − 1.

2.5. Quadric Hypersurfaces and the Cross-Polytope

〈5.1〉 Definition of T X. The (2n− 2)-dimensional quadric hypersurface Q2n−2

is the subset of P2n−1 with homogeneous coordinates (x1 : · · · : xn : y1 : · · · : yn)
cut out by the equation x1y1 + x2y2 + · · ·+ xnyn = 0. (This makes sense because
if (x1 : · · · : xn : y1 : · · · : yn) satisfies the equation, then so will (λx1 : · · · : λxn :
λy1 : · · · : λyn).)

The n-torus T acts on X = Q2n−2 by the formula

z(x1 : · · · : xn : y1 : · · · : yn) = (z1x1 : · · · : znxn : z−1
1 yn : · · · : z−1

n yn)

You can check that this formula is compatible with the equivalence relation on
homogeneous coordinates defining P2n−1 and that it preserves the equation for the
hypersurface Q2n−2.

〈5.2〉 The fixed points are the points where exactly one homogeneous coordinate
is nonzero. Let’s call Fi the point where xi is nonzero and F ′

i the point where yi is
nonzero.

〈5.3〉 The balloons. For every pair of homogeneous coordinates except the n
pairs {xi, yi}, the points in X where only that pair of homogeneous coordinates is
nonzero is a projective line. These are the balloons. So there is a balloon connecting
any pair of fixed points except the n pairs with the same index, Fi and F ′

i . So the
number of balloons is

(
2n
2

) − n = (2n)(2n−1)
2 − n, where

(
2n
2

)
is the number of 2

element subsets of a 2n element set.
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〈5.4〉 Real picture for n = 2. We can’t draw
any interesting complex quadrics, because their
dimensions are too large. However, we can
draw the real quadric QR

2n−2 for n = 2. It is the
surface x1y1 + x2y2 = 0 in RP3. The real pro-
jective space RP3 contains the real affine space
R3 as a dense subspace. The intersection of
the quadric with R3 is pictured at the right. It
is doubly ruled surface. The four fixed points
F1, F2, F

′
1, F

′
2 lie in QR

2 ⊂ Q2. Each of the four
balloons in Q2 is a CP1, it intersects RP3 in
a RP1, which intersects R3 in a straight line.
These 4 points and 4 lines are shown on the
picture. Just as the balloons are the closures
of the complex 1-dimensional TC orbits §2.4.3,
these 4 real lines are the closures of the real 1-
dimensional TR orbits, where TR = (R∗)2 acts
by the same formulas as in the complex case.

〈5.5〉 The direction vectors. For the balloon B joining Fi and Fj , the direction
vector DB is ei − ej . For the balloon B joining F ′

i and F ′
j , DB is −ei + ej. For the

balloon B joining Fi and F ′
j for i �= j, DB is ei + ej.

〈5.6〉 Exercise. Verify this calculation of direction vectors. Hint: use §2.3.3.

〈5.7〉 The n-dimensional cross-polytope On is the polyhedron in V = Rn

defined by the relation that the sum of the absolute values of the coordinates is at
most 1.

On = {(v1, . . . , vn) ∈ Rn | |v1|+ · · ·+ |vn| ≤ 1}
The cross-polytopes in dimensions 2 and 3 are the square and the octahedron.

The vertices of the cross-polytope On are the 2n points {e1, . . . , en;−e1,
. . . ,−en} where the ei are the standard basis vectors for Rn. The convex poly-
hedron On can be defined alternatively as the convex hull of this set of vertices.

〈5.8〉 Exercise. Show that there is an edge between any pair of vertices except
for the n pairs {ei,−ei} so that the number of edges is

(
2n
2

)− n = (2n)(2n−1)
2 − n,

where
(
2n
2

)
is the number of 2 element subsets of a 2n element set.
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〈5.9〉 Exercise. Show that the number of faces of dimension i in the cross-polytope
On is the coefficient of qi+1 in the polynomial (1 + 2q)n.

〈5.10〉 The moment graph of the (2n− 2)-dimensional quadric hypersurface X
is the 1-skeleton of the cross-polytope On.

More explicitly, we define a map from the set of fixed points to V = Rn by
sending Fi to ei and sending F ′

i to −ei. Then for every pair of fixed points connected
by a balloon, the direction vector of that balloon is parallel to the line connecting
the corresponding points in V.

Moment graph G(T Q2) Moment graph G(T Q4)

〈5.11〉 Odd dimensional quadric hypersurfaces. The (2n − 1)-dimensional
quadric hypersurface Q2n−1 is the subset of P2n with homogeneous coordinates (w :
x1 : · · · : xn : y1 : · · · : yn) cut out by the equation w2 +x1y1+x2y2+ · · ·+xnyn = 0.
The n-torus T acts on the x and the y coordinates as before, and it acts trivially
on w. So it contains the (2n− 2)-dimensional quadric hypersurface Q2n−2 as the T
invariant subspace where w = 0. The fixed points ofQ2n−1 are the same as the fixed
points of Q2n−2, but there are n additional balloons: namely, the subspace where
only xi, yi, and w are nonzero is a balloon connecting Fi and F ′

i . The moment
graph for Q2n−1 is the moment graph for Q2n−2 with n additional straight lines
connecting Fi to F ′

i .

Moment graph G(T Q3) Moment graph G(T Q5)

(The moment graph G(T Q5) is the PCMI logo.)
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2.6. Grassmannians and Hypersimplices

A point in projective space Pn−1 represents a line through the origin in the vector
space Cn: The points in the line are the different homogeneous coordinates that
represent the point in projective space. Similarly, we can make a space whose
points represent subspaces of higher dimension in Cn. This leads to various kinds
of Grassmannian varieties.

〈6.1〉 The space Gn
i is the Grassmannian variety whose points are the i-dimen-

sional subspaces of the n-dimensional complex vector space Cn. The n-torus acts
on it through its action on Cn: z(x1, . . . , xn) = (z1x1, . . . , znxn).

〈6.2〉 The fixed points. Suppose that S is a subset of {1, 2, . . . , n}. Let PS be
the coordinate plane corresponding to S, i.e. PS is the |S|-plane defined by the
condition that only the coordinates {xj | j ∈ S} can be nonzero. Here |S| is the
number of elements of S. The fixed points in Gn

i are the planes PS where |S| = i.
We denote PS by FS when thinking of it as a fixed point in Gn

i .

〈6.3〉 The balloons. Suppose S′ is obtained from S by deleting the number j
and adding number k, for j �= k. Then the set of i-dimensional subspaces that
contain PS∩S′ and are contained in PS∪S′ is a balloon connecting FS and FS′ . The
direction vector of this balloon is ej − ek.

〈6.4〉 Here is a picture of the planes in the balloon connecting F{1,2}, and F{2,3} in
G3

2. Since we can’t visualize C3, we’re using a real picture, i.e. real planes in the
real vector space R3 instead of complex planes in the complex vector space C3.

Points in a balloon in G3
2

〈6.5〉 The hypersimplex Δn
i is the intersection of the n-cube [0, 1]n ⊂ Rn = V

with the plane v1 + v2 + · · · + vn = i. It is a convex polyhedron with vertices
νS = Σj∈Sej where S is an i element subset of {1, . . . , n}. The vertices νS and νS′

are connected by an edge if S′ is obtained from S by deleting the number i and
adding number j, for i �= j. Then the edge is parallel to ei − ej .
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The hypersimplex Δ3
1 The hypersimplex Δ3

2

〈6.6〉 The moment graph of the Grassmannian Gn
i is the 1-skeleton of the hyper-

simplex Δn
i . There is a rich theory surrounding hypersimplices and Grassmannians

[12], [11], [6].

〈6.7〉 Exercise. Show that the hypersimplices can be arranged in a polyhedral
version of Pascal’s triangle where the faces of each polyhedron are isomorphic to
one of the two polyhedra lying above it.

For dimension up to 4, this is illustrated in the following picture. The labels
of vertices show which coordinates are 1 (or equivalently, which coordinate axes
are in the corresponding plane representing a T fixed point of the Grassmannian).
The figures in last line, representing 4-dimensional hypersimplices, are projections
to R3 called Schlegel diagrams. Note that the polyhedra on the two upper edges of
the picture are ordinary simplices.

Pascal’s triangle of hypersimplices
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〈6.8〉 The Lagrangian Grassmannian and the cube. Consider C2n with co-
ordinates x1, . . . , xn, y1, . . . , yn and the alternating form Σixiy

′
i − x′iyi. The La-

grangian Grassmannian Ln is the subvariety of the Grassmannian G2n
n consisting

of n planes on which this alternating form vanishes identically. The torus T acts
on Ln by through its action on C2n by the formula

z(x1, . . . , xn, y1, . . . , yn) = (z1x1, . . . , znxn, z
−1
1 yn, . . . , z

−1
n yn).

