Math 403 Homework #5, Spring 2022
Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
(1 point for each of up to 3 collaborators who also list you)
Due: 5:00pm Tuesday 5 April 2022

Reading assignments
- for Thu. 24 March
 - [Treil, §8.5] multilinear algebra, tensor product
 - [Wikipedia, Tensor product]
- for Tue. 29 March and Thu. 31 March
 - [Wikipedia, Exterior algebra]

Exercises
1. For \(P \in \mathbb{R}^{n \times n} \) with \(P > 0 \), set \(\Gamma(P) = \{ \lambda \in \mathbb{R}_{>0} \mid Px \leq \lambda x \text{ for some nonzero } x \geq 0 \} \). Show that the dominant eigenvalue \(\lambda(P) \) satisfies \(\lambda(P) = \min_{\lambda \in \Gamma(P)} \lambda \).

2. In class, we stated the theorem that for \(P > 0 \) a stochastic \(n \times n \) matrix with dominant eigenvector \(v \), and \(x \geq 0 \) any nonzero vector, \(P^k x \rightarrow \alpha v \) as \(k \rightarrow \infty \) for some real \(\alpha > 0 \). But we only proved it when \(P \) is diagonalizable. Complete the proof.

3. Prove that \(P \) has a dominant positive eigenvalue if \(P \geq 0 \) and \(P^k > 0 \) for some \(k > 0 \).

4. Prove or disprove: the set of stochastic \(n \times n \) matrices is compact and convex.

5. Use the universal property of tensor products to prove commutativity: there is a unique isomorphism \(V \otimes W \rightarrow W \otimes V \) such that \(v \otimes w \mapsto w \otimes v \) for all \(v \in V \) and \(w \in W \).

6. Use the universal property of tensor products to prove associativity: there is a unique isomorphism \((U \otimes V) \otimes W \rightarrow U \otimes (V \otimes W) \) such that \((u \otimes v) \otimes w \mapsto u \otimes (v \otimes w) \) for all \(u \in U \), \(v \in V \), and \(w \in W \). Hint: You can either use the universal property to produce the map or check that the two parenthesizations have the same universal property regarding bilinear maps on \((U \times V) \times W = U \times (V \times W) \) and appeal to “abstract nonsense”: universal constructions are unique up to unique isomorphism.

7. Prove that homomorphisms \(\varphi : V \rightarrow V' \) and \(\psi : W \rightarrow W' \) result in a canonical homomorphism \(\varphi \otimes \psi : V \otimes W \rightarrow V' \otimes W' \). Given matrices for \(\varphi \) and \(\psi \), write down a matrix for \(\varphi \otimes \psi \). Note: your answer will depend on how you order the basis of \(V \otimes W \).
8. Prove that a homomorphism \(\varphi : V \to W \) results in a canonical homomorphism \(\wedge^r \varphi : \wedge^r V \to \wedge^r W \). Given a matrix for \(\varphi \), write down a matrix for \(\wedge^r \varphi \). Note: make no attempt to draw a matrix; just describe its entries as labeled by pairs of basis vectors.

9. Prove that tensor products commute with direct sums: if \(I \) is any (finite or infinite) index set and \(V = \bigoplus_{i \in I} V_i \), then there is a natural isomorphism \(V \otimes W \to \bigoplus_{i \in I} V_i \otimes W \).

10. Construct a natural map \(V^* \otimes W^* \to (V \otimes W)^* \). Show that it is injective. If one of \(V \) and \(W \) has finite dimension, show that the map is an isomorphism.

11. Prove the existence of a bilinear map \(\wedge^r V \times \wedge^s V \to \wedge^{r+s} V \) taking
\[
(v_1 \wedge \cdots \wedge v_r, v'_1 \wedge \cdots \wedge v'_s) \mapsto v_1 \wedge \cdots \wedge v_r \wedge v'_1 \wedge \cdots \wedge v'_s.
\]
Write \(\omega = v_1 \wedge \cdots \wedge v_r \) and \(\omega' = v'_1 \wedge \cdots \wedge v'_s \), so \(\omega \wedge \omega' = v_1 \wedge \cdots \wedge v_r \wedge v'_1 \wedge \cdots \wedge v'_s \).
Show that \(\omega' \wedge \omega = (-1)^{rs} \omega \wedge \omega' \).