The Kloosterman circle method and weighted representation numbers of positive definite quadratic forms

Edna Jones

Duke University

September 28, 2022
Which integers can be written (or represented) as the sum of four perfect squares?
That is, which \(n \in \mathbb{Z} \) can be written as
\[
n = x^2 + y^2 + z^2 + w^2
\]
with \(x, y, z, w \in \mathbb{Z} \)?
Which integers can be written (or represented) as the sum of four perfect squares?
That is, which \(n \in \mathbb{Z} \) can be written as

\[
n = x^2 + y^2 + z^2 + w^2
\]

with \(x, y, z, w \in \mathbb{Z} \)?

Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four perfect squares.
Sum of four squares

Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four perfect squares.

Examples (Examples of integers written as the sum of four squares)

\[4 = 2^2 + 0^2 + 0^2 + 0^2 = 1^2 + 1^2 + 1^2 + 1^2 = (-1)^2 + 1^2 + 1^2 + 1^2. \]

\[7 = 2^2 + 1^2 + 1^2 + 1^2 = 1^2 + 2^2 + 1^2 + 1^2. \]
Theorem (Lagrange, 1770)

Every nonnegative integer can be written as the sum of four perfect squares.

Examples (Examples of integers written as the sum of four squares)

\[4 = 2^2 + 0^2 + 0^2 + 0^2 = 1^2 + 1^2 + 1^2 + 1^2 = (-1)^2 + 1^2 + 1^2 + 1^2. \]

\[7 = 2^2 + 1^2 + 1^2 + 1^2 = 1^2 + 2^2 + 1^2 + 1^2. \]

How many ways can an integer be written as the sum of four squares?
How many ways can an integer be written as the sum of four squares?

Definition (Representation number for the sum of four squares)

\[
\begin{align*}
 r_4(n) &= |\{(x, y, z, w)^\top \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\}| \\
 &= |\{m \in \mathbb{Z}^4 : f_4(m) = n\}|,
\end{align*}
\]

where \(f_4(m) = m_1^2 + m_2^2 + m_3^2 + m_4^2 \).
How many ways can an integer be written as the sum of four squares?

Definition (Representation number for the sum of four squares)

\[r_4(n) = |\{(x, y, z, w)^\top \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\}| \]

\[= |\{m \in \mathbb{Z}^4 : f_4(m) = n\}|, \]

where \(f_4(m) = m_1^2 + m_2^2 + m_3^2 + m_4^2. \)

Theorem (Jacobi, 1834)

If \(n \) is a positive integer, then

\[r_4(n) = 8 \sum_{d|n \atop 4|d} d. \]
Sum of four squares

$$r_4(n) = \left| \{(x, y, z, w)^\top \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n \} \right|$$

Theorem (Jacobi, 1834)

If n is a positive integer, then

$$r_4(n) = 8 \sum_{\substack{d \mid n \\text{and} \ 4 \nmid d}} d.$$

Examples (Examples of $r_4(n)$)

$$r_4(4) = 8(1 + 2) = 24.$$
$$r_4(7) = 8(1 + 7) = 64.$$
Sum of four squares

\[r_4(n) = \left| \{(x, y, z, w)^\top \in \mathbb{Z}^4 : x^2 + y^2 + z^2 + w^2 = n\} \right| \]

Theorem (Jacobi, 1834)

If \(n \) is a positive integer, then

\[r_4(n) = 8 \sum_{\substack{d|n \\text{4}|d}} d. \]

Examples (Examples of \(r_4(n) \))

\[r_4(4) = 8(1 + 2) = 24. \]
\[r_4(7) = 8(1 + 7) = 64. \]

What about more general positive definite quadratic forms?
Real quadratic forms

F is a real quadratic form in s variables \iff

For all $m \in \mathbb{R}^s$,

$$F(m) = \frac{1}{2} m^\top A m,$$

where A is a real symmetric $s \times s$ matrix and is the Hessian matrix of F.

Example (Example of a quadratic form in 2 variables)

$$F(m) = m_1^2 + m_1 m_2 + m_2^2$$

$$= \frac{1}{2} m^\top \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} m$$
Definition (Integral quadratic form)

A quadratic form F is integral if $F(m) \in \mathbb{Z}$ for all $m \in \mathbb{Z}$.