The fixed points FS are the coordinate planes that lie in Ln. For any subset
S ⊂ {1, . . . , n}, FS is the plane whose nonzero coordinates are the xi for i ∈ S and
the yi for i /∈ S. There are 2n of them.

Exercise. Show that the vertices of the moment graph of Ln are the vertices of
the n-cube [0, 1]n ⊂ V and the edges of the moment graph are the edges of the cube
together with the diagonals of the 2-dimensional faces.

The moment graph G(T L2) The moment graph G(T L3)

2.7. The Flag Manifold and the Permutahedron

〈7.1〉 The flag manifold. Consider Cn as R2n in the usual way, with the standard
real dot product ·R on it. A point in the flag manifold Fn is an ordered set of
n mutually orthogonal complex lines through the origin in Cn. Here mutually
orthogonal means that if x is in one of the complex lines and y is in another one,
then x ·R y = 0. (This is the same as their being orthogonal with respect to the
standard Hermitian inner product.)

The n-torus T acts on Fn through its standard action on Cn. This action
preserves the orthogonality condition.

〈7.2〉 Fixed points. A point is fixed if the n mutually orthogonal lines coincide
with the complex coordinate axes in Cn. There are n! of them, one for each ordering
of the coordinate axes.

〈7.3〉 The balloons. Pick two coordinate axes of Cn, say the xi axis and the xj

axis. A balloon is the set where all but two of the mutually orthogonal complex
lines are required to lie on a coordinate axis that is not the xi axis or the xj axis.
The remaining two complex lines are free to wander (staying orthogonal to each
other) in the 2-dimensional plane spanned by the xi axis and the xj axis.

〈7.4〉 The permutahedron. Fix n distinct real numbers a1, . . . , an. The permu-
tahedron is the convex hull in Rn of the n! points (aσ(1), . . . aσ(n)) where σ runs
through the n! permutations of the numbers {1, . . . , n}. It is an (n−1)-dimensional
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polytope because it lies in a hyperplane in Rn where the sum of the coordinates is
constant since the sum of the coordinates of the vertices is constant.

〈7.5〉 The moment graph of the flag manifold. The vertices of the moment
graph for Fn are the vertices of the permutahedron. Two vertices are connected by
an edge if one is a reflection of the other in one of the

(
n
2

)
hyperplanes defined by

an equation vi = vj .

Moment graph
G(T F3)

Moment graph G(T F4)

2.8. Toric Varieties and Convex Polyhedra

So far, we have begun with a space with a torus action T X and we have computed
the moment graph G(T X). In this section we go the other way. We give ourselves
a rational convex polyhedron in a vector space V, and we associate to it a space
with a torus action T T (P ) called the toric variety associated to P . The moment
graph of T T (V) is the 1-skeleton of P .

We recall our notational conventions: V is the real vector space Rn, T is its
dual vector space, also Rn, and L is the lattice Zn ⊂ T.

〈8.1〉 Rational polyhedra. A convex n-dimensional polyhedron P in the real
vector space V = Rn is called rational if all of its vertices lie in Qn, i.e. all the
coordinates of its vertices are rational numbers.

〈8.2〉 F⊥. Given a face F of the polyhedron P ⊂ V, we will denote by F⊥ the
vector subspace of T = V∗ consisting of vectors which are perpendicular F , i.e. the
set of all t ∈ T such that <t, v − v′> = 0 for every pair of points v, v′ ∈ F . If F is
a vertex of P , then F⊥ = V. If F is P itself, then F⊥ is just the zero vector 0 ∈ T.
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〈8.3〉 F (p). Given a point p ∈ P of a polyhedron, we write F (p) for the smallest
face of P containing p. If p is a vertex, then F (p) is p itself. F (p) = P , if and only
if p is an interior point of P .

〈8.4〉 The toric variety T(P ) is the quotient space

T(P ) =
P × T

∼
where ∼ is the following equivalence relation:

(p, t) ∼ (p′, t′) if and only if p = p′ and t ∼= t′ mod (F (p)⊥ + L)

p ∈ P ⊂ V The subgroup F (p)⊥ + L in T

〈8.5〉 The T action. The torus T = T/L acts on the toric variety T(P ) as follows:
T acts on P × T by vector addition t(p, t′) = (p, t′ + t), and this action passes to
an action of T on the quotient space T(P ). On the quotient space, L acts trivially,
since if t ∈ L, then t(p, t′) ∼ (p, t′) So the quotient group T/L acts on the quotient
space T(P ).

〈8.6〉 The moment map. There is a map μ : T(P ) −→ P called the moment map
which is induced from the projection (P × T) −→ P . The reason the projection
passes to the quotient T(P ) is that the equivalence relation ∼ is compatible with
this map — it identifies points only if they lie in the same fiber. In fact, there is
an identification T(P )/T ≈ P , the moment map T(P ) −→ T(P )/T is the quotient
map for the group action T T(P ).

Proposition. The fiber μ−1p ⊂ T(P ) over a point p ∈ P is a torus of the same
dimension as the face F (p).

So we can think of the toric variety T(P ) as a family of tori over the polyhedron
P whose fiber dimensions decrease as you get to smaller faces. To visualize it, here
are some pictures of fibers at various points of P .
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Moment map fibers μ−1(p) for various p ∈ P
The torus μ−1(p) over the a point p in the interior of the polyhedron P becomes
thinner, looking more like a bicycle tire than a car tire, as p approaches an edge.
It collapses into a circle when p reaches the edge. The circle μ−1(p) over a point p
in an edge becomes smaller as p approaches a vertex, and it collapses into a point
when p reaches the vertex.

〈8.7〉 Proof of the proposition. Why is the fiber μ−1(p) a torus? It is a single
orbit of the action of the torus T , so it must be a torus if it is a Hausdorff space.
But why is it Hausdorff? We have

μ−1p = T/(L+ F (p)⊥) =
T/F (p)

L/(L ∩ F (p)⊥)

We must show that L/(L ∩ F (p)⊥) is a lattice in T/F (p). Since this quotient
space will itself be a torus: it will be the vector space T/F (p)⊥ modulo the lattice
L/(L ∩ F (p)⊥)

〈8.8〉 Exercise. Show that the following conditions are equivalent, and they all
hold if the polytope P is rational:

(1) The vector space F⊥ is a rational subspace of T for all faces F .
(2) The vector space F⊥ is spanned by F⊥ ∩ L for all faces F .
(3) The quotient space T/(L+ F⊥) is Hausdorff for all faces F .
(4) The subgroup L/(L ∩ F (p)⊥) is a lattice in the vector space T/F (p).
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(5) The toric variety (P × T)/ ∼ is Hausdorff.

〈8.9〉 Proposition. The moment graph of the toric variety T (P ) is the 1-skeleton
P 1 of P .

Since the dimension of the orbit μ−1(p) is the dimension of F (p), the 1-skeleton of
T T(P ) is the inverse image of the 1-skeleton of P . The inverse image of an edge
of P is a balloon.

It remains to see that the direction vector of this balloon is parallel to the edge.
This follows from §2.2.5.

〈8.10〉 Exercise. Show that the projective (n − 1)-space Pn−1 is a toric T(P )
where P is an (n− 1)-simplex.

〈8.11〉 Simple polytopes. A polytope is simple if the edges coming in to every
vertex, considered as vectors, are linearly independent. For example, a tetrahedron
and a cube are simple, whereas an octahedron is not. All 2-dimensional polyhedra
are simple.

Toric varieties of simple polytopes play a special role that will become apparent
later (§3.8.1).

2.9.* Moment Maps

This is a * starred section, meaning that its prerequisites go beyond those of the
other sections, and its results are not needed for the rest of what we will do. The
purpose is to provide an orientation for going further in the subject, and to show
how the material ties in to other mathematical ideas.

〈9.1〉 The Lie algebra. Our torus T is a compact Lie group. The vector space
T is its Lie algebra. The map T −→ T is the exponential map of Lie theory
and the lattice L is its kernel. In general, the exponential map is not a group
homomorphism, but it is for the Lie group T , since T is Abelian. If T X and X
is smooth, every t ∈ T gives rise to a vector field on X which we notate x �→ t(x).

〈9.2〉 Complex algebraic varieties. All of the spaces X we have constructed in
this section are complex projective algebraic varieties. Our torus T = (S1)n is the
maximal compact subgroup of a complex torus TC = (C∗)n which is an algebraic
group. The action of T extends to an algebraic action of TC. The fixed points
of T are still fixed under TC. The real dimension of a T orbit Tx is the complex
dimension of the TC orbit TCx. If B is one of the balloons and N and S are the
two fixed points on it, then B−N −S is a single orbit of TC of complex dimension
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1. These are all the 1 complex dimensional orbits of TC. If we are given a complex
algebraic action of TC on X , then our hypothesis that the 1-skeleton of T X is a
balloon sculpture is equivalent to the hypothesis that TC has finitely many orbits
of complex dimension 0 and 1.

