Thm: $A \in F^{m \times n}$ has SVD $A = W \Sigma V^*$ with
- $V^* \in O_n(F)$
- $\Sigma \in F^{m \times n}$ all 0 except $\sigma_1, \ldots, \sigma_r$ on main diagonal
- $W \in O_m(F)$.

Pf: Complete bases in Schmidt decomposition to orthonormal bases of

ker A (for V^*) and ker A^* (for W).

Cor: $A \in F^{n \times n} \Rightarrow A = U |A|$ for some $U \in O_n(F)$.

Pf: $A = W \Sigma V^* = W \Sigma V^* U |A| |

\[A^* A = \sum_{i=1}^r \sigma_i^2 v_i v_i^* = \Sigma^2 V^* = \Sigma W^* W \Sigma V^* \]

Note: SVD efficient numerically: fast + accurate

Q. How big can $\|Ax\|$ be, given that $\|x\| = 1$?

$B = \{ x \in F^n \mid \|x\| = 1 \}$ has image = ?

A. If $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$ with $\sigma_r = \ldots = \sigma_n = 0$ then

$y = \Sigma x$ for $x \in B$ $\Leftrightarrow y_i = \sigma_i x_i$ and $x \in B$

$\Leftrightarrow y_i = \sigma_i x_i$ and $\|x\|^2 + \ldots + \|x_n\|^2 \leq 1$

$\Leftrightarrow y_i = 0$ for $i > r$ and $\|y_1\|^2 + \ldots + \|y_r\|^2 \leq 1$

ellipsoid

- $F = R$: principal axes of length $2\sigma_1, \ldots, 2\sigma_r$ along e_1, \ldots, e_r
- $F = C$: i^{th} real and imaginary principal axes of length $2\sigma_i$

A arbitrary $\Rightarrow [\lambda_A] V^* W = \Sigma$ unitary \Rightarrow do not alter $\|$ normal basis

Thm: $A(\text{unit ball}) = \text{ellipsoid in im}(A)$ with principal half-axes along w_1, \ldots, w_r of lengths $\sigma_1, \ldots, \sigma_r$.

Cor: A has operator norm $\|A\| = \max_{x \in B} \|Ax\| = \sigma_1$.

Pf: $\|Ax\| \leq C \|x\| \forall x$, and $C = \|A\|$ is smallest such.

Lemma: $A \mapsto \|A\|$ is a norm on $F^{m \times n}$.

Compare Frobenius norm $\|A\|_2 = \sqrt{\text{tr}(A^*A)}$
(or Hilbert-Schmidt)

Prop: $\|A\|_2 \leq \|A\|_2$.

Pf: $\|A\| = \sigma_1 \leq \sigma_1^2 + \ldots + \sigma_n^2 = \|A\|_2$ since $\text{tr}(A^*A) = \Sigma$ eigenvalues(A^*A). □
Eckart-Young Thm: Given $A \in \mathbb{R}^{m \times n}$, the \hat{A} of rank $\leq k$ minimizing $\|A - \hat{A}\|_2$ is

$$
\hat{W} \hat{\Sigma} \hat{V}^* \\
\begin{bmatrix}
W \\
\Sigma \\
V^*
\end{bmatrix}
$$

Pf: omitted for time though we could totally do it

Principal Component Analysis (PCA)

$$
A = \begin{bmatrix}
A_1 \\
\vdots \\
A_m
\end{bmatrix} \leftrightarrow \text{m points in } \mathbb{R}^n
$$

PC 1 = direction $v_1 \in \mathbb{F}^n_{col}$ maximizing sample variance: $\|A_1 v_1\|^2 + \cdots + \|A_m v_1\|^2$

$\hat{A}_1 = \text{project rows of } A \text{ orthogonally to } v_1$

PC 2 = direction $v_2 \in v_1^\perp \subseteq \mathbb{F}^n_{col}$ maximizing \hat{A}_1 - sample variance

$\hat{A}_2 = \hat{A}_1 / v_2$

Def: The PC decomposition of A is $T = AV$, where V has columns v_1, \ldots, v_n.

ij entry is score of sample i along PC j.

Interpretation: cols(V) \leftrightarrow alternative features \cdot linear combinations of original features

\cdot explain variance in uncorrelated (\perp) way

Thm: $A = W \Sigma V^* \Rightarrow v_1, \ldots, v_n$ are the columns of V and

$T = W \Sigma$ is polar decomposed

Pf: (sample variance in direction v) $= \|Av\|^2$ for $v \in \mathbb{F}^n_{col}$.

v maximizes $\|Av\|^2 \iff v \rightarrow$ longest principal axis! (by Cor: $\|A\| = \sigma_1$)

$\Rightarrow V$ is SVD: cols(V) \perp normal basis of eigenvectors of A^*A (by induction)

$\Rightarrow T = AV = W \Sigma V^* V = W \Sigma$. □

PCA \iff low-rank projection of data: use only PC 1, ..., PC k

$\mathbb{F}^n \perp \mathbb{F}^k$

Note: PC 1, PC 2, ..., PC n \rightarrow flag of best approximating subspaces.