Applying persistent homology to brain artery and vein imaging

Ezra Miller

Duke University, Department of Mathematics
ezra@math.duke.edu

joint with

Paul Bendich & Aaron Pieloch (Duke Math)
J.S. Marron & Sean Skwerer (Chapel Hill Stat/Oper.Res.)

University of Georgia

12 November 2014
Outline

1. Artery trees
2. Prior analyses
3. Homology
4. Persistence
5. Bar codes
6. Statistical analysis
7. Reflections on TDA
8. Next steps
9. Fly wings
10. Stratified persistence
11. Future directions
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Magnetic Resonance Angiography (MRA)

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH
Tube tracking

[Bullitt and Aylward, 2002]
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 - predict stroke tendency
 - screen for loci of pathology, such as tumors
 - explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The images:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
 • predict stroke tendency
 • screen for loci of pathology, such as tumors
 • explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Brain artery trees

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:
Prior analyses

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]
- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]
- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation $\sim .25$

Premise.
- combinatorics and branch length not enough;
- location and twist are crucial.
Prior analyses

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]
- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]
- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation $\sim .25$

Premise.
- combinatorics and branch length not enough;
- location and twist are crucial.
Prior analyses

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSJ WG 2013]
- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]
- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation $\sim .25$

Premise.
- combinatorics and branch length not enough;
- location and twist are crucial.
Prior analyses

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]
- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]
- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation $\sim .25$

Premise.
- combinatorics and branch length not enough;
- location and twist are crucial.
Homology

Topological space $X \leadsto$ homology H_iX for each dimension i.

- vector space that measures “i-dimensional holes” in X
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.
- vector space that measures "i-dimensional holes" in X
Topological space $X \leadsto \text{homology } H_iX$ for each dimension i.

- vector space that measures “i-dimensional holes” in X
Homology

Topological space $X \rightsquigarrow$ homology H_iX for each dimension i.

- vector space that measures “i-dimensional holes” in X

$\dim(H_1) = 1$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.
- vector space that measures “i-dimensional holes” in X

$$\dim(H_1) = 1$$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

$$\dim(H_1) = 1 \quad \dim(H_1) = 0$$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

$\dim(H_1) = 1$
$\dim(H_1) = 0$
$\dim(H_2) = 1$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.
- vector space that measures “i-dimensional holes” in X

$\dim(H_1) = 1$
$\dim(H_1) = 0$
$\dim(H_2) = 1$
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

$$\text{dim}(H_1) = 1 \quad \text{dim}(H_1) = 0$$
$$\text{dim}(H_2) = 1$$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

$\dim(H_1) = 1$ $\dim(H_1) = 0$

$\dim(H_2) = 1$
Homology

Topological space $X \leadsto$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

\[
\begin{align*}
\dim(H_1) &= 1 \\
\dim(H_1) &= 0 \\
\dim(H_2) &= 1 \\
\end{align*}
\]
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

\[
\begin{align*}
\dim(H_1) &= 1 \\
\dim(H_2) &= 1
\end{align*}
\]
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

\[
\begin{align*}
\dim(H_1) &= 1 \\
\dim(H_2) &= 1
\end{align*}
\]

- $i = 0$ case: H_i counts connected components of X
Homology

Topological space $X \rightsquigarrow$ homology $H_i X$ for each dimension i.

- vector space that measures “i-dimensional holes” in X

- $i = 0$ case: H_i counts connected components of X

$\dim(H_0) = 1$
$\dim(H_1) = 1$
$\dim(H_2) = 1$
$\dim(H_0) = 1$
$\dim(H_1) = 0$
$\dim(H_2) = 1$
$\dim(H_0) = 1$
$\dim(H_1) = 2$
$\dim(H_2) = 1$
Persistent homology

Build X step by step

• measure evolving topology.

Def. Let X_\bullet be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology $H_i X_\bullet$ is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \to \mathbb{R}$, let $X_k = f^{-1}((\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.
2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology $H_i X_\bullet$ is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \rightarrow \mathbb{R}$, let $X_k = f^{-1}((\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Example: expanding balls
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a **filtered space**, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_\bullet is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology $H_\bullet X_\bullet$ is $H_\bullet X_1 \rightarrow H_\bullet X_2 \rightarrow \cdots \rightarrow H_\bullet X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \rightarrow \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_\bullet X_t$ changes.
2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Example: expanding balls
Example: expanding balls

