Def: The span of \(v_1, \ldots, v_k \in \mathbb{R}^n \) is
\[
\text{span}(v_1, \ldots, v_k) = \{c_1v_1 + \cdots + c_kv_k \mid c_1, \ldots, c_k \in \mathbb{R}\}
\]
(a linear combination of \(v_1, \ldots, v_k \))

"the set of all linear combinations of \(v_1, \ldots, v_k \)")

The dimension of this span is the minimum number of these vectors needed to span. E.g. \(\dim(\text{line}) = ? \), \(\dim(\text{plane}) = ? \), \(\dim(\text{point}) = ? \)

E.g. Is \(x = (1, 3, -1, -2) \) a linear combination of \(u = (1, 1, 0, -1) \) and \(v = (2, 0, 1, 1) \)? \(\iff \) u and v?

Can we find \(s, t \) so that \(s u + t v = x \)?

\[
su + tv = x \\
(5, 5, 0, -5) + (2t, 0, t, -5t) = (5, 5, 0, -5) = (1, 3, -1, -2)
\]

\[
\Rightarrow \begin{align*}
 s + 2t &= 1 \\
 5s + 3t &= 3 \\
 t &= -1 \\
 s + t &= -2
\end{align*}
\]

but \(3u - v = (1, 3, -1, -4) \neq x \), so: No.

This linear system is inconsistent.

Note about \(\mathbb{R} \):

Nothing so far used \(\mathbb{R} \)! Could have used:

- complex numbers \(\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\} \), where \(i^2 = -1 \)
 - the set of linear combinations of 1 and \(i \)
 - the plane spanned by 1 and \(i \)

- rational numbers \(\mathbb{Q} = \{\frac{a}{b} \mid a, b \text{ integers and } b \neq 0\} \) where \(\frac{a}{b} = \frac{a'}{b'} \) if \(ab' = a'b \)

- binary field \(\mathbb{F}_2 = \{0, 1\} \) where \(0 + 0 = 0 \), \(0 \cdot 0 = 0 \), \(0 + 1 = 1 \), \(0 \cdot 1 = 0 \), \(1 + 1 = 0 \), \(1 \cdot 1 = 1 \).

but not integers \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \).

\(\checkmark \) why? Because you might have to divide by 3 to solve a linear system.

Q. What is special about \(\mathbb{R} \)?
A. For \(x \in \mathbb{R}, x^2 \geq 0 \).

- that's the special thing: \(\mathbb{R} \) is ordered.

Q?
Def: Length of \(x \in \mathbb{R}^n \) is \(\| x \| = \sqrt{x_1^2 + \ldots + x_n^2} \).

(or magnitude)

Why? \(x = x_1 e_1 + \ldots + x_n e_n \) where \(e_i = (\ldots, 0, 1, 0, \ldots) \) with a 1 in the \(i \)th position.

\[
\| x \| = \sqrt{x_1^2 + \ldots + x_n^2} \]

by induction on \(n \)

\[\Rightarrow \| x \| = \sqrt{\sum_{i=1}^{n} x_i^2} \]

by Pythagoras

Another way to express it:

Def: For \(x, y \in \mathbb{R}^n \) (or \(\mathbb{C}^n, \mathbb{Q}^n, \mathbb{R}_2^n, \ldots \))

their dot product is \(x \cdot y = x_1 y_1 + \ldots + x_n y_n \).

Thus \(\| x \|^2 = x \cdot x \) in \(\mathbb{R}^n \).

Note: \(x \cdot x < 0 \) is possible in \(\mathbb{C}^n \): \((1, 2i) \cdot (1, 2i) = 1 - 4 = -3 \).

Proposition:

1. Commutative: \(x \cdot y = y \cdot x \) for all \(x, y \in \mathbb{R}^n \) and \(c \in \mathbb{R} \)

2. Associative: \((c x) \cdot y = c (x \cdot y) \)

3. Distributive: \(x \cdot (y + z) = x \cdot y + x \cdot z \)

4. Positive: \(x \cdot x = \| x \|^2 \geq 0 \) for all \(x \in \mathbb{R}^n \)

...Definite: 5. \(x \cdot x = 0 \Leftrightarrow x = 0 \).

Pf:

1. \(x_i y_i = y_i x_i \) — still a sentence!

2. \((c x_i) y_i = c (x_i y_i) \)

3. \(x_i (y_i + z_i) = x_i y_i + x_i z_i \)

4. \(\| x \| \) is a sum of squares...

5. ...that is nonzero if \(x \neq 0 \). \(\Box \)
\[\|x + y\|^2 = (x + y) \cdot (x + y) \]
\[= (x + y) \cdot x + (x + y) \cdot y \]
\[= \|x\|^2 + y \cdot x + x \cdot y + \|y\|^2 \]
\[= \|x\|^2 + 2x \cdot y + \|y\|^2 \Rightarrow \|x\|^2 + \|y\|^2 = \|x + y\|^2 - 2x \cdot y \]

Over \(\mathbb{R} \): "recall" Law of cosines:
\[a^2 + b^2 = c^2 + 2ab \cos \theta. \]

Since \(C = \pi - \theta \)
Thus \(-2x \cdot y\) "should be" \(-2\|x\|\|y\|\cos \theta\).

Def: The angle \(\theta \) between \(x \) and \(y \) is defined by
\[\cos \theta = \frac{x \cdot y}{\|x\| \|y\|} = \frac{x}{\|x\|} \cdot \frac{y}{\|y\|}. \]

\(x \) and \(y \) are orthogonal \((x \perp y)\) if \(x \cdot y = 0 \).

e.g. in \(\mathbb{R}^2 \):

\[\text{similar } \Delta s \quad \text{why? Both have an angle } \pi/2 - \Delta \]
\[\Rightarrow x_1 = \frac{x_2}{y_2}, \quad y_1 = 0. \quad \text{since } y_1 < 0 \]
\[\Rightarrow x_1y_1 + x_2y_2 = 0. \]

For higher dim check by induction, or use invariance of \(x \cdot y \) under rotation later in the course: put \(x, y \) in the plane. Actually, put \(x, y \) on axes!

Def of \(\theta \) needs

Prop (Cauchy-Schwarz inequality):
\[|x \cdot y| \leq \|x\| \|y\|. \quad "\theta" \ holds \Rightarrow \ one \ is \ a \ scalar \ times \ the \ other. \]

Pf: Easy if \(x = 0 \) or \(y = 0 \) so assume not.

First do case of unit vectors. Need \(-1 \leq x \cdot y \leq 1\).

\[\|x + y\|^2 = \|x\|^2 + 2x \cdot y + \|y\|^2 = 2(x \cdot y + 1) \geq 0 \Rightarrow x \cdot y \geq -1. \]
\[\|x - y\|^2 = \|x\|^2 \quad \|y\|^2 \Rightarrow x \cdot y \leq 1. \]

General:
\[\left| \frac{x}{\|x\|} \cdot \frac{y}{\|y\|} \right| \leq 1 \Rightarrow |x \cdot y| \leq \|x\| \|y\|. \]