〈9.3〉 The moment map. If X is nonsingular and projective, then it has a real
symplectic form ω called the Kähler form. By Weyl’s trick of averaging over T , we
can choose ω to be T invariant. We define a V-valued differential 1-form θ on X as
follows: For t ∈ T, let ξt be the corresponding vector field on X . If τ ∈ TxX is a
tangent vector to X at x, then t �→ ω(τ, ξt(x)) is a linear map T −→ R, so it is an
element of V = T∗. That element is θ(τ). The moment map μ : X −→ V is defined
by the formula

μ(x) =
∫ x

x0

θ

where x0 is a base point chosen in X . (If X is not connected, we define μ on each
connected component separately by this procedure.)

If X is singular, we proceed a little differently. We embed X in a complex
projective space in a way that is TC equivariant. Then we take the moment map on
the ambient complex projective space as constructed above, and restrict it to X .

If T X is a toric variety, then the moment map as defined here will coincide
with the moment map from its definition as a toric variety.

〈9.4〉 Proposition. If TC acts algebraically on X with finitely many orbits of
dimension 0 and 1, then the moment graph G(T X) is μ(X1), the moment map
image of its 1-skeleton. The set of vertices of the moment graph is μ(X0). The
image μ(X) of all of X will be the convex hull of the moment graph. There were

several choices in constructing the moment map (choice of a Kähler form, choice of
a base point). Different choices will result in different but equivalent linear graphs.

〈9.5〉 Exercise*. Suppose X is nonsingular and compact, and that TC acts al-
gebraically on X with finitely many fixed points F . Suppose further that at each
fixed F , the representation TC TFX on the tangent space has no representation of
multiplicity greater than 1. Show that TC acts with finitely many one dimensional
orbits, so that the 1-skeleton of T X is a balloon sculpture.



LECTURE 3
The Cohomology of a Linear Graph

(Polynomial and Linear Geometry)

We will attach a cohomology ring to any linear graph G. Most of this section
is a study of this ring and how to compute it. Then section 3.8 contains the main
theorem: if the linear graph G is a moment graph G(T X), then the cohomology
ring of G is the equivariant cohomology ring of T X .

3.1. The Definition of the Cohomology of a Linear Graph

〈1.1〉 Notations. Suppose G is a linear graph. We will call the vertices ν, ν′, . . . If
ν and ν′ are connected by an edge, we will call it νν′ . The graph is embedded in
a real n-dimensional vector space V, whose dual vector space is T. For every edge
νν′ , let ⊥νν′ be the (n − 1)-dimensional subspace of T consisting of vectors that
are orthogonal to the straight line νν′ . Let O(T) be the ring of real polynomial
functions f : T −→ R graded so that the grading degree is twice the degree of the
function.

Definition [13]. Consider the ring ⊕
vertices ν of G

O(T).

An element of this ring is a polynomial function fν : T −→ R for each vertex ν of
G. We can notate such an element {fν , fν′ , . . .} The cohomology of G, H∗(G) is the
subring of this cut out by the requirement that for every edge νν′ of G, we have
the restriction condition:

fν |⊥νν′ = fν′ |⊥νν′ .

In other words, the restriction condition requires that if the vertices ν and ν′ are
connected by an edge νν′ , then the polynomial fν and the polynomial fν′ must
have the same restriction to the space ⊥νν′ .

For a useful reformulation of this definition, see §4.3.5.

〈1.2〉 Exercise. Show that H∗(G) is a subring of
⊕

ν O(T).

〈1.3〉 Graded structure. The ring H∗(G) is a graded ring

H∗(G) =
⊕
i≥0

Hi(G)

359
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where Hi(G) = 0 if i is odd, and H2k(G) is the set of elements represented by sets
of polynomials {fν , . . .}, each of which is homogeneous of degree k (i.e. every term
of fν is of degree k). If α ∈ Hi(G) and β ∈ Hj(G), then the product αβ ∈ Hi+j(G).
〈1.4〉 Module structure. The ring H∗(G) is a graded module over the graded
ring O(T) of polynomial functions on T. The module action of g ∈ O(T) sends
{fν, fν′ , . . .} ∈ H∗(G) to {gfν, gfν′ , . . .}.
〈1.5〉 Restriction. Suppose that we have an inclusion of linear graphs G′ ⊂ G,
i.e. G′ has some of the vertices of G and some of the edges. Then the projection⊕

vertices ν of G
O(T) −→

⊕
vertices ν of G′

O(T)

induces a map

H∗(G) −→ H∗(G′).

〈1.6〉 Exercise. Show that the graded structure, the module structure, and the re-
striction, as defined above, make sense – for example that they respect the condition
for each edge of G in the definition of H∗(G).
〈1.7〉 Sections 3.2 to 3.7 will be devoted to the study of the cohomology ring of
a graph. The definition is simple enough, but it is not immediately clear from
the definition how you would compute it or how to think about it. The papers of
Guillemin, Holm, and Zara are recommended for further reading [18], [19], [20],
[21], [22].

3.2. Interpreting Hi(G) for Small i

In this section, we will give interpretations for i = 0, 2, or 4.

〈2.1〉 The degree 0 part of the cohomology. The
dimension of the vector space H0(G) is the number of
connected components of the topological graph associ-
ated to G. (The topological graph of the figure at the
right consists of two disjoint triangles.) Exercise.

Prove this. H0(G) = R⊕ R

〈2.2〉 The degree 2 part of the cohomology. The dimension of the vector space
H2(G) is the dimension of the space of graphs in V that are equivalent to G (see
§0.2.4).

〈2.3〉 Proof. An element of
⊕

vertices ν of G O(T)2 is a linear function on T for
every vertex ν of the graph G. But a linear function on T is a vector Dν in V.
Draw the vector Dν as an arrow, and put its tail at the vertex ν and call its head
ν̄. We will consider Dν a displacement of ν to a new vertex ν̄ of a new graph Ḡ.
For every edge νν′ the restriction condition that fν |⊥νν′ = fν′ |⊥νν′ translates in to
the condition that the line ν̄ν̄′ connecting the head of Dν to the head of Dν′ , is
parallel to νν′ . But that is exactly the condition that the displaced graph Ḡ should
be in the same equivalence class of linear graphs as G.
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= the displaced graph G′

= the graph G

〈2.4〉 Exercise. Determine the dimension of H2(G) for all of the linear graphs
pictured in Lecture 2.

〈2.5〉 The degree 4 part of the co-
homology. The dimension of the vec-
tor space H4(G) is the dimension of the
space C(G) of configurations of the fol-
lowing sort: For each vertex ν of the
graph G, we give an ellipsoid Eν in V

centered at ν. For each edge νν′ , we
ask that when you take the projection
along the direction of νν′ to an (n− 1)-
dimensional quotient space of V, the two
ellipsoids Eν and Eν′ should have the
same image. (Recall that an ellipsoid is
the zero set of a degree two polynomial
that is compact.) I am indebted to Vic-
tor Guillemin for this interpretation of
H4(G).

A configuration of ellipses in C(G)

〈2.6〉 Exercise. Prove this statement. More precisely, prove that the tangent
space to C(G) at any point is canonically H4(G).

3.3. Piecewise Polynomial Functions

Suppose that G is the 1-skeleton of a convex polyhedron P . We will give an inter-
pretation of the ring H∗(G(P )).

〈3.1〉 The dual cone decomposition. If P is a convex polyhedron in V, then
the dual space T is partitioned into subsets F ∗ corresponding to faces F of P as
follows: If t ∈ T, suppose that c ∈ R is the maximum value that the image t(P )
can take. Then t−1(c) will be some face F of P . We say that t ∈ F ∗.

For example, 0 ∈ T is always in P ∗ (P is a face of itself). If P has the same
dimension as V, then 0 = P ∗. The set F ∗ is an open subset of T if and only if F is
a vertex of P .

If we identify V = T = R2 and t(v) =< t, v > where < ·, · > is the usual inner
product, then we can picture the dual cone decomposition like this:
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〈3.2〉 Piecewise polynomial functions. A function f : T −→ R is called piece-
wise polynomial with respect to the dual cone decomposition T =

⋃
V ∗ if it is

continuous and its restriction to each set V ∗ is given by a polynomial function.

A polyhedron in V = R1
The graph of a function that is piece-
wise polynomial with respect to the
dual cone decomposition

〈3.3〉 Exercise. Show that a continuous function is piecewise polynomial if its
restriction to F ∗ is given by a polynomial function for every vertex F .

〈3.4〉 Interpretation of the cohomology of the 1-skeleton of P . If G is the 1-
skeleton of the polyhedron P , then its cohomology ringH∗(G) is the ring of functions
on T that are piecewise polynomial with respect to the dual cone decomposition.

