Binomial Exercises

Lecture I. Toric ideals

1. Exhibit a point configuration A whose affine semigroup $\mathbb{N}A$ does not consist of the intersection of the lattice $\mathbb{Z}A$ spanned by the columns of A with the real cone generated by A.

2. Prove that the affine toric variety Y_A for

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

is the affine cone over the product $\mathbb{P}^1 \times \mathbb{P}^1$ of two projective lines. What does this have to do with the geometry and combinatorics of a square?

3. Let A be any matrix for the quotient of \mathbb{Z}^6 modulo the sublattice $L \subseteq \mathbb{Z}^6$ spanned by

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}.$$

Show that the real cone $\mathbb{R}_{\geq 0}A$ generated by the affine semigroup $\mathbb{N}A$ is the cone over a triangular prism. Use any method you can think of (perhaps with the aid of a computer) to write down generators for the toric ideal I_A.

4. Let $L \subseteq \mathbb{Z}^n$ be an unsaturated sublattice.

 (i) Is it possible for $I_\rho \subseteq \mathbb{C}[\partial]$ to be prime for some choice of character $\rho : L \to \mathbb{C}^*$?

 (ii) What would happen if $\mathbb{C}[\partial]$ were replaced by $\mathbb{k}[\partial]$ for an algebraically closed field \mathbb{k} of positive characteristic?

 (iii) What if \mathbb{k} is allowed to have arbitrary characteristic, but is not required to be algebraically closed?
Binomial Exercises

Lecture II. Binomial primary decomposition

1. Let

\[
A = \begin{bmatrix}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{bmatrix}
\]

In the primary decomposition

\[
\langle \partial_2^2 - \partial_4 \partial_3, \partial_3^2 - \partial_2 \partial_4 \rangle = \langle \partial_2^2 - \partial_4 \partial_3, \partial_3^2 - \partial_2 \partial_4, \partial_2 \partial_3 - \partial_1 \partial_4 \rangle \cap \langle \partial_2, \partial_3 \rangle
\]

determine whether each of the primary components is toral or Andean.

2. Let \(p \) and \(q \) be primes with \(p \subseteq q \). Prove that if \(q \) is Andean, then so is \(p \).

3. Let

\[
B = \begin{bmatrix}
1 & -5 & 0 \\
-1 & 1 & -1 \\
0 & 3 & 1
\end{bmatrix}
\]

Enumerate all of the equivalence classes on \(\mathbb{N}^3 \) determined by \(I(B) \). Can a computer help you do this? Draw a picture of every equivalence class.

4. Let \(A = \begin{bmatrix} 5 & 4 & 3 \end{bmatrix} \) and \(B = \begin{bmatrix}
-1 & 2 \\
2 & -1 \\
-1 & -2
\end{bmatrix} \). Then \(I(B) = \langle \partial_2^2 - \partial_1 \partial_3, \partial_3^2 - \partial_2 \partial_3 \rangle \). Let \(I_{\rho,J} = \langle \partial_1, \partial_2 \rangle \), so that \(J = \{3\} \) and \(\rho : L \to \mathbb{C}^* \) for the lattice \(L = \{0\} \). Note that \(I_\rho = \langle 0 \rangle \).

(i) What are all of the equivalence classes on \(\mathbb{Z}^J \times \mathbb{N}^J = \mathbb{N}^2 \times \mathbb{Z} \) determined by \(I(B) \)?

(Hint: Project every equivalence class onto \(\mathbb{N}^2 \) and try to draw it there.)

(ii) Determine every \(u \in \mathbb{N}^3 \) that lies in a finite equivalence class on \(\mathbb{N}^2 \times \mathbb{Z} \).

(iii) Use your answers to write down the \(I_{\rho,J} \)-primary component of \(I(B) \).

(iv) What is the primary decomposition of \(I(B) \)?

A computer could give you hints by finding the answers to (iii) and (iv) directly. (A free beer to anyone who can get a computer to find the answers to (i) and (ii) directly, without using the combinatorial primary decomposition theorem. A published paper to anyone who can write down an algorithm to do it in general.)