Examples

- $f_4(m) = m_1^2 + m_2^2 + m_3^2 + m_4^2$
- $x^2 + 5xy - y^2$

Non-examples

- πx^2
- $x^2 + \frac{1}{2}y^2$
Definition (Positive definite quadratic form)

A quadratic form F is **positive definite** if $F(m) > 0$ for all $m \in \mathbb{R}^s \setminus \{0\}$.

Examples

- $f_4(m) = m_1^2 + m_2^2 + m_3^2 + m_4^2$
- $x^2 + xy + y^2$

Non-examples

- $x^2 - y^2$
- $6xy$
Definition ((Unweighted) representation number)

\[R_F(n) = |\{m \in \mathbb{Z}^s : F(m) = n\}| \]

Example

If \(F(m) = f_4(m) \), then \(R_F(n) = r_4(n) \).
(Unweighted) representation number

Definition ((Unweighted) representation number)

\[R_F(n) = |\{ m \in \mathbb{Z}^s : F(m) = n \}| \]

Example

If \(F(m) = f_4(m) \), then \(R_F(n) = r_4(n) \).

\[
R_F(n) = \sum_{m \in \mathbb{Z}^s} 1_{\{ F(m) = n \}},
\]

where \(1_{\{ F(m) = n \}} \) is the indicator function

\[
1_{\{ F(m) = n \}} = \begin{cases} 1 & \text{if } F(m) = n, \\ 0 & \text{otherwise.} \end{cases}
\]
The singular series $\mathcal{S}_F(n)$ contains information about $F(m) \equiv n \pmod{q}$ for all positive integers q.

$\mathcal{S}_F(n) = 0 \iff$ there exists a positive integer q such that $F(m) \equiv n \pmod{q}$ has no solutions.
Big O notation

\[f(x) = O(g(x)) \] means that there exists a constant \(C > 0 \) such that

\[|f(x)| \leq Cg(x) \]

for all \(x \in D \), where \(D \) is an appropriate domain that can be deduced from the context.
Big O notation

$f(x) = O(g(x))$ means that there exists a constant $C > 0$ such that

$$|f(x)| \leq Cg(x)$$

for all $x \in D$, where D is an appropriate domain that can be deduced from the context.

The constant C is called the **implied constant**.
$f(x) = O(g(x))$ means that there exists a constant $C > 0$ such that

$$|f(x)| \leq Cg(x)$$

for all $x \in D$, where D is an appropriate domain that can be deduced from the context.

The constant C is called the **implied constant**.

If the implied constant depends on a parameter α, then we write $f = O_\alpha(g)$.
Big O notation

$f(x) = O(g(x))$ means that there exists a constant $C > 0$ such that

$$|f(x)| \leq Cg(x)$$

for all $x \in D$, where D is an appropriate domain that can be deduced from the context.

The constant C is called the **implied constant**.

If the implied constant depends on a parameter α, then we write $f = O_\alpha(g)$.

Examples

- If $x \geq 1$, then $x = O(x^2)$ since $|x| \leq x^2$ for $x \geq 1$.

Edna Jones

Kloosterman method and weighted representation numbers
Big O notation

$f(x) = O(g(x))$ means that there exists a constant $C > 0$ such that

$$|f(x)| \leq Cg(x)$$

for all $x \in D$, where D is an appropriate domain that can be deduced from the context.

The constant C is called the **implied constant**.

If the implied constant depends on a parameter α, then we write $f = O_\alpha(g)$.

Examples

- If $x \geq 1$, then $x = O(x^2)$ since $|x| \leq x^2$ for $x \geq 1$.
- If $x \geq 1$, then $x^2 + x = O(x^2)$ since $|x^2 + x| \leq 2x^2$ for $x \geq 1$.
$f(x) = O(g(x))$ means that there exists a constant $C > 0$ such that

$$|f(x)| \leq Cg(x)$$

for all $x \in D$, where D is an appropriate domain that can be deduced from the context.

The constant C is called the **implied constant**. If the implied constant depends on a parameter α, then we write $f = O_{\alpha}(g)$.

