Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>I Monomial Ideals</td>
<td></td>
</tr>
<tr>
<td>1 Squarefree monomial ideals</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Equivalent descriptions</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Hilbert series</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Simplicial complexes and homology</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Monomial matrices</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Betti numbers</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td>18</td>
</tr>
<tr>
<td>Notes</td>
<td>19</td>
</tr>
<tr>
<td>2 Borel-fixed monomial ideals</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Group actions</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Generic initial ideals</td>
<td>24</td>
</tr>
<tr>
<td>2.3 The Eliahou–Kervaire resolution</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Lex-segment ideals</td>
<td>33</td>
</tr>
<tr>
<td>Exercises</td>
<td>39</td>
</tr>
<tr>
<td>Notes</td>
<td>40</td>
</tr>
<tr>
<td>3 Three-dimensional staircases</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Monomial ideals in two variables</td>
<td>42</td>
</tr>
<tr>
<td>3.2 An example with six monomials</td>
<td>44</td>
</tr>
<tr>
<td>3.3 The Buchberger graph</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Genericity and deformations</td>
<td>49</td>
</tr>
<tr>
<td>3.5 The planar resolution algorithm</td>
<td>53</td>
</tr>
<tr>
<td>Exercises</td>
<td>58</td>
</tr>
<tr>
<td>Notes</td>
<td>60</td>
</tr>
<tr>
<td>4 Cellular resolutions</td>
<td>61</td>
</tr>
<tr>
<td>4.1 Construction and exactness</td>
<td>62</td>
</tr>
<tr>
<td>4.2 Betti numbers and K-polynomials</td>
<td>65</td>
</tr>
<tr>
<td>4.3 Examples of cellular resolutions</td>
<td>67</td>
</tr>
<tr>
<td>4.4 The hull resolution</td>
<td>71</td>
</tr>
<tr>
<td>4.5 Subdividing the simplex</td>
<td>76</td>
</tr>
</tbody>
</table>
5 Alexander duality 81
 5.1 Simplicial Alexander duality 81
 5.2 Generators versus irreducible components 87
 5.3 Duality for resolutions 91
 5.4 Cohull resolutions and other applications 95
 5.5 Projective dimension and regularity 100

Exercises 104
Notes 105

6 Generic monomial ideals 107
 6.1 Taylor complexes and genericity 107
 6.2 The Scarf complex 110
 6.3 Genericity by deformation 115
 6.4 Bounds on Betti numbers 119
 6.5 Cogeneric monomial ideals 122

Exercises 125
Notes 126

II Toric Algebra 127

7 Semigroup rings 129
 7.1 Semigroups and lattice ideals 129
 7.2 Affine semigroups and polyhedral cones 133
 7.3 Hilbert bases 137
 7.4 Initial ideals of lattice ideals 142

Exercises 146
Notes 148

8 Multigraded polynomial rings 149
 8.1 Multigradings 149
 8.2 Hilbert series and K-polynomials 153
 8.3 Multigraded Betti numbers 157
 8.4 K-polynomials in nonpositive gradings 161
 8.5 Multidegrees 165

Exercises 170
Notes 172

9 Syzygies of lattice ideals 173
 9.1 Betti numbers 173
 9.2 Laurent monomial modules 176
 9.3 Free resolutions of lattice ideals 181
 9.4 Genericity and the Scarf complex 187

Exercises 189
Notes 190
10 Toric varieties
 10.1 Abelian group actions ... 191
 10.2 Projective quotients ... 194
 10.3 Constructing toric varieties 198
 10.4 Toric varieties as quotients 203
 Exercises .. 207
 Notes .. 208

11 Irreducible and injective resolutions
 11.1 Irreducible resolutions .. 209
 11.2 Injective modules ... 212
 11.3 Monomial matrices revisited 215
 11.4 Essential properties of injectives 218
 11.5 Injective hulls and resolutions 221
 Exercises .. 225
 Notes .. 227

12 Ehrhart polynomials
 12.1 Ehrhart from Hilbert .. 229
 12.2 Dualizing complexes ... 232
 12.3 Brion’s Formula .. 236
 12.4 Short rational generating functions 241
 Exercises .. 245
 Notes .. 246

13 Local cohomology
 13.1 Equivalent definitions ... 247
 13.2 Hilbert series calculations 253
 13.3 Toric local cohomology ... 256
 13.4 Cohen–Macaulay conditions 262
 13.5 Examples of Cohen–Macaulay rings 266
 Exercises .. 268
 Notes .. 269

III Determinants
 14 Plücker coordinates ... 273
 14.1 The complete flag variety 273
 14.2 Quadratic Plücker relations 275
 14.3 Minors form sagbi bases ... 279
 14.4 Gelfand–Tsetlin semigroups 284
 Exercises .. 286
 Notes .. 287
15 Matrix Schubert varieties 289
 15.1 Schubert determinantal ideals 290
 15.2 Essential sets 294
 15.3 Bruhat and weak orders 295
 15.4 Borel group orbits 299
 15.5 Schubert polynomials 304
 Exercises 308
 Notes 309

16 Antidiagonal initial ideals 311
 16.1 Pipe dreams 312
 16.2 A combinatorial formula 315
 16.3 Antidiagonal simplicial complexes 318
 16.4 Minors form Gröbner bases 323
 16.5 Subword complexes 325
 Exercises 328
 Notes 329

17 Minors in matrix products 331
 17.1 Quiver ideals and quiver loci 331
 17.2 Zelevinsky map 336
 17.3 Primality and Cohen–Macaulayness 341
 17.4 Quiver polynomials 343
 17.5 Pipes to laces 348
 Exercises 351
 Notes 352

18 Hilbert schemes of points 355
 18.1 Ideals of points in the plane 355
 18.2 Connectedness and smoothness 359
 18.3 Haiman’s theory 363
 18.4 Ideals of points in \(d\)-space 368
 18.5 Multigraded Hilbert schemes 373
 Exercises 377
 Notes 377

References 379

Glossary of notation 397

Index 401