〈3.5〉 Exercise. Prove this. Use the lemma that a polynomial is entirely deter-
mined on its values on any open set.

〈3.6〉 Remark. When the polyhedron is simple, this ring is called the Reisner
Stanley ring of the dual simplicial polyhedron.

3.4. Morse Theory

Morse theory is the main tool we have for understanding the cohomology of a graph.
The idea of Morse theory is to break the computation of the cohomology down into
a series of simpler computations.

〈4.1〉 Morse functions. Suppose we have a linear graph G in a vector space V.
Consider a linear function φ : V −→ R. The values φ(ν) where ν is a vertex of G are
called the critical values of φ. The function φ is called a Morse function if all of the
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critical values are distinct, i.e. for any pair of vertices ν and ν′ of G, φ(ν) �= φ(ν′).
It follows that φ is not constant on any edge of G.

Morse functions exist for any linear graph. In fact, if you choose a linear
function φ : V −→ R at random, you have to be infinitely unlucky to get one that
is not Morse.

〈4.2〉 The truncated graph. Now suppose c is a real number, which we call the
“cut-off value”. We define G≤c to be the subgraph of G consisting of those vertices
ν such that the critical value φ(ν) ≤ c, together with all the edges νν′ connecting
vertices ν and ν′ both of which have critical values ≤ c.

A Morse function φ The truncated graph G≤c

If we have a Morse function φ, we can label the vertices of G by ν1, ν2, . . . νk

so that their critical values are increasing φ(ν1) < φ(ν2) < · · · < φ(νk). Call cj the
critical value φ(νj). For c < c1, we have G≤c is empty. As the number c increases,
G≤c grows by jumps every time c reaches a critical value cj until finally for c ≥ ck,
G≤c = G. The idea of Morse theory is to trace the growth of H∗(G≤c) as c increases.

〈4.3〉 The Morse module. Suppose that c1 < c2 < · · · < ck are the critical values
of the Morse function φ, and c0 is a real number less than the smallest critical value
c1. Then for all integers j ∈ {1, . . . , k}, we have

G≤cj−1
ij⊂ G≤cj

H∗(G≤cj−1)
i∗j←− H∗(G≤cj ) ←− Mj ←− 0

Here i∗j is the map on cohomology induced by the inclusion of graphs ij and Mj

the kernel of the map i∗j . The kernel Mj is a graded module over O(T) because it
is the kernel of a map of graded modules. It is a graded ideal in H∗(G≤cj ), but it
is more useful to think of it as a O(T)-module. The module Mj is called the Morse
module of the vertex νj whose critical value is cj .



364 R. MACPHERSON, EQUIVARIANT INVARIANTS AND LINEAR GEOMETRY

〈4.4〉 The Morse index. For any vertex
ν ∈ G, let L(ν) denote the set of edges com-
ing in to ν. The Morse function φ splits the
edges in L(ν) into two types: L−(ν) is the
edges going down from ν as measured by
φ, i.e. the edges connecting ν to vertices ν′

with φ(ν′) < φ(ν). The others are in L(ν)+,
the edges going up from ν. We define the
Morse index Index(ν) to be twice the num-
ber of edges in L−(ν).

Morse indices of vertices

〈4.5〉 Calculation of the Morse module Mj. The graph G≤cj has exactly
one more vertex than the graph G≤cj−1 , namely νj . Therefore for an element
{. . . , fν , . . .} of Mj ⊂ H∗(G≤cj ), all of the fν will be zero except for fνj correspond-
ing to νj . This polynomial fνj : T −→ R will vanish on all of the hyperplanes ⊥

for  ∈ L−. For each  ∈ L−, let g� be a nonzero linear function on T that is zero
on ⊥.

Proposition. The Morse module Mj is the principal ideal in O(T) generated by
the homogeneous element

gνj =
∏

�∈L−(νj)

g�.

As a module over O(T), Mj is a free module generated by gνj , which lies in the
graded piece O(T)Index(νj).

〈4.6〉 Exercise. Finish the proof of this proposition.

〈4.7〉 Exercise*. Suppose that G is the 1-skeleton of a simple polyhedron. Show
that the ordering of the vertices given by a Morse function corresponds to a linear
shelling of the dual simplicial polytope.

3.5. Perfect Morse Functions

Having a Morse function isn’t much help unless the cokernel of the map

H∗(G≤cj−1)
i∗j←− H∗(G≤cj )

is zero, because in general it can be very difficult to compute this cokernel. If it is
zero, the Morse function is called perfect:

〈5.1〉 Definition. The Morse function ϕ is called perfect if i∗j is surjective for all j.

〈5.2〉 Hilbert series. One of our goals is to compute the dimensions of the coho-
mology groups H∗(G), or equivalently, to compute the Hilbert series of the coho-
mology of a graph Hilb(H∗(G))(see §0.3.4). This determines the isomorphism class
of H∗(G) except for the ring structure and the structure as a module over O(T).

If φ is perfect, then we see by induction that the dimension of the i-th graded
piece of H∗(G) is the sum of the dimensions of the i-th graded pieces of the Morse
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modules. Expressed in Hilbert series,

Hilb(H∗(G)) =
∑

1≤j≤k

Hilb(Mj).

But since the Morse module Mj is a free O(T) module on a generator of degree
Index(νj), and the Hilbert series of O(T) is computed in §0.3.5, we have the follow-
ing:

〈5.3〉 Proposition. If φ is a perfect Morse function, the Hilbert series of the
cohomology of the graph is given by

Hilb(H∗(G)) =
k∑

i=1

xIndex(νi)

(
1

1− x2

)n

=
k∑

i=1

qIndex(νi)/2

(
1

1− q
)n

.

〈5.4〉 The Betti numbers of a graph. Suppose that G has a perfect Morse
function φ. Then we define the Betti numbers Bi of G to be the number of vertices
of G whose Morse index is i. Note that Bi is automatically zero if i is odd.

We define the Poincaré polynomial P to be

P (x) =
∑

i

Bix
i.

so we have

Hilb(H∗(G)) = P (x)
(

1
1− x2

)n

and
P (x) = Hilb(H∗(G)) (1− x2

)n
where the last expression, which is a priori an infinite power series, is actually a
polynomial.

〈5.5〉Exercise. Show that if the graph G has more than one different perfect Morse
function, the Betti numbers (and the Poincaré polynomials) are independent of the
choice of the Morse function.

〈5.6〉 Exercise. Show that the sum of the Betti numbers
∑

i Bi is the number of
vertices of the graph G.
〈5.7〉 Exercise. Show that the sum

∑
i(i/2)Bi is the number of edges of the graph

G.
〈5.8〉 Exercise*. Show that the homology groups of the topological graph G are
determined by the Betti numbers of H∗(G).
〈5.9〉 Exercise. Let G be the 1-skeleton of the
Egyptian pyramid in 3-space. Show that not all of the
Morse functions on G are perfect by showing that they
would lead to different Betti numbers. Can you identify
which ones are not perfect?

〈5.10〉 Exercise. Show that the height function on the
linear graph in the plane displayed on the right is not
perfect. We call this graph the “inverted V”.
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〈5.11〉 Remark. It can be difficult to tell whether a given Morse function φ is
perfect. There is one deep general theorem about this, due to Guillemin and Zara
[18]. However, as we will see in §3.8.8, most of the cases we are considering have
perfect Morse functions for topological reasons.

〈5.12〉 Exercise. It is known that all Morse functions of the graphs pictured in
Lecture 2 are perfect. Calculate their Betti numbers.

3.6. Determining H∗(G) as a O(T) Module

For many purposes, we want more than the dimensions of the cohomology groups
Hi(G). A Morse function φ enables us to determine it as a O(T)-module:

〈6.1〉 Proposition. If G has a perfect Morse function, its cohomology H∗(G) is a
free graded O(T)-module. The number of free generators of degree 2i is Bi.

This proposition can be proved inductively, using §3.4.5.

〈6.2〉 Proposition. If φ is perfect, the cohomology H∗(G) is a free graded module
over OT, i.e.

H∗(G) =
⊕

j

gjO(T)

where gj is a lift of gi to H∗(G).
〈6.3〉 Exercise. Prove this.

〈6.4〉 Definition. We say that a linear graph has the free module property if its
cohomology is a free graded module over O(T).

If a graph has the free module property, we may define its Poincaré polynomial by

P (G) = Hilb(H∗(G))(1 − q)n

which will necessarily be a polynomial. Graphs with a perfect Morse function have
the free module property, but the converse isn’t true:

〈6.5〉 Exercise. Show that the graph to the right
has no perfect Morse function, but has the free
module property.

〈6.6〉 Exercise. Show that a nonplanar quadri-
lateral in 3-space does not have the free module
property (example due to T. Braden).