\[\dim(H_0) = 31 \]
Example: expanding balls

\[\dim(H_0) = 31 \]
Example: expanding balls

\[
\text{dim}(H_0) = 31
\]
Example: expanding balls

\[\dim(H_0) = 26 \]
Example: expanding balls

\[\dim(H_0) = 21 \]
Example: expanding balls

\[\text{dim}(H_0) = 12 \]
Example: expanding balls

\[\dim(H_0) = 6 \]
Example: expanding balls

\[\dim(H_0) = 2 \]
Example: expanding balls

\[\dim(H_0) = 2 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 2 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 1 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \text{dim}(H_1) = 1 \]
Example: expanding balls

\[
\dim(H_0) = 1 \quad \dim(H_1) = 3
\]
Example: expanding balls

\[
\text{dim}(H_0) = 1 \quad \text{dim}(H_1) = 1
\]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 1 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 1 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 1 \]
Example: expanding balls

\[\dim(H_0) = 1 \quad \dim(H_1) = 0 \]
Example: expanding balls

$$\dim(H_0) = 1 \quad \dim(H_1) = 1$$
Example: expanding balls

\[
\dim(H_0) = 1 \quad \dim(H_1) = 0
\]
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a **filtered space**, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The **persistent homology** $H^i X_\bullet$ is $H^i X_1 \to H^i X_2 \to \cdots \to H^i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \to \mathbb{R}$, let $X_k = f^{-1} ((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H^i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a *filtered space*, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The *persistent homology* $H_i X_\bullet$ is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Example: filling brains
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a **filtered space**, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The **persistent homology** $H_i X_\bullet$ is $H_i X_1 \to H_i X_2 \to \cdots \to H_i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology $H_i X_\bullet$ is $H_i X_1 \rightarrow H_i X_2 \rightarrow \cdots \rightarrow H_i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \rightarrow \mathbb{R}$, let $X_k = f^{-1}((\mathbb{R}_-, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H_i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. Invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments.
Persistent homology

Build X step by step

- measure evolving topology.

Def. Let X_\bullet be a **filtered space**, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The **persistent homology** $H^i X_\bullet$ is $H^i X_1 \rightarrow H^i X_2 \rightarrow \cdots \rightarrow H^i X_m$, a sequence of vector space homomorphisms.

Examples:

1. Given a function $f : X \rightarrow \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which $H^i X_t$ changes.

2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments.
Bar codes

Data structure: 3D tree \leadsto bar code / lace array / persistence diagram:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code / lace array / persistence diagram:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.
Bar codes

Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.
Bar codes

Data structure: 3D tree \leadsto bar code / lace array / persistence diagram:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 25, Age = 49, Sex = M, Hand = R
Bar codes

Data structure: 3D tree $\sim \text{bar code} / \text{lace array} / \text{persistence diagram}$:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 76, Age = 58, Sex = M, Hand = R
Data structure: 3D tree \leadsto barcode / lace array / persistence diagram:

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.
Bar codes

Data structure: **3D tree \rightsquigarrow bar code / lace array / persistence diagram:**

- multiset of (vertical) line segments $[t, t']$ (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.

Diagrams, no inf or short (< 0.1) lengths, Case 104, Age = 73, Sex = F, Hand = R
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:
Sweep filtration

Goal: statistical analysis taking into account
• 3D structure, in particular
• “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
• birth time of each new component
• death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
 • 3D structure, in particular
 • “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
 • birth time of each new component
 • death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)
Sweep filtration

Goal: statistical analysis taking into account
- 3D structure, in particular
- “bendiness”, or “tortuosity”

Filter by sweeping across with a plane:

Record:
- birth time of each new component
- death of each component (when it joins to an older component)

Easily computable (if dim X is low; ambient space dim irrelevant).
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Top 100 bars

Run7: Quantiles, top 100 Data Objects
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $3\sqrt{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree ⇝ bar code ⇝ vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $3\sqrt{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Top 100 bars: log scale
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $3^{\sqrt{L}}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Age vs. PC1
Age vs. PC1

Pearson Correlation = 0.52663
p-val = 3.0127e-08
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $3\sqrt{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \leadsto bar code \leadsto vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\frac{1}{3\sqrt{L}}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.

- **Pearson correlation** 0.52663
- **p-value** 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Statistical analysis

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100}:
- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014]
Longest bars in older brains tend to be shorter and later.
- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L}, or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs.
Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are “biggest”
- live “far from the diagonal” in bar codes.

For brain artery trees.

- Not surprising that very short bars ↔ noise, although in future studies they might not.
- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance ≠ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.
Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are “biggest”
- live “far from the diagonal” in bar codes.

For brain artery trees.

- Not surprising that very short bars ↔ noise, although in future studies they might not.
- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance $\not\Rightarrow$ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.
Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are “biggest”
- live “far from the diagonal” in bar codes.

For brain artery trees.

