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Abstract. M. Masuda recently provided the missing piece proving a conjecture of
R.P. Stanley on the characterization of f -vectors for Gorenstein* simplicial posets.
We propose a slight simplification of Masuda’s proof.

Our main result, Theorem 2, was first proved by Masuda [Mas03], completing the
missing step in a conjecture of Stanley characterizing the f -vectors of Gorenstein*
simplicial posets. This note gives a simplified proof of it, using elementary methods.
We begin with some background on simplicial posets; see Stanley [Sta91] for more
detail and explanations for assertions not justified here.

A simplicial poset P is a finite poset with a minimal element 0̂ such that every
interval [0̂, p] for p ∈ P is a boolean algebra. We shall work instead with the associated
regular cell complex Γ = Γ(P ), whose face poset is P . The (closed) faces of Γ
are simplices that meet pairwise in subcomplexes of their boundaries [Sta91]. For
simplicity, we identify each face G of Γ (denoted G ∈ Γ in what follows) with the
corresponding element of P .

Let S = k[xG : G ∈ Γ] be a polynomial ring over a field k in indeterminates
indexed by the faces of Γ. The face ring of Γ is the quotient AΓ = S/IΓ, where

IΓ =
〈

xGxG′ − xG∧G′

∑

F xF

〉

. Here the summation runs over the minimal faces F

among those containing both G and G′, and the meet G ∧ G′ is the largest face in Γ
that is contained in both G and G′; its uniqueness (when the sum is nonzero) follows
from the fact that G and G′ lie in the boolean algebra [0̂, F ] for any common upper
bound F in the sum.

Write fi = fi(Γ) for the number of faces of dimension i in Γ, and set f−1 = 1.
Letting d − 1 be the dimension of Γ, one has an equivalent encoding of the f -vector
(f−1, f0, f1, . . . , fd−1) via the h-vector (h0, h1, . . . , hd), whose entries are uniquely de-
fined by the equation

d
∑

i=0

fi−1(t − 1)d−i =
d

∑

i=0

hit
d−i.

Stanley [Sta91] completely characterized the possible f -vectors (or h-vectors) when
Γ is Cohen-Macaulay over k, and almost characterized the possible f -vectors when
Γ satisfies the stronger condition of being Gorenstein* over k, that is, when Γ tri-
angulates a k-homology sphere. When Γ is Cohen-Macaulay, (h0, h1, . . . , hd) can be
interpreted as the Hilbert function of the quotient ring AΓ/Θ, where Θ is the ideal
generated by any linear system of parameters θ1, . . . , θd. Consequently hi ≥ 0 for all
i = 0, . . . , d, and this nonnegativity is sufficient to characterize these h-vectors [Sta91,
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Theorem 3.10]. The stronger Gorenstein* property further implies that AΓ/Θ will be
a Poincaré duality algebra, and hence hi = hd−i for all i. This almost characterizes
such h-vectors, as shown by the following theorem of Masuda, conjectured by Stanley.

Theorem 1. [Mas03, Corollary 1.2], [Sta91, Remark 5] Let (h0, . . . , hd) ∈ N
d+1 satisfy

hi = 1 and hi = hd−i for all i. Then there is a Gorenstein* simplicial poset P of rank
d with hi = hi(Γ(P )) if and only if either

• hi > 0 for all i = 0, . . . , d, or else
•

∑d

i=0 hi is even.

Stanley proved half of this theorem, by showing that the above conditions on
(h0, . . . , hd) are sufficient to explicitly construct such a Gorenstein* simplicial poset.

For the other half, since fd−1 =
∑d

i=0 hi, it only remains to show that the condition
hi = 0 for some i = 1, . . . , d−1 forces Γ to have an even number of (d−1)-dimensional
faces (called facets). In fact, Masuda shows (see discussion following [Mas03, Eq.
(5.1)]) that the assumption hi = 0 implies the following stronger property.

Theorem 2. [Mas03] If Γ is Gorenstein* and hi(Γ) = 0 for some i strictly between
0 and d, then for every subset V = {v1, . . . , vd} of vertices, the number of facets in Γ
having vertex set V is even.

