WHAT IS ... A TORIC VARIETY?

EZRA MILLER*

A toric variety Xp is a certain algebraic variety—or, over the real or complex num-
bers, a differentiable manifold with some singularities allowed—modeled on a convex
polyhedron P. Examples include all (products of) projective spaces, which are mod-
eled on (products of) standard simplices. Algebraically, toric geometry is the study
of sparse polynomials, whose nonzero coefficients are attached to specified monomi-
als. In general, toric varieties admit equivalent descriptions arising naturally in many
mathematical areas, including symplectic geometry, algebraic geometry, theoretical
physics, and commutative algebra, as we shall see. These perspectives, combined with
intimate connections to pure and applied topics as wide-ranging as integer program-
ming, representation theory, geometric modeling, number theory, algebraic topology,
and enumerative combinatorics, lend toric varieties their importance, especially in
view of their concreteness as examples.

In the symplectic setting [2], the space Xp is constructed by specifying a surjection
to the polyhedron P C R"™. The faces of P are all assumed to possess normal vectors
with rational numbers for coordinates. (Thus P could be a regular cube but not
a regular icosahedron.) The fiber over any point p € P is declared to be a real
compact torus 7% —a product of d circles. The dimension of this torus equals that
of the smallest face of P containing p. As p moves to the boundary of this face,
a certain subtorus of the fiber is required to shrink and, at the boundary, collapse.
Set theoretically, then, Xp is a disjoint union, over all faces F' of P, of products
F° x T9m(F) where F° is the relative interior of F.

Example 1. If P is an interval of length ¢ then Xp is a sphere of diameter ¢. The
moment map collapses the circles of latitude, which shrink toward the north and
south poles as their collapsed images move to the endpoints of P; see the figure.
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Example 2. If P is the positive orthant in R™ then Xp is the complex vector space C".
The moment map squashes each of the n copies of C to a ray by collapsing the
concentric circles around the origin to points. The decomposition of Xp as a disjoint
union over the faces of P is C" = | J,;(C*)’, where C* is the group of nonzero complex
numbers, and (C*)! is the algebraic torus indexed by the subset I C {1,...,n}.

As in the figure, the projection Xp — P is called the moment map. It is an
instance of a general construction wherein a particularly well-behaved group action on
a symplectic manifold X induces a map from X to the dual of the group’s Lie algebra.

When the vertices of P have integer coordinates, X p is a disjoint union of algebraic
tori, one for each face of P, as is C". If P has dimension n, then Xp carries a global
action of the algebraic torus (C*)"™. Restricting to the piece of Xp corresponding to
the interior P° yields the regular action of (C*)™ on itself. This description is defini-
tive [3]: a toric variety over C is a complex algebraic variety with an action of (C*)"
and a dense open subset isomorphic to (C*)" carrying the regular action. That is,
a toric variety is an algebraic torus orbit closure. The same works for fields other
than C, such as the real numbers R or algebraically closed fields of positive charac-
teristic. With this definition, the connection to polyhedra is a fundamental theorem:
the quotient of a complex toric variety Xp by the global action of the compact torus
T C (C*)™ is the moment map to P in the dual R" to the Lie algebra of 7.

The term wvariety indicates a relation to polynomials, which occurs in this integer-
vertex case. Any subgroup of (C*)" isomorphic to (C*)? has an orbit closure in C"

through the point (1,...,1). This affine toric variety is parametrized by monomials:
the inclusion (C*)? — C" takes (71,...,7q) to (72, ...,7%"), where 72 = 7j ... 7{i

is a monomial for each i. For example, the parabola in the plane C? is the curve
parametrized by ¢ — (¢,1?). Every toric variety has a finite open cover by affine toric
varieties; hence torus orbit closures in C" are, in a toric sense, locally universal.

The parametrized view of (not necessarily affine) toric varieties is key in applications
to geometric modeling, because every polynomial parametrization of a space is the
projection of a monomial one. Thus projections of toric varieties over the real numbers
generalize Bézier curves, which come from rational normal curves X p, where P is an
interval of integer length. Geometrically, the moment map carries the positive real
part of a toric variety Xp homeomorphically to P itself, and the wavy polyhedral
patch X5 (R) can be used for modeling purposes. When P is a lattice triangle, for
instance, X} (R) is a Bézier triangle in a Veronese embedding of the projective plane.

In commutative algebra, monomial parametrizations give rise to simple implicit
equations. As with any variety in C", an affine toric variety can be expressed as the
set of points in C" where a family fi,..., f. of polynomials in variables xy,...,x,
all simultaneously vanish. The crucial observation is that in the toric case, one can
always choose all of the f; to be binomials, of the form z" — xV for some nonnegative
integer vectors u and v of length n. The binomials can be interpreted as linear
equations on the exponent vectors of the parametrizing monomials. In the parabola
example, the parametrized curve (x,y) = (¢,t?) is implicitly defined as the set of
points where the binomial y — 22 vanishes; this binomial says that the exponent
on the second t-monomial is twice the exponent on the first one. In this way, the
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binomials for Xp encode crucial information about the lattice points in P, and the
integer vectors joining them. Aside from endowing the vanishing ideal of Xp with
particularly rich algebraic and combinatorial structure, the binomials thereby convert
toric varieties into vehicles for investigating integer programming, where the goal is
to find a (path to a) vertex of P that maximizes some given linear cost function.

The combinatorial structure of toric varieties makes various flavors of cohomology
explicitly computable. These computations have surprisingly wide applications, the
overarching idea being that the topology of Xp usefully distills the combinatorics
of P itself, and vice-versa. For instance, Brion’s formula interprets a statement
in equivariant K-theory of toric varieties as a shockingly elegant expression for the
sum of the monomials corresponding to the lattice points in P. The underlying
geometry is that global sections of holomorphic line bundles on Xp correspond to
lattice points in polytopes related to P. Brion’s formula is the key to A. Barvinok’s
polynomial-time algorithms for enumerating lattice points in polytopes. Concrete
cohomological computations also form the basis for R. Stanley’s approach to the
enumerative combinatorics of polytopes. The question is how to count faces of convex
polytopes. Translating into the toric world, Morse theory indicates an efficient way to
encode the numbers of faces, and the Hard Lefschetz theorem from algeraic geometry
implies unimodality for the encoded face numbers.

In theoretical physics, toric varieties arise in the context of gauged linear sigma
models. Quantum field theory considers maps from a Riemann surface into C", which
carries an action of a compact d-torus 7¢. Ground states for this theory, obtained
by setting the potential energy to zero, constitute a certain fiber of the moment map
of C™; modulo gauge equivalence—the T%action—this results in a toric variety Xp.
(When n = 2 and Xp is the complex projective line, gauge equivalence is the Hopf
fibration S* — S?.) Duality for polytopes in this setting gives rise to the phenomenon
known as mirror symmetry.

A huge amount of active research has ties to toric methods. The symplectic setting
has seen increasingly deep Euler-Maclaurin type summation formulas. Generaliza-
tions of toric spaces are ubiquitous, including log schemes, which are toric étale locally;
quasitoric manifolds and torus manifolds, which are more flexible topological versions
of toric varieties; and toric stacks, which take geometric account of extra arithmetic
data beyond the polyhedron P. For the purpose of pushing Stanley’s enumerative
combinatorics to the setting of nonrational polytopes, there has even been success
in abstracting toric cohomological computations polyhedrally, without constructing
any sort, of toric space at all! The future will surely see other types of developments,
as well.
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