Examples

- If $x \geq 1$, then $x = O(x^2)$ since $|x| \leq x^2$ for $x \geq 1$.
- If $x \geq 1$, then $x^2 + x = O(x^2)$ since $|x^2 + x| \leq 2x^2$ for $x \geq 1$.
- If $0 < \varepsilon < 1$, then $\varepsilon^2 = O(\varepsilon)$ since $|\varepsilon^2| \leq \varepsilon$ for $0 < \varepsilon < 1$.
Theorem

Suppose that n is a positive integer.
Suppose that F is a positive definite integral quadratic form in $s \geq 4$ variables.
Let $A \in M_s(\mathbb{Z})$ be the Hessian matrix of F.
Then the number of integral solutions to $F(m) = n$ is

$$R_F(n) = \mathcal{G}_F(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2)\sqrt{\det(A)}} n^{s-1} + O_{F, \varepsilon} \left(n^{\frac{s-1}{4} + \varepsilon} \right)$$

for any $\varepsilon > 0$.

- Kloosterman proved this (with a worse error term) in 1926 for diagonal quadratic forms ($F(m) = a_1 m_1^2 + \cdots + a_s m_s^2$), using what is now called the Kloosterman circle method.
- Obtained as a corollary of my main result.
An asymptotic for (unweighted) representation numbers

Proofs in

- §11.4 of *Topics in Classical Automorphic Forms* by Iwaniec
- §20.4 of *Analytic Number Theory* by Iwaniec and Kowalski
An asymptotic for (unweighted) representation numbers

• Proofs in
 • §11.4 of *Topics in Classical Automorphic Forms* by Iwaniec
 • §20.4 of *Analytic Number Theory* by Iwaniec and Kowalski

• Proofs use the Kloosterman circle method
An asymptotic for (unweighted) representation numbers

- Proofs in
 - §11.4 of *Topics in Classical Automorphic Forms* by Iwaniec
 - §20.4 of *Analytic Number Theory* by Iwaniec and Kowalski

- Proofs use the Kloosterman circle method

- Proofs assume equal weight to be given to all integer solutions to $F(m) = n$
Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R}^s is denoted by $C_c^\infty(\mathbb{R}^s)$. A function $\psi \in C_c^\infty(\mathbb{R}^s)$ is called a **bump function**.
Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R}^s is denoted by $C_c^\infty(\mathbb{R}^s)$. A function $\psi \in C_c^\infty(\mathbb{R}^s)$ is called a **bump function**.

Let $\psi \in C_c^\infty(\mathbb{R}^s)$. For $X > 0$, define

$$\psi_X(m) = \psi \left(\frac{1}{X} \cdot m \right).$$
Definition (Bump function)

The space of real-valued, infinitely differentiable, and compactly supported functions on \mathbb{R}^s is denoted by $C_c^\infty(\mathbb{R}^s)$. A function $\psi \in C_c^\infty(\mathbb{R}^s)$ is called a bump function.

Let $\psi \in C_c^\infty(\mathbb{R}^s)$. For $X > 0$, define

$$\psi_X(m) = \psi \left(\frac{1}{X} m \right).$$

Definition (Weighted representation number)

$$R_{F,\psi,X}(n) = \sum_{m \in \mathbb{Z}^s} 1_{\{F(m)=n\}} \psi_X(m)$$
Theorem (Heath-Brown, 1996)

Suppose that \(n \) is an integer.
Suppose that \(F \) is a nonsingular integral quadratic form in \(s \geq 4 \) variables.
Suppose that \(\psi \in C_\infty_c(\mathbb{R}^s) \) is a bump function.
Then for \(\varepsilon > 0 \), the weighted representation number \(R_{F,\psi,n^{1/2}}(n) \) is

\[
R_{F,\psi,n^{1/2}}(n) = \mathcal{G}_F(n)\sigma_{F,\psi,\infty}(n, n^{1/2})n^{\frac{s}{2}-1} + O_{F,\psi,s,\varepsilon}\left(n^{\frac{s-1}{4} + \varepsilon}\right),
\]

where

\[
\sigma_{F,\psi,\infty}(n, X) = \lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{F(m) - \frac{n}{X^2} < \varepsilon} \psi(m) \, dm.
\]

Proof uses the delta method with a Kloosterman refinement.
Theorem (J., 2022+)

Suppose that \(n \) is a positive integer and that \(F \) is a positive definite integral quadratic form in \(s \geq 4 \) variables. Let \(A \in M_s(\mathbb{Z}) \) be the Hessian matrix of \(F \). Let \(\lambda_s \) be largest eigenvalue of \(A \). Let \(L \) be the smallest positive integer such that \(LA^{-1} \in M_s(\mathbb{Z}) \).