5* Let \(k \) be a field of characteristic \(p > 0 \). Assuming that \(I_{\rho,J} \) is minimal over a binomial ideal \(I \subseteq k[\partial] \), find a combinatorial characterization of the \(I_{\rho,J} \)-primary component of \(I \).

(It is known [Eisenbud & Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), no. 1, 1–45] that this primary component is a binomial ideal.)

6. (i) Find a binomial prime \(I_{\rho,J} \) and an irreducible \(I_{\rho,J} \)-primary ideal that is not binomial.

(ii)* Characterize the irreducible \(I_{\rho,J} \)-primary binomial ideals in \(\mathbb{C}[\partial] \).
Binomial Exercises

Lecture III. Introduction to D-modules

1. Write $E = x_1 \partial_1 + \cdots + x_n \partial_n$ for the Euler operator, and let f be a function of x_1, \ldots, x_n.

 (i) If f is a polynomial, prove that it is homogeneous of degree d if and only if $E(f) = d \cdot f$.

 (ii) Do you get more solutions to $E(f) = d \cdot f$ if f is allowed to be a series involving positive and negative powers of some of the variables x_i? If there are more solutions, do any of them possess nonempty open subsets of \mathbb{C}^n where they converge?

 (iii) In what kinds of modules might you look for solutions to $E f = \beta f$ for $\beta \in \mathbb{C}$?

2. The order of a differential operator $\phi \in D_n$ is its degree in $\partial_1, \ldots, \partial_n$ (i.e., think of x_1, \ldots, x_n as having degree zero).

 (i) Show that taking the operators of order $\leq k$ for each k induces an increasing filtration $0 = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_k \subset \cdots$ of D whose associated graded ring is a commutative polynomial ring $\mathbb{C}[x, \xi]$ in $2n$ variables $x = x_1, \ldots, x_n$ and $\xi = \xi_1, \ldots, \xi_n$.

 (ii) Show that the order filtration in (i) descends to the quotient of D by any left ideal.

 (iii) The symbol of $\phi \in D$ is the result of replacing ∂ with ξ in the sum of all of its highest-order terms. Show that the associated graded module of D/I is $D/s(I)$, where $s(I)$ is generated by the symbols of all of the operators in I.

Order filtrations reduce the computation of holonomic ranks to commutative algebra:

 (iv) Show that $\dim_{\mathbb{C}(x)} (\mathbb{C}(x) \otimes_{\mathbb{C}[x]} D/I) = \dim_{\mathbb{C}(x)} (\mathbb{C}(x) \otimes_{\mathbb{C}[x]} D/s(I))$.

Note: It is a fact that a quotient D_n/I is holonomic if and only if $D_n/s(I)$ has Krull dimension n as a module over the polynomial ring $\mathbb{C}[x, \xi]$.

3. Calculate the holonomic ranks of the following D_1-modules \mathcal{M} by finding analytic solutions.

 (i) $\mathcal{M} = D_1/D_1(\partial^2 + 1)$

 (ii) $\mathcal{M} = D_1/D_1(x^2 \partial + 1)$

 In (ii), is there a point $p \in \mathbb{C}$ where $r_p \neq r$?

4. Do the previous exercise using Kashiwara’s theorem, by finding $\mathbb{C}(x)$-vector space bases. Or use Exercise 2(iv).

5. Find a holonomic module that is not regular holonomic.
Binomial Exercises

Lecture IV. Hypergeometric systems

1. What is the rational function \(r \) such that \(h_{\sigma + 1} = r(\sigma) \) for the Gauss hypergeometric series?

2. Provide the details in an argument showing that \(g(z_1 \partial z_1, \ldots, z_m \partial z_m)(z^\sigma) = g(\sigma)z^\sigma. \)

3. Let \(f(x) = \frac{x_3^{x_4}}{x_1 x_2} \binom{x_3 x_4}{x_1 x_2} \), where \(F(z) = 1 + \frac{ab}{c} z + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^2}{2!} + \cdots. \)

