Math 221 221.02 Fall 2021
Linear Algebra
Tue / Thu 12:00 - 13:15
Physics 119
Text: Shifrin & Adams ← all exercises taken from here
Office Hours: Mon 16:15 - 17:15
Thu 13:15 - 14:30 right after class → outside if possible

Safety: • masks, hand wash/sanitize politely point out noncompliance—even me!
• distance if possible
• know where the exits are from the room and the building

Policies • covered on Thu ⇒ fair game for HW or exam Tue
• collaboration/academic honesty
 - Yes on HW
 - No on exams I have • brought numerous cases to the Office of Student Conduct
• never lost

Index cards
1. Ezra Miller
2. he/him
3. 42nd grade
4. Major or potential major: Math, Music
5. What you hope to get out of this course
 students who know linear algebra, especially the right way to think about rank
6. The most important thing you’ve learned about how you learn
 not to take notes!
7. Hobbies: frisbee, gardening, photography, beer
8. Something unique about yourself
 hold breath for 4 minutes
 screws in right hand
told by doctor in hospital I was going to die of rabies
so radioactive I set off a Geiger counter from across room
remarkable bike accident without injury
 “I’m from MA”
 X
 “I’m from HI—
 but I’m allergic to pineapple!”
 ✔
What this course covers

1. things that are straight or flat ← "linear"
2. systems of linear equations and their solutions ← "algebra"
 \[y = x + 2 \quad \text{not} \quad y = x^2 \]
3. ways to manipulate these while preserving straightness, flatness, or linearity
4. how to write down
 - understand (e.g. decompose into simpler pieces)
 manipulations ("operations") of this sort
 includes
5. solving linear systems
6. applications: so many phenomena behave linearly or — as you’ve seen in Calculus — approximately so \(\Rightarrow \) linear algebra is the foundation of modern math & stat

This is a serious mathematical, abstract introduction.
Proofs are essential, both in class and in written assignments, including exams.
If you are taking this class purely to use linear algebra, then consider Math 212; we’ll help you find a section or 218.

Course is geared toward (potential) math majors and minors.

Vectors §1.1 - 1.2

Ask about any unfamiliar symbols!

\(\mathbb{R} = \) real numbers
\(\mathbb{R}^n = \{ (x_1, \ldots, x_n) \mid x_i \in \mathbb{R}, \ldots, x_n \in \mathbb{R} \} \leftarrow \text{This is a sentence!} \)

E.g. \(\mathbb{R}^2 = \left\{ \begin{array}{c} x \\in \mathbb{R} \\mapsto (x,y) \\ y \end{array} \right\} \)

Def: A vector in \(\mathbb{R}^n \) is a point \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \).

To visualize a vector:

\[\begin{array}{c}
\text{an arrow with tail at } 0 \\
\text{head at } x
\end{array} \]

Convention: same vector if arrow is moved around.

Q. If you see two arrows, how do you tell if they represent the same vector?
A. (poll class)

Def: The sum of x and y in \mathbb{R}^n is

$$x + y = (x_1 + y_1, \ldots, x_n + y_n).$$

Better picture:

$$\begin{array}{c}
\text{e.g.} \\
\text{x} = (5, 4) \Rightarrow x + y = (5 + 7, 4 + 2) = (12, 6) \\
y = (7, 2)
\end{array}$$

Q. What does $x + x$ look like? A.

What would $\frac{1}{2} x$ be?

Def: For $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$, the scalar multiple of x by c is $cx = (cx_1, \ldots, cx_n) \in \mathbb{R}^n$.

Def: Nonzero x and y are parallel if $y = cx$ for some $c \in \mathbb{R}$. Looks like x, y collinear, but now draw various reps: $x \parallel y$

Q. What is a line in \mathbb{R}^n?

A. through O: $\{cx \mid c \in \mathbb{R}\}$ for some $x \in \mathbb{R}^n$ def. $\text{span}(x)$.

through $p = (p_1, \ldots, p_n)$: $\{p + cx \mid c \in \mathbb{R}\}$ for some $x \in \mathbb{R}^n$.

in \mathbb{R}^2, implicit description: $z_2 = mz_1 + b$

Q. What is a plane in \mathbb{R}^n?

through O: $\{su + tv \mid s \in \mathbb{R}, t \in \mathbb{R}\} = \text{span}(u, v)$

through p: $p + \text{span}(u, v)$.