3.7. Poincaré Duality

Suppose that G is k-valent: it has k edges coming out of every vertex (#|L(ν)| = k
for all vertices ν ∈ G). The simplest form of Poincaré duality is the numerical
statement that the Betti numbers Bj and B2k−j are equal.

This numerical Poincaré duality holds whenever there is a perfect Morse func-
tion whose negative is also perfect.
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〈7.1〉 Exercise. Suppose that G is k-valent and that it has a perfect Morse function
φ such that the Morse function −φ is also perfect. Show that

Bj(G) = B2k−j(G).
As usual in mathematics, it is better to have a canonical isomorphism or a duality

of vector spaces than an equality of their dimensions. We want something of the
kind for Poincaré duality. First, we need some preliminaries on graded rings.

〈7.2〉 The canonical filtration of a graded R-module. Consider a graded
module M over a graded ring R. Let M≤k be the sum of the graded pieces M0 ⊕
M1⊕· · ·⊕Mk. This is not anR-module, but it generates one; call it FkM = R·M≤k.
Then M has an increasing filtration of R-submodules F0M ⊆ F1M ⊆ · · · .
〈7.3〉 Exercise. If G has the free module property, then Bi is the dimension of the
i graded piece of FiH∗(G)/Fi−1H∗(G).
〈7.4〉 Internal Hom. Suppose that M and N are two graded R modules. Then
the space HomR(M,N) has the structure of a graded R module. The i-th graded
piece is the elements of HomR(M,N) that map each M j into N j+i.

〈7.5〉 Proposition. Functorial Poincaré duality. Now, suppose that G is con-
nected, k-valent, and that it is universally perfect (i.e. all Morse functions are per-
fect). Then H∗(G)/F2k−1H∗(G) is a free O(T) module on one generator in degree
2k. Call it D. The pairing

H∗(G) ⊗O(T) H∗(G) −→ H∗(G) −→ H∗(G)
F2k−1H∗(G) = D

x × y �→ xy

is perfect in the sense that the induced map

H∗(G) −→ Hom(H∗(G),D)

is an isomorphism of O(T) modules.

〈7.6〉 Exercise. Show that functorial Poincaré duality implies numerical Poincaré
duality.

3.8. The Main Theorems

This section relates the cohomology of a linear graph to torus actions and the
moment graph construction.

〈8.1〉 Assumptions. We consider a torus acting on a space T X such that the
moment graph G(T X) exists. (This means, in particular, that the 1-skeleton
of the action is a balloon sculpture.) We further assume that X has only even
dimensional real cohomology, i.e. Hi(X ; R) = 0 for i odd.

These assumptions hold for complex projective spaces, quadric hypersurfaces,
Grassmannians, Lagrangian Grassmannians, flag manifolds and their and toric vari-
eties based on simple polyhedra. In other words, the assumptions hold for all spaces
considered in Lecture 2, except for toric varieties of some non-simple polyhedra.
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〈8.2〉 Theorem [13]. The T equivariant cohomology ring of X is the cohomology
ring of the moment graph of X , i.e.

H∗(T X) = H∗(G(T X)).

〈8.3〉 Theorem. The ordinary (non-equivariant) cohomology ring of X , calculated
from the moment graph by

H∗(X) =
H∗(G(X))

the ideal generated by O(T)>0

where O(T)>0 is the positive degree part of O(T).

〈8.4〉 Theorem. The moment graph has the free module property, i.e. H∗(G(X))
is a free graded module over the polynomial algebra O(T) and the Poincaré poly-
nomial of the graph P (G) = Hilb(H∗(G))(1 − q)n is the Poincaré polynomial∑

i x
i dimHi(X) of X .

〈8.5〉 We can pause to marvel at the statements. The data in moment graph of
T X depends only on a very small part of X – its 1-skeleton. Yet by these
theorems, all of the homology and equivariant homology of X is encoded in this
data.

The proofs of these three propositions are beyond our ambitions here. The
reader is referred to [13] and the references given there. However, we have given
enough information in our explicit construction of generators and relations for the
equivariant cohomology of the 2-sphere, we have to construct the map

H∗(T X) ∼←− H∗(G(T X))

in Theorem 3.8.2.

〈8.6〉 Exercise. Construct a map H∗(T X) �→ H∗(G(T X)).

〈8.7〉 Exercise. Show that the free generators α1, α2, . . . forH∗(G(X)) as a module
over O(T) pass in the quotient to generators of H∗(X) as a vector space, i.e. as a
module over R.

〈8.8〉 Morse theory and Poincaré duality for our examples. In Lecture 2,
we gave many examples of spaces with a torus action: projective spaces, quadric
hypersurfaces, Grassmann manifolds, Lagrangian Grassmannians, flag manifolds,
and toric varieties for simple polyhedra. These examples all satisfy the hypotheses
of the theorems above. Furthermore, they are all universally perfect (every Morse
function is perfect), so they satisfy Poincaré duality. (This may be seen using
topological methods.) Many other examples in this favorable class will be mentioned
in §4.1.2.

〈8.9〉* Morse theory and moment maps. Suppose that X is a nonsingular
algebraic variety, and the action T X and the moment map μ : X −→ V are as
in §2.9. If ϕ : V −→ R is a Morse function for the moment graph of T X in the
sense of this Lecture, then ϕ ◦ μ : X −→ R is a Morse function in the usual sense
of differential topology. In this case, the Morse function will be perfect. In this
case, Morse theory we have described is a reflection of the usual topological Morse
theory.
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〈8.10〉* The Schubert basis. Suppose X is a generalized flag manifold, i.e. a pro-
jective space, a quadric hypersurface, a Grassmann manifold, a Lagrangian Grass-
mannian, a flag manifold, or more generally a space of §4.7.2. Then the Morse
function ϕ ◦ μ is perfect on ordinary cohomology H∗(X). The basis of cohomology
it provides is called the Schubert basis, and the study of the properties of this basis
in the ring H∗(X) is called Schubert calculus, an interesting combinatorial study in-
volving such things as the Littlewood-Richardson rule, Schubert polynomials, etc.
By Exercise 3.8.7, the H∗(X) and its Schubert basis is encoded in the moment
graph, so in principle questions in Schubert calculus reduce to questions about the
moment graph.

〈8.11〉* A general Lie group. Here’s a brief account. Suppose G X is an
action of a general connected Lie group. Then H∗(G X) = H∗(K X) where K
is a maximal compact subgroup of G. Then, by a theorem of Borel, H∗(K X) =
H∗(T X)W where T is a maximal torus of K and W is the Weyl group of K and
the superscript means taking the invariants. Now, suppose the T action satisfies our
hypotheses, so it has moment graph in G(T X) ⊂ V. The Weyl groupW acts on V

preserving the moment graph, so we can calculate H∗(G X) = H∗(G(T X))W .





LECTURE 4
Computing Intersection Homology

(Polynomial and Linear Geometry II)

In the last lecture, we saw the value of perfect Morse functions. In this lecture,
we consider some linear graphs G with Morse functions that are not perfect. By
changing the cohomology theory, the Morse functions become perfect again. When
G arose as the moment graph of T X , the new cohomology theory turns out to
be the equivariant intersection cohomology of T X .

All of the ideas of this Lecture are joint work with Tom Braden.

4.1. Graphs Arising from Reflection Groups

〈1.1〉 Finite reflection groups. Consider a finite configuration of hyperplanes
H in V that pass through the origin. Suppose that reflection in each hyperplane
H in H takes the configuration H to itself. Then we call H a set of reflecting
hyperplanes. These are all classified. For example here are the sets of reflecting
hyperplanes when V has dimension 2:

and here are some when V has dimension 3:

Or, when V = Rn, H could be the
(
n
2

)
planes xi = xj in Rn where two coordinates

are equal. A finite reflection group W is the group of maps of V to itself generated
by reflections in hyperplanes in H.

371
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〈1.2〉 The linear graph associated to H. Choose any point v ∈ V. We
get a linear graph G(H, v) as follows: The set of vertices of G(H, v) is the orbit
Wv of the point v. Two vertices ν and ν′ are connected by an edge whenever ν′

is the reflection of ν through one of the hyperplanes of H. (So the edge will be
perpendicular to the hyperplane.) Here are two of the possible graphs associated
to a single H where V has dimension 2:

〈1.3〉 Exercise. All of the linear graphs pictured in sections 2.3 to 2.7 arise in this
way. Construct the family of hyperplanes H for each of them.

〈1.4〉 Crystallographic reflection groups. If there is some lattice L ⊂ V such
that reflection in each of the hyperplanes in H takes this lattice into itself, then H
is called crystallographic. This is true for most, but not all of the possible choices
for H. If H is crystallographic, then G(H, v) arises as a moment graph, as described
in §4.7.2.