Suppose that \(\psi \in C^\infty_c(\mathbb{R}^s) \) is a bump function. Then for \(X \geq 1/\lambda_s \) and \(\varepsilon > 0 \), the weighted representation number \(R_{F,\psi,X}(n) \) is

\[
R_{F,\psi,X}(n) = \mathcal{G}_F(n) \sigma_{F,\psi,\infty}(n, X) X^{s-2} + O_{\psi,s,\varepsilon} \left(\left(n^{s-1} X^{3-s} + \varepsilon \lambda_s^{3-s} + \varepsilon (\det(A))^{-1/2} + X^{s-1} + \varepsilon \lambda_s^{s+1} \right) \times L^{s/2} \tau(n) \prod_{p|2 \det(A)} (1 - p^{-1/2})^{-1} \right).
\]
Corollary (J., 2022+)

Assume hypotheses of previous theorem and that \(n \) is sufficiently large. Set \(X \) to be

\[
X = n^{1/2} \lambda_s^{(1-s)/(s-2)} (\det(A))^{1/(4-2s)}.
\]

Then the weighted representation number \(R_{F, \psi, X}(n) \) is

\[
R_{F, \psi, X}(n) = \mathcal{G}_F(n) \sigma_{F, \psi, \infty}(n, X) X^{s-2} + O_{\psi, s, \varepsilon} \left(n^{\frac{s-1}{4} + \varepsilon} \lambda_s^{\frac{s-3-2\varepsilon}{2s-4}} (\det(A))^{\frac{1-s-2\varepsilon}{4s-8}} \right)
\]

\[
\times L^{s/2} \prod_{p|2 \det(A)} (1 - p^{-1/2})^{-1}
\]

for any \(\varepsilon > 0. \)
Corollary

Suppose that n is a positive integer. Suppose that F is a positive definite integral quadratic form in $s \geq 4$ variables. Let $A \in M_s(\mathbb{Z})$ be the Hessian matrix of F. Then the number of integral solutions to $F(m) = n$ is

$$R_F(n) = \mathcal{S}_F(n) \frac{(2\pi)^{s/2}}{\Gamma(s/2) \sqrt{\det(A)}} n^{s/2-1} + O_{F, \varepsilon} \left(n^{(s-1)/4+\varepsilon} \right)$$

for any $\varepsilon > 0$.

Proof sketch: Choose $X = n^{1/2}$ and ψ to be such that $\psi(m) = 1$ whenever $m \in \mathbb{R}^s$ satisfies $F(m) = 1$.

Edna Jones

Kloosterman method and weighted representation numbers
Write $R_{F, \psi, \chi}(n)$ as

$$R_{F, \psi, \chi}(n) = \int_0^1 \sum_{m \in Z} e(x(F(m) - n)) \psi_X(m) \, dx,$$

where $e(z) = e^{2\pi iz}$.
Proof sketch of main result

1. Write $R_{F, \psi, \chi}(n)$ as

$$R_{F, \psi, \chi}(n) = \int_0^1 \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_X(m) \, dx,$$

where $e(z) = e^{2\pi i z}$.

2. Break up the integral using a Farey dissection.
Proof sketch of main result

1. Write \(R_{F, \psi, X}(n) \) as

\[
R_{F, \psi, X}(n) = \int_0^1 \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_X(m) \, dx,
\]

where \(e(z) = e^{2\pi i z} \).

2. Break up the integral using a Farey dissection.

3. Use Poisson summation and split integrals into arithmetic parts and archimedean parts.

4. Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)

5. Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)

6. Put estimates together and compute the main term.

Edna Jones

Kloosterman method and weighted representation numbers
Write $R_{F,\psi,X}(n)$ as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_X(m) \, dx,$$

where $e(z) = e^{2\pi iz}$.

2. Break up the integral using a Farey dissection.

3. Use Poisson summation and split integrals into arithmetic parts and archimedean parts.

4. Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)

5. Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)

6. Put estimates together and compute the main term.
Proof sketch of main result

1. Write $R_{F,\psi,X}(n)$ as

$$R_{F,\psi,X}(n) = \int_0^1 \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_X(m) \, dx,$$

where $e(z) = e^{2\pi i z}$.

