Math 221 Homework for Section 4.3: additional problems on change of basis

Instructor: Ezra Miller

Date: due Tuesday 9 November 2021

1. Let V be an inner product space of dimension 7 with a subspace W of dimension 2 . Fix linearly independent $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$ and linearly independent $\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}, \mathbf{v}_{7} \in V$ all orthogonal to W. Then $\mathcal{B}=\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}, \mathbf{v}_{7}$ is a basis for V (why?). Use the general formula

$$
T\left[\begin{array}{lll}
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}
\end{array}\right][T]_{\mathcal{B}}
$$

with $T=\operatorname{proj}_{W}$ to find the 7×7 matrix $\left[\operatorname{proj}_{W}\right]_{\mathcal{B}}$ for the orthogonal projection of V onto W with respect to \mathcal{B}. Is anything simpler if \mathbf{w}_{1} and \mathbf{w}_{2} are orthogonal or orthonormal? Hint: which of these basis vectors does proj_{W} fix? What happens to the others?
2. In Question 1, suppose $V=\mathbb{R}^{7}$ and

$$
\mathbf{w}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0 \\
0 \\
3 \\
-1
\end{array}\right] \text { and } \mathbf{w}_{2}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
0 \\
0 \\
2 \\
1
\end{array}\right] .
$$

Let $A=\left[\operatorname{proj}_{W}\right]_{\mathcal{E}}$ be the matrix of the projection onto W with respect to the standard basis. Express A as a product of matrices and their inverses; do not attempt to invert or multiply the matrices.
3. The polynomial $f(t)=6-2 t^{2}+t^{3}-\pi t^{4}$ can be expressed as a matrix product

$$
f(t)=\left[\begin{array}{lllll}
1 & t & t^{2} & t^{3} & t^{4}
\end{array}\right]\left[\begin{array}{c}
6 \\
0 \\
-2 \\
1 \\
\pi
\end{array}\right]
$$

This polynomial $f(t)$ is a linear combination of the polynomials in the row vector $\left[1+t+t^{2} \quad t+t^{2}+t^{3} t^{2}+t^{3}+t^{4} \quad t^{3}+t^{4} \quad t^{4}\right]$. The coefficients in this linear combination are the entries of a column vector of size 5 . Express that column as the product of a matrix and the column vector displayed above; do not attempt to invert or multiply any matrices (unless you'd like to check your answers!). Hint: additional problem 3 from Section 4.4.