〈1.5〉The linear graphs G(H, v) are all universally perfect. In other words, all
Morse functions on these graphs are perfect. (This may be seen using a topological
argument if H is crystallographic. In general, it follows from [18].) In fact, every
graph we have considered so far is universally perfect, with the exception of a few
counterexamples and 1-skeleta of non-simple polytopes. We will now construct a
large class of examples with non-perfect Morse functions.

4.2. Upward Saturated Subgraphs

〈2.1〉 Consider a linear graph arising from a finite reflection group G(H, v) ⊂ V

and a Morse function φ : V −→ R (a linear function that takes distinct values on
different vertices of G). Recall (§3.4.4) that if ν is a vertex of G, we define L−(ν) to
be the edges going down from ν and L+(ν) to be the edges going up from ν, where
“up” and “down” are measured by φ.

〈2.2〉 Definition. We call a subgraph G′ of G upward saturated with respect to φ
if whenever ν is in G′ then every edge in L+(ν) is in G′.

Upward saturated subgraphs
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〈2.3〉 The Morse function φ is not usually perfect on upward saturated subgraphs.
In fact, for two of the examples above, the inverted V §3.5.10 and the Egyptian
pyramid §3.5.9 the function φ has already been shown not to be perfect. However,

〈2.4〉 Exercise. Show that −φ is perfect for an upward saturated subgraph. (Use
the fact that G(H, v) is universally perfect.)

〈2.5〉 Exercise*. The Morse function φ turns the set of vertices of G(H, v) into a
poset where ν ≤ ν′ if there is a sequence of edges from ν to ν′ such that φ increases
along each edge. The partial order of this poset is called the Bruhat order. Show
that an upward saturated subgraph can be characterized as a complete subgraph
on a set of vertices that is an ideal in this poset.

4.3. Sheaves on Graphs

We introduce the notion of a sheaf on a graph. This will give us another interpreta-
tion of the cohomology of a linear graph. It will also give us a better understanding
of when a Morse function is perfect.

Definition [7]. Suppose G is a topological graph. A sheaf of graded rings S on G
is the following data.

(1) A graded ring Sν for every vertex ν of G;
(2) A graded ring S� for ever edge  of G; and
(3) A graded ring homomorphism sν� : Sν −→ S� whenever ν lies on .

There is a similar definition replacing “rings” by any other category, such as graded
modules over a graded ring.

〈3.1〉 Definition. Consider the set E(G) which is the union of the set of vertices
of the graph with the set of edges of the graph. An open subset of E(G) is a subset
U with the property that if a vertex ν is in U , then all the edges in L(ν) are in U
(where L(ν) is the set of edges containing ν).

Linear graph G The finite set E(G) An open subset U

〈3.2〉 Definition. Let U be an open subset of E(G). A section of a sheaf S over U
is the choice of an element eν for every vertex ν in E(G) and element e� for every
edge  in E(G) such that if ν lies in , then sν�(eν) = e�. We will notate the set of
such sections Γ(S,U).

If U ′ ⊂ U , then we have a restriction homomorphism Γ(S,U) −→ Γ(S,U ′)
defined by restricting the data.

〈3.3〉 Exercise*. Show that the definition of open set makes E(G) into a (finite)
topological space. Show that the function U �→ Γ(S,U) satisfies the sheaf axioms
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E(G). Establish an equivalence between sheaves as usually defined on the finite
topological space E(G) and the notion of a sheaf on a graph.

〈3.4〉 The sheaf A. Now suppose that G is a linear graph. Then it has a canonical
sheaf of graded rings A on it defined as follows.

(1) The graded ring Aν is O(T), the ring of polynomial functions on T = V∗

for every vertex ν of G;
(2) The graded ring A� for the edge  of G is O(⊥), the ring of polynomial

functions on ⊥ ⊂ T.
(3) The homomorphism aν� is the restriction of polynomial functions.

〈3.5〉 Proposition. The cohomology H∗(G) of the graph G is the global sections
Γ(A,E(G)) of the sheaf A.

This is just a slightly disguised presentation of the definition of H∗(G).

4.4. A Criterion for Perfection

We mix the language of sheaves on graphs with Morse theory.

〈4.1〉 Recall from §3.5.1 that the criterion for a Morse function φ to be perfect is a
surjectivity condition for each vertex of the graph. We will focus on this criterion
for a single vertex ν. Suppose that φ is a Morse function for the linear graph G, ν
is the vertex with the largest critical value φ(ν) = c, and c′ < c is the next to the
largest critical value. The Morse function φ is perfect at ν if the map

H∗(G) = H∗(G≤c) −→ H∗(G≤c′)

is a surjection.

〈4.2〉 Consider the following open cover of the finite set E(G).
• E<c = E(G)− {ν}
• S(ν) = {ν} ∪ L−(ν) (S for star)

so that
• E<c ∩ S(ν) = L−(ν)
• E<c ∪ S(ν) = E(G)

We have a diagram

Aν = Γ(A,S(ν)) −→ Γ(A,L−(ν))←− Γ(A,E<c) = H∗(G≤c′)

where both maps are restriction maps.

〈4.3〉 Proposition. The image of Aν −→ Γ(A,L−(ν)) is contained in the image
of Γ(A,L−(ν)) ←− Γ(A,E<c). The graph is perfect at ν if and only if these two
images coincide, i.e. if and only if the map

Aν −→ Image
[
Γ(A,L−(ν))←− Γ(A,E<c)

]
is a surjection.

〈4.4〉 Exercise. Prove this. You may want to prove the following lemmas first:
• The map Γ(A,E(G)) −→ Γ(A,S(ν)) is surjective.
• The maps Γ(A,L−(ν)) ←− Γ(A,E<c) and Γ(A,E(G)) −→ Γ(A,S(ν)) have iso-
morphic kernels.
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〈4.5〉 If you want to understand what makes a Morse function perfect, it is worth-
while to pause to appreciate this proposition. An element e in Γ(A,L−(ν)) is just a
collection of polynomials on the hyperplanes ⊥ ⊂ T for  ∈ L−(ν). The condition
that e be in the image of Γ(A,L−(ν)) ←− Γ(A,E<c) is a potentially complicated
compatibility condition on these polynomials, coming from the structure of the
graph. According to the proposition, it is perfect if and only if a set of polynomials
⊥ satisfying this compatibility condition is necessarily the restriction of a single
polynomial on T.

〈4.6〉 For example, take the Egyptian pyramid. As in §3.3.4, an element of the
image of

Γ(A,L−(ν))←− Γ(A,E<c)
is a continuous piecewise polynomial function on configuration consisting of the
four upper planes on the right below. We are asking whether such a thing is
the restriction of a polynomial in 3-space. We can see that it is not, just by a
dimension count. For example, there is a 4-dimensional space of linear polynomials
on the configuration (it can be anything on each of the 4 lines). But there is only a
3-dimensional space of linear polynomials in 3-space. So the height function is not
perfect. (Compare §3.5.9.)

Egyptian pyramid The dual cone decomposition

4.5. Definition of the Sheaf M

We define a sheaf of O(T) modules that repairs the deficiency in perfectness as
measured by Proposition 4.4.3.

〈5.1〉Hypotheses on the graph G. We will assume that the graph G is an upward
saturated subgraph of a graph G′ that arises from a crystallographic reflection group
as in §4.1.2. For example, the ambient graph G′ can be any of the graphs of Lecture
2, except for some moment graphs of toric varieties.

〈5.2〉 Construction. [7]. We define the sheaf M inductively:
• If L−(ν) is empty, then Mν is a free module over O(T) generated by a generator
gν in degree −|L+(ν)|, minus the number of edges going up from ν.
• If Mν has already been constructed, and  ∈ L+(ν) is an edge going up from Mν

then
M� = Mν ⊗O(T) O(⊥).
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• If ν is a vertex and M has already been constructed on all of the vertices and
edges of G<ν , then Mν is the free cover of

Image
[
Γ(M,L−(ν))←− Γ(M,E<ν(G))]

and the maps mν� are determined by

Mν
F−→ Image

[
Γ(M,L−(ν))←− Γ(M,E<ν(G′))] ⊂ ⊕

�∈L−(ν)

M�

where F is the free cover map.

〈5.3〉 Remark. As constructed, Mν is the smallest free module mapping surjec-
tively to Image [Γ(M,L−(ν))←− Γ(M,E<ν(G′))]. By the discussion above, this
surjectivity is what we need for φ to be a perfect Morse function.

〈5.4〉 Proposition. Image [Γ(M,L−(ν))←− Γ(M,E<ν(G′))] has the canonical
free cover property, as defined in §4.5.6 below, so the construction of Mν makes
sense.