 (i) The series \(f(x) \) equals \(x^\gamma F(x^B) \) for some integer matrix \(B \) and vector \(\gamma \in \mathbb{C}^4. \) What are \(B \) and \(\gamma \)?
 (ii) Prove that \(\partial_3 \partial_4 f(x) = \partial_1 \partial_2 f(x). \)
 (iii) Prove that
 \[
 \begin{align*}
 (x_1 \partial_1 + x_4 \partial_4) f(x) &= -af(x) \\
 (x_2 \partial_2 + x_4 \partial_4) f(x) &= -bf(x) \\
 (-x_3 \partial_3 + x_4 \partial_4) f(x) &= (1-c) f(x).
 \end{align*}
 \]
 (Hint: using Exercise 1 of Lecture III, it isn’t necessary to calculate any derivatives.)
 (iv) Conclude that \(f(x) \) satisfies the binomial Gauss system for the vector \(\beta = A\gamma, \) where \(A \) is any matrix for the left kernel of \(B, \) and \(\gamma \) is from part (i).

4. Consider the matrices
 \[
 A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ -2 & 1 \\ 1 & -2 \\ 0 & 1 \end{bmatrix}.
 \]
 Verify that \(f(x) = x_1^{\beta_2/3} x_4^{\beta_1/3} \) is a solution of \(H_A(I(B), \beta) \) for every choice of \(\beta \in \mathbb{C}^2. \)
Binomial Exercises

Lecture V. Euler–Koszul homology

1. What conditions on a set of lattice points in \(\mathbb{Z}^3 \) guarantee that its Zariski closure in \(\mathbb{C}^3 \) is a 2-dimensional plane?

2. Let \(R \) be a noetherian \(A \)-graded ring that is finitely generated over its degree 0 piece. Prove that \(\text{qdeg}(M) \) for any finitely generated \(A \)-graded \(R \)-module \(M \) is a finite union of affine subspaces of \(\mathbb{C}^d \), each spanned by the degrees of some subset of the generators of \(R \), as follows.

 (i) Prove that \(M \) has a submodule isomorphic to an \(A \)-graded translate of a quotient by an \(A \)-graded prime (i.e., a submodule isomorphic as an ungraded module to \(R/p \), but generated in some possibly nonzero \(A \)-graded degree).

 (ii) Use noetherian induction to deduce that \(M \) has a finite filtration whose successive quotients are \(A \)-translates of quotients of \(R \) modulo prime ideals.

 (iii) Finish the proof by showing that the true degree set of a quotient \(R/p \) by a prime ideal \(p \) is an affine semigroup generated by the degrees of some of the generators of \(R \).

3. Let \(\mathcal{M} \) be an \(A \)-graded \(D \)-module, where \(\deg(x_j) = a_j \) and \(\deg(\partial_j) = -a_j \). Consider the action of \(E_i - \beta_i \) on \(\mathcal{M} \) determined by \((E_i - \beta_i) \circ z = (E_i - \beta_i - \alpha_i) \cdot z \) for homogeneous elements \(z \in M \) of degree \(\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d \). Prove that this is a well-defined action of the commutative subalgebra \(\mathbb{C}[E - \beta] \subset D \) on \(\mathcal{M} \).

4. (i) Verify that \(\mathcal{K}_*(E - \beta; M) \) is a complex of \(D \)-modules.

 (ii) Check that \(\mathcal{H}_0(E - \beta; \mathbb{C}[\partial]/I) = D/H_A(I, \beta) \).

5. Prove that if \(I \subseteq J \subseteq \mathbb{C}[\partial] \) (think \(J = I_{\text{Andean}} \)) are \(A \)-graded, then the natural surjection \(\mathbb{C}[\partial]/I \to \mathbb{C}[\partial]/J \) yields a map \(\mathcal{H}_0(E - \beta; \mathbb{C}[\partial]/I) \to \mathcal{H}_0(E - \beta; \mathbb{C}[\partial]/J) \) that is surjective.

6. (i) What is the volume of the convex hull in \(\mathbb{R}^3 \) of the origin and the columns of

 \[
 \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & -1 & 1
 \end{bmatrix}

 \]

 (ii) What is the rank of the binomial Gauss system?

 (iii) What has feathers and sounds like “Gauss”? (Hint: lieu, lieu, lieu.)