Def: Fix subspace \(W \subseteq V \).

1. A coset of \(W \) is an affine subspace \([v] = v + W\) for some \(v \in V \).

2. The quotient \(V/W \) is the set of cosets of \(W \).

\["V \text{ mod } W" \]

Prop: \(V/W \) is a vector space with

\[[u] + [v] = [u + v] \quad \text{and} \quad \lambda [v] = [\lambda v]. \]

Pf: \((u + W) + (v + W) = (u + v) + W.

"add lines" since \(W + W = W \)

affine subspaces

\[\lambda (v + W) = \lambda v + \lambda W = \lambda v + W \quad \text{if} \quad \lambda \neq 0, \quad \text{and} \]

\[0[v] = 0(v + W) = \{0\} \subseteq W = [0] = [0v]. \]

Cor: \(\dim V = \dim W + \dim V/W. \)

Pf: \(V \rightarrow V/W \) is a homomorphism (by Prop) with \(\ker = W \) and \(\text{im} = V/W. \)

Universal property of quotients

A homomorphism \(\overrightarrow{\varphi} \) on \(W \) is 0 on \(W \) \(\iff \) \(\varphi \) factors through \(V/W : V \rightarrow V/W \rightarrow U. \)

Pf: \exists \text{ well defined function } \rightarrow \text{ forget algebraic properties, like "homomorphism"}

\(V/W \rightarrow U \iff \text{each coset of } W \rightarrow \text{single point in } U \)

\[\iff W \rightarrow \text{single point in } U. \]

\[\varphi \text{ linear} \]

\[\iff W \in \ker \varphi. \]

Def: Arbitrary homomorphism \(V \rightarrow W \) has

- \(\ker \subseteq V \)
- \(\text{im} \subseteq W \)
- \(\text{coker} \subseteq W/\text{im} \)
- \(\text{coimage} \subseteq V/\ker \)
- \(\forall \varphi \in \text{Hom}(V, W) \rightarrow \text{coker} \varphi = V/\ker \varphi \)

First Isomorphism Thm (requires proof!)

Pf: \(V \rightarrow \text{im} \) by def of im, so \(V \rightarrow V/K \rightarrow \text{im} \) by universal property of coker.

\[\ker(V/K \rightarrow \text{im}) = \{ [v] \in V/K \mid v \mapsto 0 \} = [K] \text{ by def of ker,} \]

\[= 0 \in V/K \Rightarrow V/K \rightarrow \text{im}. \]
Def: A sequence \(V_0 \xrightarrow{\varphi_1} V_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_r} V_r \) is exact if \(\ker \varphi_{i+1} = \im \varphi_i \) \(\forall i \).

E.g.

- \(0 \to V \to V' \to 0 \) exact \(\iff V \cong V' \)
- \(0 \to V \to V' \) exact \(\iff V \cong V' \)
- \(V \to V' \to 0 \) exact \(\iff V \cong V' \)
- \(0 \to K \to V \to W \to W/I \to 0 \) is exact

- \(\text{exact here by FIT} \)
- \(O \to A \to B \to C \to 0 \) \(\iff \) \(A \cong B \) and \(C \cong B/A \)
- \(O \to A \to B \to B/A \to 0 \)

Def: \(V_* : \cdots \to V_{i-1} \to V_i \to V_{i+1} \to \cdots \) is a complex if \(V_{i-1} \to V_i \to V_{i+1} \) is exact \(\forall i \).

\(V_* \) has homology \(H_i V_* = \ker \varphi_{i+1} / \im \varphi_i \).

Lemma: \(\iff \im (V_{i-1} \xrightarrow{\varphi_{i-1}} V_i) \subset \ker (V_i \xrightarrow{\varphi_i} V_{i+1}) \)

measures how far a complex is from being exact. Problem: you don’t know many complexes yet. \(\text{(Do you?)} \)

E.g. algebraic topology simplices \(\cdot, \triangle, \bigtriangleup, \ldots \)

- of dim 0, 1, 2, 3, ...
- e.g. octahedron \(\bigtriangleup \rightarrow \) vector spaces \(\mathbb{F}_2 \)

\(V: \) basis = vertices \(E: \) basis = edges \(F: \) basis = faces

\(\partial_E (\bigtriangleup) = \) \(v \Rightarrow w \)
\(\partial_F (\bigtriangleup) = \) \(e_1 + e_2 + e_3 \)

Prop: \(C_* \) is a complex!

Pf: \(2 \) (\(= 0 \)) ways to get from a simplex of dim \(i \) to a simplex of dim \(i-2 \). \(\square \)

Compute:

- \(H_0 C_* = \ker \partial_v / \im \partial_E = V/B \) \(B = \text{span} (v+w | \text{vertices } v, w) \) \(\dim H_0 = \geq 1 \)
- \(H_1 C_* = \ker \partial_E / \im \partial_F = \geq 0 \) exercise \(\text{(not assigned)} \)
- \(H_2 C_* = \ker \partial_F / \im \partial_E = \geq 0 \) \(\text{span} (f_1, \ldots, f_g) \) \(\dim H_2 = \geq 1 \)

Thm (rank-nullity): \(\sum_i (-1)^i \dim H_i = \sum_i (-1)^i \dim V_i \).

- \(\Rightarrow \dim K = \dim V + \dim I = 0 \) exact \(\Rightarrow \dim K = \dim V + \dim I = 0 \)

\(\text{Euler characteristic of } V \).

Cor: exercise! \(6 - 12 + 8 = 1 - ? + 1 \) \(\Rightarrow ? = 0 \)

Pf of Thm: \(HW \)