- Not surprising that very short bars ↔ noise, although in future studies they might not.
- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance \nRightarrow significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.
Top 100 bars

Run 7, Vertical Filtration, Correlation(PC1, Age)

Maximum Corr = 0.52788

Minimum Corr = 0.28631
Top 100 bars

Run 7, Vertical Filtration, Correlation(PC1,Age), Zoomed

Maximum Corr = 0.52788
Minimum Corr = 0.5
Reflections on persistent homology

Where did the best correlation occur?
 - How did we choose top 100 bar lengths?
 - What choices yield the best correlation? Why?

Persistent homology mantra: most significant features
 - are “biggest”
 - live “far from the diagonal” in bar codes.

For brain artery trees.
 - Not surprising that very short bars ↔ noise, although in future studies they might not.
 - While biggest features are important,
 - they hinder strength of correlation.

Lessons.
 - Importance ⇨ significance for geometric features.
 - Persistent homology can detect significant features lying between important and noise.
Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are “biggest”
- live “far from the diagonal” in bar codes.

For brain artery trees.

- Not surprising that very short bars ↔ noise, although in future studies they might not.
- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance $\not\Rightarrow$ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.
Next steps

Pathology.
- Can persistence (on brain artery trees, or lungs, . . .) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.
- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.
- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Next steps

Pathology.
- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.
- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.
- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Next steps

Pathology.
- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.
- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.
- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Next steps

Pathology.
- Can persistence (on brain artery trees, or lungs, . . .) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.
- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.
- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Next steps

Pathology.
- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare “tortuosity” [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequency bends.

Additional analyses.
- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.
- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Bar code statistics. Mean, variance, confidence: (metric) geometry of the space of persistence diagrams [Turner, Mileyko, Mukherjee, Harer 2012]
Fruit fly wings

Normal fly wings [photos from David Houle’s lab]:

![Normal fly wings](image-url)
Fruit fly wings

Normal fly wings [photos from David Houle’s lab]:

Topologically abnormal veins:
Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields
 • skew toward more oddly shaped wings, but also
 • much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous shape selected for...
 • ...at the extreme in that direction

Other questions

• predict which genes are involved given observed phenotype
• biologically determine which genes are involved, and correlate
Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ...at the extreme in that direction

Other questions

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate
Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields
- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis
Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis
- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
 - ...at the extreme in that direction

Other questions
- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate
Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields
- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis
Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis
- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ...at the extreme in that direction

Other questions
- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate
Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields
• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous shape selected for. . .
• . . .at the extreme in that direction

Other questions

• predict which genes are involved given observed phenotype
• biologically determine which genes are involved, and correlate
Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

Progress. (with Houle, Bendich, Cruz)

- algorithm(!)
- with low complexity(!)
Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

Progress. (with Houle, Bendich, Cruz)

- algorithm(!)
- with low complexity(!)
Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

Progress. (with Houle, Bendich, Cruz)

- algorithm(!)
- with low complexity(!)
Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape
- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles
- shape spaces need constant numbers of landmarks

Plan. Encode wing as 2-parameter persistence diagram
- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

Progress. (with Houle, Bendich, Cruz)
- algorithm(!)
- with low complexity(!)
Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

Progress. (with Houle, Bendich, Cruz)

- algorithm(!)
- with low complexity(!)
Developmental dream

Capture morphological or expression time series at cellular resolution to apply (stratified or ordinary) persistence in higher dimension.

- take development into account: time series for expression levels or vein formation \rightsquigarrow 3D (or higher-dim) geometric structures

- compare genotypic and phenotypic distance
- reconstruct phylogeny from morphological measurements
Future directions

Lung vasculature. (with McLean et al., Bendich, Marron)

Options for application of (stratified) persistent homology:
- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 - vessel diameter
 - curvature

fMRI. (with Lazar et al.): classification using persistent homology
Future directions

Lung vasculature. (with McLean et al., Bendich, Marron)

Options for application of (stratified) persistent homology:
- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height, vessel diameter, curvature

fMRI. (with Lazar et al.): classification using persistent homology
Future directions

Lung vasculature. (with McLean et al., Bendich, Marron)

Options for application of (stratified) persistent homology:

- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 - vessel diameter
 - curvature

fMRI. (with Lazar et al.): classification using persistent homology
Future directions

Lung vasculature. (with McLean et al., Bendich, Marron)

Options for application of (stratified) persistent homology:
- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 - vessel diameter
 - curvature

fMRI. (with Lazar et al.): classification using persistent homology
Future directions

Lung vasculature. (with McLean et al., Bendich, Marron)

Options for application of (stratified) persistent homology:
- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 - vessel diameter
 - curvature

fMRI. (with Lazar et al.): classification using persistent homology

Thank You