〈5.5〉 Exercise. Show that the induction is possible, i.e. that these three rules
determine the sheaf M everywhere on G.
〈5.6〉 Free covers. Suppose that R is a graded ring andM is a finitely generated
R-module. A free cover of M is a surjection F F−→ M where F is free a set of
generators, and such a surjection can’t be found with fewer generators.

Free covers are unique in the following sense: If F F−→M and F ′ F ′−→M are
two free covers, then there is always a commutative diagram

F i−→ F ′

F↘ ↙F’M
where i is an isomorphism. In general, however, free covers are not functorial since
i is not uniquely determined by the commutativity of this diagram.

Definition. The moduleM has the canonical free cover property if there is exactly
one map i making the diagram above commutative.

〈5.7〉 Exercise. Consider the 2-dimensional module M over the polynomial ring
in one variable R[t] generated by elements g1 and g2, both of degree zero, with the
relations tgi = 0. Show that its free cover is the module freely generated by g1
and g2, and has the canonical free cover property. On the other hand, consider the
module generated by g1 in degree zero and g2 in degree 2 with the same relation
tgi = 0. Show that its free cover is the free module generated by g0 and g2, but that
it does not have the canonical free covers property because the map determined by
g1 �→ g1 and g2 �→ g2 + at2g1 commutes with the map toM for any real number a.

〈5.8〉Exercise. Suppose thatM is generated by homogeneous generators g1, g2, . . .
with homogeneous relations r1, r2, . . . and that the degree of each of the ri is greater
than the degree of any of the gi. Show thatM has the canonical free cover property.

This is the reason for Proposition 4.5.4. In the second example of the last
exercise, the relation tg1 = 0 has degree 1, while the generator g2 has degree 2.
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〈5.9〉 Exercise. Carry out the inductive construction for the inverted V graph and
the Egyptian pyramid. In both cases, M will coincide with A until the top vertex.
At the top vertex ν, for the inverted V graph, Mν will be as in the first example of
Exercise 4.5.8 above. For the Egyptian pyramid, it will have a generator in degree
2 reflecting the phenomenon for linear functions explained in §4.4.6.

4.6. The Main Results

〈6.1〉 Theorem. [7]. Suppose that T Y is a generalized flag manifold as in
§4.7.1 and that T X ⊂ T Y is a generalized Schubert variety as in §4.7.3, and
G(T X) is its moment graph. Then the equivariant intersection cohomology of
T X is the O(T) module of global sections of the sheaf M on its moment graph

IH∗(T X) = Γ(M,G(T X))

and the intersection homology of X is given by

IH∗(X) = IH∗(T X)⊗O(T) C = Γ(M,G(T X))⊗O(T) C

〈6.2〉 Theorem. All Morse functions on G(H, v) are perfect for the sheaf M .

〈6.3〉 Theorem. Γ(M,G(H, v)) is a free module over O(T).

Let IBi be the number of free generators in degree i.

〈6.4〉 Theorem. Γ(M,G(H, v)) satisfies Poincaré duality: IBi = IB−i. Moreover,
the canonical pairing

Γ(M,G(H, v)) ⊗O(T) Γ(M,G(H, v)) −→ O(T)

is perfect in the sense that the induced map

Γ(M,G(H, v)) −→ Hom(Γ(M,G(H, v)),O(T))

is an isomorphism of O(T) modules.

4.7.* Flag Varieties and Generalized Schubert Varieties

〈7.1〉 Generalized flag manifolds. Suppose that G is a connected compact Lie
group, T is its maximal torus, and H is a connected compact subgroup of G with
the same maximal torus T . Then G/H is a generalized flag manifold.

〈7.2〉 This relates to the linear graph G(H, v) constructed in §4.1.2 as follows: If
H is crystallographic §4.1.4, then we can construct a compact group G such whose
coroots correspond to H and whose Weyl group is the reflection group. We can
construct a subgroup H corresponding to the choice of v ∈ V. (It depends only on
which hyperplanes in H the element v lies on.) Then the moment graph of G/H
will be G(H, v). In the case where v lies on no hyperplane in H, P is the Borel
subgroup, the abstract graph corresponding to G(H, v) is called the Bruhat graph.

〈7.3〉 Generalized Schubert varieties. The generalized flag manifold G/H also
has a description as GC/P where GC is the complexification of G and P is a para-
bolic subgroup.

Suppose we have a Morse function φ : V −→ R and an upward saturated
subgraph G′ of G(H, v). We can approximate the linear function by a rational one,
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without changing the fact that G′ is upward saturated. Then φ is a coweight, so it
corresponds to a map χ : C∗ −→ TC. Now, the generalized Schubert variety whose
moment graph is G′ will be those p ∈ GC/P such that limλ→0 χ(λ)p is a fixed point
of T (GC/P ) corresponding to one of the vertices in G′.

There is an enormous literature on the manifolds GC/P and on Schubert vari-
eties and their singularities. For introductions with a combinatorial slant, see [5]
and [8].

〈7.4〉 A mystery. What about non-crystallographic configurations of reflecting
hyperplanes H? For example, k lines at equal angles in V = R2 where k �= 1, 2, 3, 4,
or 6 is non-crystallographic. Other examples are constructed out of the icosahe-
dron. All purely graph theoretic theorems we have stated work just as well for these
examples. But there is no known topological space corresponding to them. It is rea-
sonable to conjecture that all of the results of this Lecture (in particular the crucial
Proposition 4.5.4) hold for the graphs G(H, v) associated to non-crystallographic
H. Better yet, is there some sort of topological object whose “moment graph” is
G(H, v)?

Another problem is to find general sufficient conditions on a linear graph G
that hold for graphs of the form G(H, v), so that the results of this Lecture work
for G.
〈7.5〉 If P is a polyhedron that is rational but not simple, then there is a construction
of a sheaf on its 1-skeleton that has a similar relation to equivariant intersection
cohomology to the one discussed in this lecture [4],[24],[1],[2],[3]. A similar mystery
applies to 1-skeleta of non-rational polyhedra. This has been the subject of a lot
of recent work, e.g. [9].



LECTURE 5
Cohomology as Functions on a Variety

(Geometry of Subspace Arrangements)

In this lecture, we will describe another paradigm for computing equivariant coho-
mology via geometry. This paradigm can be described by the following directed
graph:

One advantage is that this paradigm treats certain spaces whose 1-skeleton
is not a balloon sculpture, as was required up until now. But the main point is
that the arrangements of linear spaces that arise in this way seem interesting in
themselves.

5.1. The Fixed Point Arrangement

〈1.1〉 Arrangements of sections. An arrangement of sections is a diagram of
vector spaces

E

π s1 s2 · · ·

T

379
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where π : E −→ T is a surjection and sj : T −→ E are sections, i.e. maps satisfying
the section relations: π(sj(t)) = t for all t ∈ T, i.e. π ◦ sj is the identity on T.

〈1.2〉 Suppose we have fixed E π−→ T. To give a section si is the same thing as to
give its image si(T) as a subspace of E. So an arrangement of sections is equivalent
to an arrangement of subspaces of E, each of which is transverse to K, the kernel
of π.

〈1.3〉 A diagram of spaces. Now suppose we have a space with a torus action
T X with finitely many fixed points F1, F2, . . .Then we have the following diagram
of spaces with a T action and T equivariant maps:

X

p i1 i2 · · ·

pt
here pt is a point (with a trivial T action), p : X −→ pt is the only thing it could
be, and ij : pt −→ X sends pt to the fixed point Fj .

〈1.4〉 The fixed point arrangement. We apply second equivariant homology
functor H2(·) to this diagram.

Definition. The fixed point arrangement of X is the arrangement of sections
E = H2(T X), T = H2(T pt), π = p∗ : H2(T X) −→ H2(T pt) and
sj = (ij)∗ : H2(T pt) −→ H2(T X).

5.2. How to Compute the Fixed Point Arrangement

The definition of the fixed point arrangement of T X is difficult to work with,
because we don’t usually have a good handle on the second equivariant homology
group. In this section, we give a way to compute the fixed point arrangement
without using equivariant homology.

〈2.1〉 The spaces K and T. The space H2(T pt) is what we’ve been calling T

all along: the vector space such that T/L = T or, otherwise put, the Lie algebra
of T . If X has only even dimensional homology, then the space K is H2(X), the
ordinary second homology group of X . (This follows from equivariant formality,
see [13].)
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〈2.2〉 How to specify an arrangement of sections. If we have an arrangement
of sections, for every ordered pair of sections sj and sk, we have a linear map
fjk : T −→ K which associates to t ∈ T the vector sk(t)− sk(t) as in this picture:

Conversely, if we know the linear functions fjk, that determines the configuration
up to automorphisms of E commuting with π, which is enough for our purposes.
In fact, since fjk + fkl = fkl, if we’re really efficient about it, we only need to know
m− 1 of them, where m is the number of fixed points.

