Reading assignments in [Vakil]
- by Tuesday 6 September: §2.1, §2.2, §2.3, §2.4
- by Thursday 8 September: §2.6
- by Thursday 15 September: §2.7, §2.5

Exercises: In [Vakil], exercises have labels C.S.N, for “Chapter C, Section S, Exercise N”, where C, S ∈ ℤ+ and N ∈ A, . . . , Z. Exercises marked “[essential]” are essential.

2.2.C
2.2.G (a) [essential]
 (b)
 (c) Demonstrate that 2.2.F is a special case of part (a) by considering the projection Y × X → X.

2.2.I
2.3.C [essential] (Note: Most commonly, sheaf-hom is denoted using some form of calligraphy or math italics, such as \(\mathcal{H}om(F, G) \), since \(\text{Hom}(F, G) \) is most often interpreted as the group of homomorphisms \(F \to G \) between objects \(F \) and \(G \) in the category of sheaves.)

2.3.J [essential]
2.4.E [essential]
2.4.M
2.4.P [essential]
2.6.A
2.6.B
2.6.C
2.6.F [The part about the global section functor not being exact is required]
2.6.G [essential]
Non-book Exercises: These exercises give an inkling of the flexibility of sheaf theory.

1. Fix a real vector space Q of finite dimension and a cone $C \subseteq Q$, meaning an additive submonoid of Q (so $0 \in C$ and $C + C \subseteq C$). Assume C has only the trivial unit 0. Prove that the relation on Q that sets $q \preceq q'$ if $q' \in q + C$ constitutes a partial order. Prove that every partial order on Q such that $p \preceq q \Rightarrow p + r \preceq q + r$ for all $r \in Q$ arises this way.

Definition. Fix a partially ordered real vector space Q whose positive cone C is closed in the usual topology and contains all positive real rescalings of itself. An *upset* in Q is a subset U closed under addition by C, so $U + C \subseteq U$.

- The *conic topology* on Q consists of the upsets that are open in the ordinary topology.
- The *Alexandrov topology* consists of all of the upsets in Q.

To avoid confusion when it might occur, write

- Q^{con} for the set Q with the conic topology,
- Q^{ale} for the set Q with the Alexandrov topology, and
- Q^{ord} for the set Q with its ordinary topology.

In the situation of this definition, prove the following.

2. The identity on Q yields continuous maps of topological spaces

$$
\iota : Q^{\text{ord}} \to Q^{\text{con}} \quad \text{and} \quad j : Q^{\text{ale}} \to Q^{\text{con}}.
$$

3. Any sheaf \mathcal{F} on Q^{ord} pulled back from Q^{con} has natural maps on stalks

$$
\mathcal{F}_q \to \mathcal{F}_{q'} \quad \text{for } q \preceq q' \text{ in } Q.
$$

4. Similarly, any sheaf \mathcal{G} on Q^{ale} has natural maps on stalks

$$
\mathcal{G}_q \to \mathcal{G}_{q'} \quad \text{for } q \preceq q' \text{ in } Q.
$$

5. If sheaves \mathcal{F} on Q^{ord} and \mathcal{G} on Q^{ale} are both pulled back from the same sheaf \mathcal{E} on Q^{con}, then the diagrams of vector spaces indexed by Q in items 3 and 4 are the same.

6. The pushforward functor j_* is exact, and $j_*j^{-1}\mathcal{E} \cong \mathcal{E}$.

Note: the diagrams in items 3 and 4 are called Q-modules. The functor in item 4 from sheaves on Q^{ale} to Q-modules is an equivalence of categories.

References