<u>Def</u>: The <u>rank</u> of a free module F over a nonzero commutative ring is rank F = Ibasis of Fl.

Lemma: does not depend on basis.

 \underline{Pf} : Suppose $F\cong\bigoplus_{s\in S}R$. Let $\sharp\subseteq R$ be maximal.

 $F/pF \cong \bigoplus_{s \in S} R/p$ is a vector space over R/p of dim |S|. \square

Thm: Fix F free / PID R and a submodule $M \subseteq F$. Then M is free of rank \leq rank F.

 $\underline{Pf} \colon F \cong \bigoplus_{\lambda \in \Lambda} R_{\chi_{\lambda}} \text{ for a basis } \{\chi_{\lambda}\}_{\lambda \in \Lambda}.$

 $J \subseteq \Lambda \Rightarrow M_J \stackrel{\text{def}}{=} M \cap \bigoplus_{i \in J} R_{x_i} \text{ has the form}$

(*) and $M_J = \bigoplus_{i \in J} Ry_i$ for some $y_i \in M_J$ Warning: some of the y_i might be 0

or not. Order the set Y of

families $\{\psi_i\}_{i\in J}$ for which \exists basis $\{\chi_{\lambda}\}_{\lambda\in\Lambda}$ satisfying (*)

by inclusion: $\{\psi_i\}_{i\in\mathcal{I}}\subseteq\{\psi_i'\}_{i\in\mathcal{I}'}$ if $\mathcal{I}\subseteq\mathcal{I}'$ and $\psi_i=\psi_i'$ \forall $i\in\mathcal{I}$.

If C is a chain in Y then $\bigcup_{c \in C} C \in Y$ since any dependence relation involves only finitely many 4;

Hence \exists family $\{\mu_{i}\}_{i \in J}$ maximal in Y. Want $J = \Lambda$.

Suffices: $k \in \Lambda \setminus J \Rightarrow - \times$. Let $K = J \cup \{k\}$ and $M \hookrightarrow F \twoheadrightarrow R \times_{\iota}$.

Then $\pi_k(M_K) = \langle a \rangle_{X_k} \subseteq R_{X_k}$ since R is a PID.

But $\ker \pi_k|_{M_K} = M_J$, so

$$0 \to M_T \to M_K \to \pi_k(M_K) \to 0$$

is exact and splits because $\langle a \rangle x_k$ is free!

Thus $\{\psi_i\}_{i \in K} \in \mathcal{Y}$ if $\psi_k = ax_k$. \rightarrow

So
$$\mathcal{J} = \Lambda$$
. \square

<u>Cor</u>: M finitely generated / PID R and $N \subseteq M$ submodule $\Rightarrow N$ f.g.

 \underline{Pf} : $f: \mathbb{R}^n \to \mathbb{M} \Rightarrow f^{-1}(\mathbb{N})$ free of rank $\leq n$

 \Rightarrow N f.g. since $f^{-1}(N) \rightarrow N$. \square

48

•

•

•

•