Proof. Since the quotient AΓ/Θ is a Poincaré duality algebra, one has hd = 1, that is,
its degree d piece (its socle) is a 1-dimensional vector space over k. Using the relations
in IΓ, one can see that the product xv1

· · · xvd
in AΓ is congruent to the sum

∑

F xF

as F ranges over all facets having V as their vertex set. If hi = 0, then as observed in
[Mas03], the image of xv1

· · · xvd
modulo Θ will be zero, because it has factors (such

as xv1
· · · xvi

) lying in the vanishing ith-graded component (AΓ/Θ)i. Hence the image
of

∑

F xF modulo Θ must be zero in (AΓ/Θ)i. Since this sum takes place in the socle
of AΓ/Θ, it is therefore enough to prove the following general claims:

(i) the images modulo Θ of the variables xF for facets F containing the vertices
v1, . . . , vd are all the same up to ± sign in the 1-dimensional socle, and

(ii) these images x̄F are all nonzero.

Indeed, since the sum
∑

F xF modulo Θ is zero in the socle, (i) and (ii) would imply
that there must be an even number of terms in the sum.

Claims (i) and (ii) follow from Proposition 5 and Corollary 7, below, since Γ being
a k-homology sphere implies that it is also a pseudomanifold. �

The rest of this note proves results implying Claims (i) and (ii). We do not assume
that Γ is Gorenstein* anywhere in what follows, unless explicitly stated otherwise.

For a monomial m = xG1
· · · xGr

in AΓ, define m to be standard if G1 ⊆ · · · ⊆ Gr is
a (weak) chain in Γ. The following is a slight strengthening of Stanley’s observation
[Sta91, Lemma 3.9] that AΓ is integral over its subalgebra generated by (AΓ)1.

Lemma 3. The variables xG for G ∈ Γ generate AΓ as a module over the subalgebra
of AΓ generated by (AΓ)1. In fact, AP is spanned k-linearly by monomials mxG in
which m is a monomial in the variables xv for the vertices v of G.



STANLEY’S SIMPLICIAL POSET CONJECTURE 3

Proof. Every element of AΓ is a sum of standard monomials by [Sta91, Lemma 3.4].
Let xG1

· · · xGr
be a standard monomial, so G1 ⊆ · · · ⊆ Gr. For each face G ∈ Γ,

denote by xG the product of all variables xv for vertices v of G. Now, for every index
i < r, use the defining relations of AΓ to replace xGi

with xGi −
∑

xG′ , the sum
being over all minimal faces G′ 6= Gi containing the vertices of Gi. Observe that
xG′xGr

= 0 in AΓ for the faces G′ in the sum, because no face contains both Gr and
a face other than Gi with the same vertices as Gi. Hence xG1

· · · xGr
is equal to xGr

times a monomial in the variables xv for vertices v of G. �

Abusing notation slightly, let Θ denote a linear system of parameters θ1, . . . , θd for
AΓ, and k[Θ] the polynomial subalgebra of AΓ that they generate. After choosing an
ordering on the vertices of Γ, one can express Θ as a d × n matrix whose rows are
θ1, . . . , θd. As observed by Masuda [Mas03, Lemma 3.1], given any facet F of Γ, one
can compose the finite extension k[Θ] ↪→ AΓ with the surjection AΓ � A[0̂,F ] that

sends all variables xG for G 6⊂ F to zero. Because the composite k[Θ] → A[0̂,F ] must

also be finite, and since A[0̂,F ] is a polynomial ring on the variables {xv}v∈F , the d×d
submatrix ΘF of Θ with columns indexed by vertices in F has nonzero determinant
det(ΘF ). For any y ∈ AΓ, denote by ȳ the image of y in the quotient ring AΓ/Θ.

Lemma 4. (cf. [Ful93, §5.2 Lemma, p. 107]) Suppose that Γ is pure, meaning that
its facets all have dimension d − 1. Let m be a monomial in the variables xv for
vertices v in a facet F . Then, for any face G of F , the image m̄x̄G of mxG in AΓ/Θ
equals a sum of terms m̄′x̄G in which each monomial m′ is a product of variables xv

for distinct vertices v outside of G.

Proof. Invertibility of ΘF implies that for any vertex v of F , the k-span of θ1, . . . , θd

contains a linear form θ′ = xv +
∑

w 6∈F cwxw for some constants cw ∈ k.

