Math 501 Homework #2, Fall 2017
Instructor: Ezra Miller

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: start of class on Wednesday 27 September 2017

Exercises

1. Determine the automorphism groups of the integers \(\mathbb{Z} \), the symmetric group \(S_3 \), and the cyclic group \(C_{10} \).

2. Find all subgroups of \(S_3 \) and determine which are normal.

3. Given two homomorphisms \(\varphi \) and \(\psi \) from a group \(G \) to \(G' \), let \(H \subseteq G \) be the subset where \(\varphi \) and \(\psi \) agree: \(H = \{ x \in G \mid \varphi(x) = \psi(x) \} \). Is \(H \) a subgroup of \(G' \)?

4. Prove that the center of any group is a normal subgroup.

5. If \(\varphi : G \rightarrow G' \) is a surjective homomorphism and \(N \trianglelefteq G \) is a normal subgroup, prove that the image \(\varphi(N) \trianglelefteq G' \) is also a normal subgroup.

6. Is the intersection \(R \cap R' \) of two equivalence relations in \(S \times S \) an equivalence relation on \(S \)? Is the union?

7. Prove that every group whose order is a power of a prime \(p \) contains an element of order \(p \).

8. Let \(\mathbb{F} \) be a field and \(W \) the solution set in \(\mathbb{F}^n \) of a system of homogeneous linear equations \(Ax = 0 \). Show that the solution set of any inhomogeneous system \(Ax = b \) is a coset of \(W \).

9. Prove that every index 2 subgroup is normal. Exhibit a non-normal index 3 subgroup.

10. Classify all groups of order 6. Hint: is there an element of order 6? Of order 3 but not of order 6? Or no element of order 3?

11. If \(G \) and \(G' \) are finite groups whose orders are relatively prime, prove that there is a unique homomorphism \(G \rightarrow G' \).

12. Fix subgroups \(H \) and \(K \) of a group \(G \). Prove that the intersection \(xH \cap yK \) of cosets is either empty or else is a coset of \(H \cap K \). Conclude that if \(H \) and \(K \) have finite index in \(G \) then so does \(H \cap K \).

13. Prove that a group of order 30 can have at most seven subgroups of order 5.
14. Fix a surjective group homomorphism \(\varphi : G \to G' \) with kernel \(K \). Show that the set of subgroups of \(G \) containing \(K \) and the set of all subgroups of \(G' \) are in bijection via the map \(H \mapsto \varphi(H) \). If \(H \trianglelefteq G \), must it be that \(\varphi(H) \trianglelefteq G' \)?

15. Is the symmetric group \(S_3 \) a direct product of nontrivial groups?

16. Prove that the product of two infinite cyclic groups is not cyclic. Is the same true without the word “infinite”?

17. Fix a group \(G \) whose order is \(|G| = ab \). Suppose that \(G \) has subgroups \(H \) and \(K \) with orders \(|H| = a \) and \(|K| = b \). Assume that \(|H \cap K| = 1 \). Prove that \(HK = G \). Is \(G \) isomorphic to the product group \(H \times K \)?

18. Suppose that a group \(G \) has a partition \(P \) with the property that for any pair of blocks \(A \) and \(B \) of the partition, the product \(AB \) is contained entirely within a block of \(P \). Let \(N \) be the block that contains the identity \(e \) of \(G \). Prove that \(N \trianglelefteq G \) and that \(P \) is the partition of \(G \) into the set of cosets of \(N \).

19. Let \(H = \{ \pm 1, \pm i \} \subset \mathbb{C}^\times \), the subgroup of fourth roots of unity. Describe the cosets of \(H \) in \(\mathbb{C}^\times \) explicitly (geometrically), and prove that \(\mathbb{C}^\times / H \cong \mathbb{C}^\times \).

20. Fix a group \(G \). Let \(N = \langle xyx^{-1}y^{-1} \mid x, y \in G \rangle \) be the subgroup of \(G \) generated by the commutators of pairs of elements of \(G \). Prove that \(N \) is normal and the quotient \(G/N \) is abelian. Moreover, show that any homomorphism \(G \to G' \) to an abelian group \(G' \) contains \(N \) in its kernel.

21. Assume that both \(H \) and \(K \) are normal subgroups of a group \(G \) and that \(|H \cap K| = 1 \). Prove that \(xy = yx \) for all \(x \in H \) and \(y \in K \). Hint: prove that \(xyx^{-1}y^{-1} \in H \cap K \).

22. Find a nonabelian group \(G \) and a proper normal subgroup \(N \) such that \(G/N \) is abelian.