Math 221 Homework for Section 4.4: additional problems on change of basis

Instructor: Ezra Miller

Date: due Tuesday 9 November 2021

1. Choose bases

- $\mathbf{w}_{0}=1=\mathbf{v}_{0}$,
- $\mathbf{w}_{1}=t=\mathbf{v}_{1}$,
- $\mathbf{w}_{2}=t^{2}=\mathbf{v}_{2}$,
- $\mathbf{w}_{3}=t^{3}=\mathbf{v}_{3}$, and
- $\mathbf{w}_{4}=t^{4}$
for $V=\mathcal{P}_{3}$ and $W=\mathcal{P}_{4}$. Describe the map $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ satisfying

$$
\left[\begin{array}{llll}
T \mathbf{v}_{0} & T \mathbf{v}_{1} & T \mathbf{v}_{2} & T \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{w}_{0} & \mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3} & \mathbf{w}_{4}
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

explicitly in terms of the algebra of polynomials.
2. In Question 1, what would the 5×4 matrix be if the basis for V were instead ($1-t$, $\left.t-t^{2}, t^{2}-t^{3}, t^{3}\right)$? Answer the question by computing $T(1-t), T\left(t-t^{2}\right), T\left(t^{2}-t^{3}\right)$, and $T\left(t^{3}\right)$ directly. Place your answer in an equation whose left-hand side is the 1×4 array

$$
\left[T(1-t) T\left(t-t^{2}\right) T\left(t^{2}-t^{3}\right) T\left(t^{3}\right)\right] .
$$

3. If $\left[\begin{array}{llll}1+t+t^{2} & t+t^{2}+t^{3} & t^{2}+t^{3}+t^{4} & t^{3}+t^{4}\end{array} t^{4}\right]=\left[\begin{array}{llll}1 & t & t^{2} & t^{3}\end{array} t^{4}\right] Q$, then what is Q ?
4. Do Question 2 again using the change-of-basis formula

$$
[T]_{\mathcal{V}^{\prime}, \mathcal{W}^{\prime}}=Q^{-1}[T]_{\mathcal{V}, \mathcal{W}} P
$$

where $\left[\begin{array}{lll}\mathbf{v}_{1}^{\prime} & \cdots & \mathbf{v}_{n}^{\prime}\end{array}\right]=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right] P$ and $\left[\begin{array}{lll}\mathbf{w}_{1}^{\prime} & \cdots & \mathbf{w}_{m}^{\prime}\end{array}\right]=\left[\begin{array}{lll}\mathbf{w}_{1} & \cdots & \mathbf{w}_{m}\end{array}\right] Q$.
5. In Question 1, what would the 5×4 matrix be if the bases for V and W were instead $\left(1-t, t-t^{2}, t^{2}-t^{3}, t^{3}\right)$ and $\left(1+t+t^{2}, t+t^{2}+t^{3}, t^{2}+t^{3}+t^{4}, t^{3}+t^{4}, t^{4}\right)$? Place your answer in an equation whose left-hand side is the 1×4 array

$$
\left[T(1-t) T\left(t-t^{2}\right) T\left(t^{2}-t^{3}\right) T\left(t^{3}\right)\right] .
$$

Do it how you like, but the change-of-basis formula in Question 4 is probably simplest. If your method produces a product of matrices and their inverses, there is no need to take the inverses or multiply the matrices.
6. $\mathbb{R}^{2 \times 2}$ has bases
$\mathcal{V}=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$ and $\mathcal{V}^{\prime}=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right)$ satisfying $\left[\begin{array}{llll}\mathbf{v}_{1}^{\prime} & \mathbf{v}_{2}^{\prime} & \mathbf{v}_{3}^{\prime} & \mathbf{v}_{4}^{\prime}\end{array}\right]=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right] P$ for some matrix P. What is P ?
7. For the bases in Question 6, find $[I]_{\mathcal{V}, \mathcal{V}^{\prime}}$ for the identity map $I: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$.
8. For the bases in Question 6, find the matrix A such that

$$
\mu_{M}\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{v}_{1}^{\prime} & \mathbf{v}_{2}^{\prime} & \mathbf{v}_{3}^{\prime} & \mathbf{v}_{4}^{\prime}
\end{array}\right] A
$$

where $\mu_{M}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ is left multiplication by the matrix $M=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$.
9. For the bases in Question 6, find $\left[\mu_{M}\right]_{\mathcal{V}^{\prime}, \mathcal{V}}$ for the map $\mu_{M}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ that is left multiplication by M, where $M=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$. How is this problem different from Question 8? Which was easier?