2. Break up the integral using a Farey dissection.

3. Use Poisson summation and split integrals into arithmetic parts and archimedean parts.

4. Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)

5. Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)
Proof sketch of main result

1. Write $R_{F, \psi, \chi}(n)$ as

$$R_{F, \psi, \chi}(n) = \int_0^1 \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_X(m) \, dx,$$

where $e(z) = e^{2\pi i z}$.

2. Break up the integral using a Farey dissection.

3. Use Poisson summation and split integrals into arithmetic parts and archimedean parts.

4. Use Gauss sums, Kloosterman sums, and Salié sums to bound the arithmetic parts. (The Weil bound for Kloosterman sums is used.)

5. Use bounds on oscillatory integrals to bound the archimedean parts. (The principle of nonstationary phase is used.)

6. Put estimates together and compute the main term.
Farey sequence \mathcal{F}_Q of order Q

Definition
For $Q \geq 1$, the Farey sequence \mathcal{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \leq q \leq Q$ and $\gcd(a, q) = 1$.

For $Q = 1$,

\[
\begin{array}{c}
0 & 1 \\
\frac{0}{1} & \frac{1}{1}
\end{array}
\]
For $Q \geq 1$, the **Farey sequence \mathcal{F}_Q of order Q** is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \leq q \leq Q$ and $\gcd(a, q) = 1$.

$Q = 2$

\[
\begin{array}{ccc}
0 & 1/2 & 1 \\
1/1 & 1/1 & 1/1 \\
\end{array}
\]
Definition

For $Q \geq 1$, the **Farey sequence** \mathcal{F}_Q of order Q is the increasing sequence of all reduced fractions $\frac{a}{q}$ with $1 \leq q \leq Q$ and $\gcd(a, q) = 1$.

$Q = 3$

\[
\begin{array}{cccccc}
0 & 1 & 1 & 2 & 1 & 1 \\
\frac{1}{1} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{1}{1} \\
\end{array}
\]
An example of a Farey dissection
Lemma for Kloosterman circle method

Lemma

Let $f : \mathbb{R} \to \mathbb{C}$ be a periodic function of period 1 and with real Fourier coefficients (so that $f(x) = f(-x)$ for all $x \in \mathbb{R}$). Then

$$
\int_0^1 f(x) \, dx = 2 \text{Re} \left(\sum_{1 \leq q \leq Q} \int_0^{1/q} \sum_{Q < d \leq q + Q} \sum_{\substack{qd \leq 1 \\ \gcd(d, q) = 1}} f \left(x - \frac{d^*}{q} \right) \, dx \right),
$$

where d^* is the multiplicative inverse of d modulo q.

Use this for

$$
f(x) = \sum_{m \in \mathbb{Z}^s} e(x(F(m) - n)) \psi_x(m).
$$
Arithmetic and archimedean parts

\[R_{F,\psi,X}(n) = 2 \text{Re} \left(\sum_{1 \leq q \leq Q} \frac{1}{q^s} \int_0^1 \frac{1}{q^Q} e(-nx) \sum_{r \in \mathbb{Z}^s} I_{F,\psi}(x, X, r, q) T_r(q, n; x) \, dx \right), \]

where the arithmetic part is

\[T_r(q, n; x) = \sum_{Q < d \leq q+Q} \sum_{\substack{qdx < 1 \\gcd(d, q) = 1}} e\left(n \frac{d^*}{q}\right) G_r(-d^*, q), \]

the Gauss sum \(G_r(d, q) \) is

\[G_r(d, q) = \sum_{h \in \mathbb{Z}/q\mathbb{Z}^s} e\left(\frac{1}{q}(dF(h) + h \cdot r)\right), \]

and the archimedean part is

\[I_{F,\psi}(x, X, r, q) = \int_{\mathbb{R}^s} e\left(xF(m) - \frac{1}{q}m \cdot r\right) \psi_X(m) \, dm. \]
A potential application: A strong asymptotic local-global principle for certain Kleinian sphere packings

Examples of Kleinian sphere packings that have or might have a strong asymptotic local-global principle:

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing. Image by Kei Nakamura.

Figure: A fundamental domain of an integral Kleinian sphere packing. Image by Arseniy (Senia) Sheydvasser.

Edna Jones

Kloosterman method and weighted representation numbers
Soddy sphere packings: The construction

Figure: Four mutually tangent spheres.

Figure: A Soddy sphere packing.
Soddy sphere packings: The construction

Figure: Four mutually tangent spheres.

