Banach spaces: complete normed vector spaces over \(F = \mathbb{R} \) or \(\mathbb{C} \)

Cauchy sequences converge

Def: A norm on \(V / F \) is \(\nu : V \rightarrow \mathbb{R}_+ \) with:
- positive-definite: \(\nu(x) = 0 \iff x = 0 \)
- homogeneous: \(\nu(\lambda x) = |\lambda| \nu(x) \)
- subadditive: \(\nu(x+y) \leq \nu(x) + \nu(y) \)
- triangle inequality

E.g.:
- Manhattan: \(p=1 \cdot \|x\|_1 = |x_1| + \cdots + |x_n| \)
- Euclidean: \(p=2 \cdot \|x\|_2 = (|x_1|^2 + \cdots + |x_n|^2)^{1/2} \)

\[\lim_{p \to \infty} \norm{x}_p = \max_{i=1}^n |x_i| \]
\[\norm{x}_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p} \]

Def: A metric space \(X \) with a distance \(d : X \times X \rightarrow \mathbb{R}_+ \) such that \(\forall x, y \in X \)
- \(d(x, y) = 0 \iff x = y \) separates
- \(d(x, y) = d(y, x) \) symmetric
- \(d(x, y) \leq d(x, z) + d(z, y) \) \(\forall x \in X \)

E.g.: norm \(\nu \) induces distance \(d_\nu(x, y) = \nu(x-y) \), such as

Euclidean metric \(\|x-y\|_2 \) on \(\mathbb{F}^n \)

Manhattan metric \(\|x-y\|_1 \) on \(\mathbb{F}^n \)

All norms “pretty much feel the same”. In what sense?

Def: A topology on a set \(S \) is a collection \(U \) of subsets called open sets such that
- any union of open sets is open
- any finite intersection of open sets is open
- \(S \) and \(\emptyset \) are open

E.g.: usual topology on \(\mathbb{F}^n \): \(U \in U \iff B_\varepsilon(x) \subseteq U \forall x \in U \) and \(\varepsilon = \varepsilon_x \ll 1 \)

More generally: metric \(d \) on \(X \) \(\longrightarrow \) topology on \(X \) with \(U \) open \(\iff B_\varepsilon^d(x) \subseteq U \forall x \in U \) and \(\varepsilon = \varepsilon_x \ll 1 \)

Def: \(B \in U \) is a base for the topology if \(U \in U \Rightarrow U = \bigcup_{B \in B} B \) for some \(B' \subseteq B \)

E.g.: \(\{ B_\varepsilon^\nu(x) \mid x \in V \text{ and } \varepsilon \in \mathbb{R}_+ \} \)

Prop: \(X \subseteq S \) closed \(\iff S \setminus X \) open.

Prop: \(S \setminus X \) open and \(\{x_k\} \subseteq X \) if \(\{x_k\} \) is eventually in \(U \) open \(\forall x \), meaning \(\exists N_k \in \mathbb{N} \) with \(x_k \in U \forall k \geq N_k \).

\(X \subseteq S \) is closed if \(x \in X \) whenever \(\{x_k\} \rightarrow x \) in \(S \) with \(\{x_k\} \subseteq X \).

S\setminus X \text{ not open } \Rightarrow \exists y \in S \setminus X \text{ such that } V \text{ open } \forall y \in V \setminus \{x\}. \text{ Then } \{x\}_{y \in \mathcal{U}} \rightarrow y \notin X. \)
Prop: Any norm \(\nu \) on \(\mathbb{F}^n \) is continuous in the Euclidean metric.

\[\text{Pf: } \text{Given } \varepsilon > 0, \text{ need } \delta \text{ so that } |\nu(x) - \nu(y)| < \varepsilon \text{ whenever } \|x-y\| < \delta. \]

Subadditivity \(\Rightarrow \nu(x) \leq \nu(x-y) + \nu(y) \) and \(\nu(y) \leq \nu(y-x) + \nu(x) \)

\[\Rightarrow \nu(x) - \nu(y) \leq \nu(x-y), \quad \nu(y) - \nu(x) \leq \nu(y-x), \text{ so} \]

\[|\nu(x) - \nu(y)| \leq \nu(x-y) = \nu(\sum_{i=1}^{n} (x_i - y_i) e_i) \leq \sum_{i=1}^{n} |x_i - y_i| \nu(e_i) \]

\[\text{Pick } \delta = \frac{\varepsilon}{\|\nu\|_2} \]

Q. why? A. Cauchy-Schwarz!

Def: Norms \(\nu \) and \(\mu \) on \(V = \mathbb{F}^n \) are (topologically) equivalent, written \(\nu \sim \mu \), if

\[\exists \alpha, \beta \in \mathbb{R}_{>0} \text{ with } \alpha \nu(x) \leq \mu(x) \leq \beta \nu(x) \quad \forall x \in V. \]

\[\text{Interpretation: } \nu \sim \mu \iff B^\nu_{\beta \nu}(x) \subseteq B^\mu_\alpha(x) \subseteq B^\nu_{\alpha \nu}(x) \quad \forall x \in V \]

\[\iff \text{every } \varepsilon \text{-ball base for the } \mu \text{-topology is a base for the } \nu \text{-topology} \]

E.g. \[\|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2 \]

\[\frac{1}{\sqrt{n}} \|x\|_2 \leq \|x\|_{\infty} \leq \|x\|_2 \]

\[\text{Pf: exercise (not assigned)} \]

\[\|x\|_{\infty} \leq \|x\|_1 \leq n \|x\|_\infty \]

Lemma: \(\sim \) is an equivalence relation.

\[\text{Pf: symmetric: } \frac{1}{\beta} \mu(x) \leq \nu(x) \leq \frac{1}{\alpha} \mu(x), \]

transitive: exercise.

Reflexive: \(\alpha = \beta = 1 \).

Thm: \(\mu, \nu \) norms on \(V = \mathbb{F}^n \Rightarrow \nu \sim \mu \).

\[\text{Pf: By Lemma, need only check } \nu = \|\cdot\|_2. \text{ Can assume } x \neq 0. \]

\[\text{(x) with } y = 0 \text{ and } \mu \text{ instead of } \nu \Rightarrow \mu(x) \leq \|x\|_2 \|\nu\|_2 \quad \text{for } v = (\mu(e_1), \ldots, \mu(e_n)) \]

\[\Rightarrow \text{ take } \beta = \|\nu\|_2. \]

Set \(\alpha = \min \{ \mu(x) \mid \|x\|_2 = 1 \} \), which exists by Prop because sphere \(S^{n-1} \) is closed and bounded.

Then \(\mu(x) = \mu(\|x\|_2, \|x\|_2) = \|x\|_2 \mu(\|x\|_2) \)

\[\geq \|x\|_2 \alpha. \]

Def: norm on \(V \) dual to \(\nu \) on \(V \) is \(\nu^*(\Psi) = \max_{\nu(x) = 1} |\Psi(x)|. \)

well defined since \(S_{\nu} = \{ x \in V \mid \nu(x) = 1 \} \) is closed and bounded by Thm.