Groups of order 12

Fix · a group G with |G| = 12

· H ≤ G a Sylow 2-subgroup |H| = ? 4

· K ≤ G a Sylow 3-subgroup |K|=?3

Sylow $3 \Rightarrow H$ has 1 or 3 conjugates 3 and 1 (2)

K has 1 or 4 conjugates |4| and $\equiv 1(3)$

 $H \cong C_4$ or $H \cong C_2 \times C_3$ Klein 4-group

Lemma: H

G or K

G or both.

 \underline{Pf} : $K \not= G \Rightarrow 4$ conjugates of K

 \Rightarrow 8 elements of order 3 in G

⇒ 4 elements remain.

Since H has no elements of order 3,

 $H = G \setminus \{elements \text{ of order 3}\}.$

H

G since same is true of gHg⁻¹.

Lemma \Rightarrow G = H × K if both are normal

H×K if K ≠ G

K×H if H≠G

• $H \times K : G \cong C_4 \times C_3$ or $G \cong C_2 \times C_2 \times C_3$

• $H \times K$: $G \subset X = \{conjugates of K\}$ by conjugation

 $|X| = 4 \Rightarrow G \rightarrow S_u$

 $X = \{K^{1,...}K^{n}\}$

 $\ker (G \to S_{4}) = N_{G}(K_{1}) \cap \cdots \cap N_{G}(K_{4})$ $\bigcup_{K_{1}} \bigcup_{K_{4}} \bigcup_{K$

 $N_{G}(K_{i}) = |G_{K_{i}}| = |G|/|O_{K_{i}}| = 12/4 = 3$

 $\Rightarrow N_G(K_i) = K_i$

 $\Rightarrow \bigcap_{i=1}^{4} N_{G}(K_{i}) = \{1\}$

 $\Rightarrow G \hookrightarrow S_{u}$.

```
But G has 8 elements of order 3 in Sy
                     generated by
                                                        3-cycles
                    (why? |subgroup| |G| = 12)
                ⇒ every permutation in G is even
               \Rightarrow G = A<sub>4</sub> since |A_4| = 12.
               Note: H \cong C_2 \times C_2 is forced
· K×H: Let K = {1, y, y<sup>2</sup>}.
               Aut K \cong C_a = \{id_K, (y \leftrightarrow y^a)\}
               Case 1: H \cong C_{\Psi} \Rightarrow \exists ! \text{ nontrivial } H \rightarrow Aut K
                         \{1, x, x^2, x^3\}
                                                                       \chi \mapsto (\gamma \leftrightarrow \gamma^a)
                                                                        \chi^a \mapsto i d_{\nu}
                         G = \langle x, y | x^4 = 1, y^2 = 1, xyx^{-1} = y^2 \rangle.
               Case \lambda: H \cong C_{\lambda} \times C_{\lambda}'
                            H \xrightarrow{\varphi} Aut K nontrivial \Rightarrow \exists! u \in H with u: y \mapsto y
                                                                          \langle u \rangle = \ker \Psi; choose this to be C'_{a}
                          C_a \hookrightarrow Aut K
C_a' \text{ commutes with } K
\Rightarrow G = (K \rtimes C_a) \times C_a
\cong S_a \times C_a
```

 $\cong \mathbb{D}_{6} \quad [M1 # 1(c)].$

Conclusion: #(groups of order 12) = 5.