We first find a sum as in the lemma in which each m′ is only squarefree (but may
involve vertices of G), by induction on the sum of all exponents ≥ 2 on variables xv

in m. Suppose x2
v divides m, and write m = xv`. Use the linear form θ′ to write

m̄x̄G = −
∑

w 6∈F

cwx̄w
¯̀̄xG.

If x̄w
¯̀̄xG 6= 0, then some facet F ′ containing G also contains all vertices appearing in

xw`. By induction, x̄w
¯̀̄xG can be rewritten as desired.

Now assume that m is squarefree, and use a similar argument, this time by induction
on the number of variables xv dividing m for vertices v ∈ G. The fact that each w
in θ′ is not in F ensures that we re-create the squarefree hypothesis at each stage. �

Proposition 5. If Γ is pure, the images in AΓ/Θ of the variables xG for faces G ∈ Γ
span k-linearly. In particular, if Γ is Gorenstein*, then x̄F 6= 0 in AΓ/Θ for some
facet F .

Proof. By Lemmas 3 and 4, every element of AΓ can be expressed mod Θ as a sum
of monomials of the form m′xG′, where m′ is a product of variables xv for distinct
vertices v 6∈ G′. But in AΓ, such a monomial m′xG′ equals the sum of the variables xG

as G runs over all faces minimal with respect to the property that they contain both
G′ and all vertices v for which xv divides m′. �
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Say that two facets F, F ′ in a pure (d− 1)-dimensional complex share a thin ridge
if their intersection is a (d − 2)-face contained in no other (d − 1)-faces.

Proposition 6. When Γ is pure, any two facets F, F ′ sharing a thin ridge will have

x̄F = ±
det(Θ

F ′ )

det(ΘF )
x̄F ′ in AΓ/Θ.

Proof. For convenience of notation, denote
det(Θ

F ′ )

det(ΘF )
by δ. Let G = F ∧ F ′, and let

vF , vF ′ be their corresponding vertices not in G. There are two possibilities for these
vertices: either vF = vF ′ or else vF 6= vF ′ .

When vF = vF ′ = v, we get xvxG = xF + xF ′ . The argument in Lemma 4 shows
that, modulo Θ, we can write x̄v as a linear combination of degree 1 elements x̄v

for vertices v not in F . Since G lies only in the facets F and F ′, this implies that
x̄F + x̄F ′ = x̄vx̄G = 0. Hence in this case, x̄F = −x̄F ′ (which equals −δx̄F ′ , since
ΘF ′ = ΘF ).

When vF 6= vF ′ , we get xvF
xG = xF , and xv

F ′
xG = xF ′ . After multiplying the

matrix Θ on the left by Θ−1
F , one of the rows gives (by Cramer’s rule) a linear form

xvF
∓ δxv

F ′
+

∑

cvxv in the ideal Θ, where the sum is over all vertices v 6= vF ′ that
do not lie in F , and the cv are constants in k. Hence

x̄F = x̄vF
x̄G =

(

±δxv
F ′

−
∑

cvxv

)

x̄G = ±δx̄v
F ′

x̄G = ±δx̄F ′ ,

where the third equality holds because xvxG = 0 whenever v does not lie in F∪F ′. �

Corollary 7. Assume Γ is pure and F, F ′ are facets with the same set of vertices
that are connected by a sequence F = F1, . . . , Fr = F ′ in which Fj and Fj−1 share a
thin ridge for 2 ≤ j ≤ r. Then x̄F = ±x̄F ′.

Proof. Use Proposition 6: the product of ratios of determinants telescopes to ±1. �

Example 8. Let Γ be obtained by slitting a hollow tetrahedron along a single edge,
and attaching a “pita pocket” of two triangles sewn together along two of their com-
mon edges. Suppose that the two pita triangles have vertices 123, while the slit
tetrahedron has vertices 2345. Take a path from from the top pita triangle to the
bottom pita triangle by traversing the facets with vertices 234, then 345, then 235,
and finally back to the bottom pita triangle. Writing [ijk] = det(ΘF ) when F has
vertex set ijk (these are Plücker coordinates), the sequence of ratios of determinants
is [234]/[123], then [345]/[234], then −[235]/[345], and finally [123]/[235]. Note that
the product of all these is −1, which is also the sign obtained by flipping from the top
pita triangle to the bottom one along one of the two codimension 1 faces they share.
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