〈2.3〉 Determining fkj . Suppose that Fj and Fk lie in a balloon B: a 2-sphere
that is taken into itself by T . Since there are only finitely many fixed points, T the
orbits of T on B will all be circles, except for Fj and Fk. Chose such a circle, S.
There will be a linear map g : T −→ R and an identification of S with R/Z such
that the action of t̄ corresponds to addition of g(t). The trouble is that there are
two such functions g which are negatives of each other, corresponding to opposite
identifications of S with R/Z. If we had an orientation of S, we could specify that
the orientation should correspond to the natural orientation of R.

Choose an orientation O for B. That does two things for us. First, it makes
B into a cycle, so it gives us a class [B] in homology. Second, it restricts to an
orientation of the disk bounded by S containing Fj . This induces an orientation
on its boundary, S, solving the problem above. With these conventions, we get

fjk = g[B]

〈2.4〉 Exercise. Show that this definition is independent of the orientation O of

B chosen. Show directly from this definition that fjk = −fkj .

5.3. The Main Result

〈3.1〉 The function ring of the configuration. Let A be the union of the linear
subspaces in the fixed point configuration. In other words, a ∈ A if and only if
a = sj(t) for some section sj in our arrangement and some t ∈ T. The set A
is a real algebraic variety - it has a function ring O(A), which is the polynomial
functions on E, two being considered equivalent if they take the same values on
every point of A. In other words,

O(A) =
O(E)
I(A)

where I(A) is the ideal of polynomials vanishing on the set A.
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〈3.2〉 The map π : E −→ T provides an inclusion O(T) ⊂ O(A). An element f of

O(T) is a polynomial function T
f−→ R so the composition A

π−→ T
f−→ R is in

O(A).

〈3.3〉 Theorem. [17] Suppose that H∗(X) is generated as a ring by H2(X). Then
the equivariant cohomology ofX is the function ring of the fixed point configuration
of X

H∗(T X) = O(A).

The ring O(A) is a free graded module over the polynomial algebra O(T). As in
§3.8.3,

H∗(X) =
O(A)

the ideal generated by O(T)>0

where O(T)>0 is the positive degree part of O(T).

〈3.4〉 Remark. The fact that O(A) is a free module over O(T) is an interesting
and mysterious property of the configuration. Here it follows from theorems in
topology. We don’t know any geometric characterization of which configurations of
sections have this property.

5.4. Springer Varieties

Suppose that k = k1 + · · · + kj is a partition of the integer k. Let γ be the k × k
matrix whose Jordan blocks have size k1, . . . , kj . For example if the partition is
6 = 3 + 2 + 1, then γ is given by

γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦
[
0 1
0 0

]
[0]

⎤
⎥⎥⎥⎥⎥⎥⎦

〈4.1〉 Definition. The Springer variety Xγ of γ is the set of complete flags 0 ⊂
F 1 ⊂ F 2 ⊂ · · · ⊂ F k−1 ⊂ Ck, where F i is an i-dimensional subspace of Ck, with
the property that γ takes each space F k into itself.

〈4.2〉 The torus action on Xγ . There is a torus T that acts on Xγ . This is the
set of diagonal matrices a with the following properties: the determinant of a is 1;
the entries of a are complex numbers with absolute value 1; and furthermore the
first k1 diagonal entries are equal to each other; the next k2 diagonal entries are
equal to each other, and so on. For example, for our partition 6 = 3 + 2 + 1, T
consists of the matrices

a =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣a1 0 0

0 a1 0
0 0 a1

⎤
⎦
[
a2 0
0 a2

]
[a3]

⎤
⎥⎥⎥⎥⎥⎥⎦ such that |ai| = 1 and det a = 1.
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〈4.3〉 Exercise. Prove that the torus T preserves the Springer variety Xγ . Use
the fact that the matrix t commutes with the matrix γ.

〈4.4〉 The arrangement of subspaces. The action T Xγ of the torus T on the
Springer variety satisfies the hypotheses of Theorem 5.3.3 (see [17]). (In general, the
1-skeleton of T Xγ is too complicated to satisfy the hypotheses §3.8.1 of Theorem
3.8.2, so the methods of Lecture 3 don’t apply to Springer varieties.)

The subspace arrangement A for the Springer variety is quite beautiful config-
uration that depends, of course, only on the given partition.

The Lie algebra T of T is the set of k × k diagonal real matrices with trace 0
such that the first k1 diagonal entries are equal to each other, the next k2 diagonal
entries are equal to each other, and so on. For 6 = 3 + 2 + 1, the elements t of T

are

t =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣t1 0 0

0 t1 0
0 0 t1

⎤
⎦
[
t2 0
0 t2

]
[t3]

⎤
⎥⎥⎥⎥⎥⎥⎦ such that ti is real and trace t = 0

The space K = H2(Xγ) is (k − 1)-dimensional. It can be identified with the
set of all k × k real matrices with trace 0. (This holds for all partitions except for
the trivial partition k = k. For the trivial partition, the Springer variety Xγ is just
a point, so there isn’t much to study.)

There are k!/(k1! · · ·kj !) fixed points of the action of T on Xγ , so the arrange-
ment A consists of k!/(k1! · · ·kj !) linear subspaces of E = T⊕K. Each of these is
the graph of a linear map m from T to K. The linear maps m are constructed as
follows: Write a diagonal matrix so that t1 occurs k1 times, t2 occurs k2 times, etc.
There are k!/(k1! · · · kj !) ways to do this. For our partition 6 = 3 + 2 + 1, here’s
one of them:

⎡
⎢⎢⎢⎢⎢⎢⎣

t1
t3

t1
t2

t1
t2

⎤
⎥⎥⎥⎥⎥⎥⎦

This provides our map m from T to K.

〈4.5〉 The Springer action. The symmetric group Sk on k letters acts on the
configuration A of linear subspaces (by permuting the diagonal entries in the last
matrix). It follows that Sk acts on the equivariant cohomology of Xγ ([17]). The
Sk action on A preserves the fibers of the map π to T. Therefore, it passes to an
action of Sk on the ordinary cohomology of Xγ . This is the usual Springer action.

A similar equivariant cohomology construction for Springer actions on the co-
homology of Springer varieties for loop groups is found in [14]. Historically, the
effort to solve the problem addressed in [14] was what originally led to the whole
body of material in this lecture series.
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〈4.6〉 Example. Suppose we start with the partition 3 = 2+1 so γ is the nilpotent
matrix

γ =

⎡
⎣
[
0 1
0 0

]
[0]

⎤
⎦ .

The Springer variety Xγ consists of two 2-spheres joined together. The T action
has 3 fixed points F1, F2, and F3. The picture looks like this:

The Springer variety Xγ

(In this case, the 1 skeleton is a balloon sculpture, so Theorem 3.8.2 applies as
well.)

The Lie algebra T is 1-dimensional. It is the set of real matrices⎡
⎣
[
t1 0
0 t1

]
[t2]

⎤
⎦ such that 2t1 + t2 = 0

The space K is 2-dimensional. It is the space of diagonal matrices of trace 0. The
three maps from T to K corresponding to the three fixed points are given by⎡

⎣t1 t1
t2

⎤
⎦ ,
⎡
⎣t1 t2

t1

⎤
⎦ , and

⎡
⎣t2 t1

t1

⎤
⎦

The resulting configuration of sections looks like this:

Note that this configuration has an obvious action of S3, the symmetric group
which permutes the 3 sections. Thus we get an action of S3 on the equivariant
cohomology of Xγ and also the ordinary cohomology. This is not induced by an
action of S3 on Xγ itself: Xγ is less symmetric than its fixed point configuration.
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〈4.7〉 Exercise. Verify the statements in the last section about the Springer variety
for the partition 3 = 2 + 1.

5.5. Relation with Lecture 3

Suppose T X satisfies both the hypotheses for Theorem 5.3.3 above and for The-
orem 3.8.2. This happens, for example, with flag manifolds and toric varieties for
simple polytopes. What is the relation between the two pictures?

Given the moment graph G(X T ) we will construct the configuration of sec-
tions.

Suppose the graph has k vertices ν1, . . . , νk. The space of all graphs equivalent
to G(X T ) embeds in Vk by the position of the k vertices. The space E∗ =
H2(T X) is the closure. Also the projections on the factors give k maps ηj from
E∗ to V. The diagonal gives a map Δ : V −→ E∗. As we have assumed from the
beginning, V = T∗. In summary, the moment graph G(X T ) gives us a diagram

E∗

Δ η1 η2 · · ·

T∗
If we dualize this diagram, we get the arrangement of sections of §5.1.1.

〈5.1〉 Exercise. In this situation, construct a map

O(A) −→ H∗(G(T X)).

Assuming that H∗(G(T X)) is generated by H2(G(T X)), show that this map
is an isomorphism.
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