Figure: Four tangent spheres with two additional spheres.
Soddy sphere packings: The construction

Figure: Four mutually tangent spheres.

Figure: Four tangent spheres with two additional spheres.

Figure: More spheres.
Soddy sphere packings: The construction

Figure: Four mutually tangent spheres.

Figure: Four tangent spheres with two additional spheres.

Figure: More spheres.

Figure: A Soddy sphere packing.
Soddy sphere packings: The construction

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere:
\[
\text{bend} = \frac{1}{\text{radius}}
\]

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.
Soddy sphere packings: The construction

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere:
\[\text{bend} = \frac{1}{\text{radius}} \]

All of the bends of this Soddy sphere packing are integers.
Soddy sphere packings: The construction

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere:
\[\text{bend} = \frac{1}{\text{radius}} \]

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?
Soddy sphere packings: The construction

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Label on sphere:
\[\text{bend} = \frac{1}{\text{radius}} \]

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?

Are there any congruence or local obstructions?
Definition (Admissible integers)

Let \mathcal{P} be an integral Kleinian sphere packing in $\mathbb{R}^d \cup \{\infty\}$. An integer m is **admissible (or locally represented)** if for every $q \geq 1$

$$m \equiv \text{bend of some } (d - 1)\text{-sphere in } \mathcal{P} \pmod{q}.$$

Equivalently, m is admissible if m has no local obstructions.
Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing \mathcal{P} if and only if

$$m \equiv 0 \text{ or } \varepsilon(\mathcal{P}) \pmod{3},$$

where $\varepsilon(\mathcal{P}) \in \{\pm 1\}$ depends only on the packing.

Example

m is admissible $\iff m \equiv 0 \text{ or } 1 \pmod{3}$.

Edna Jones
Kloosterman method and weighted representation numbers
Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing \mathcal{P} satisfy a strong asymptotic local-global principle. That is, there is an $N_0 = N_0(\mathcal{P})$ so that, if $m > N_0$ and m is admissible, then m is the bend of a sphere in the packing.

Example

If $m \equiv 0$ or 1 (mod 3) and m is sufficiently large, then m is the bend of a sphere in the packing.
Examples of integral Kleinian sphere packings

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing. Image by Kei Nakamura.

Figure: A fundamental domain of an integral Kleinian sphere packing. Image by Arseniy (Senia) Sheydvasser.
Goal: Prove strong asymptotic local-global principles for certain integral Kleinian sphere packings, that is, prove:

If m is admissible and sufficiently large, then m is the bend of an $(d - 1)$-sphere in the packing.

Definition (Admissible integers)

Let \mathcal{P} be an integral Kleinian sphere packing in $\mathbb{R}^d \cup \{\infty\}$. An integer m is **admissible (or locally represented)** if for every $q \geq 1$

$$m \equiv \text{bend of some } (d - 1)\text{-sphere in } \mathcal{P} \pmod{q}.$$
Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let \mathcal{P} be a primitive integral Kleinian $(d - 1)$-sphere packing in $\mathbb{R}^d \cup \{\infty\}$ with an orientation-preserving automorphism group Γ of Möbius transformations.

Then every sufficiently large admissible integer is a bend of a $(d - 1)$-sphere in \mathcal{P}. That is, there exists an $N_0 = N_0(\mathcal{P})$ such that if m is admissible and $m > N_0$, then m is the bend of a $(d - 1)$-sphere in \mathcal{P}.

Edna Jones

Kloosterman method and weighted representation numbers
Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let \(\mathcal{P} \) be a primitive integral Kleinian \((d - 1)\)-sphere packing in \(\mathbb{R}^d \cup \{\infty\} \) with an orientation-preserving automorphism group \(\Gamma \) of Möbius transformations.

1. Suppose that there exists a \((d - 1)\)-sphere \(S_0 \in \mathcal{P} \) such that the stabilizer of \(S_0 \) in \(\Gamma \) contains (up to conjugacy) a congruence subgroup of \(\text{PSL}_2(\mathcal{O}_K) \), where \(K \) is an imaginary quadratic field and \(\mathcal{O}_K \) is the ring of integers of \(K \). This condition implies that \(d \geq 3 \).

Then every sufficiently large admissible integer is a bend of a \((d - 1)\)-sphere in \(\mathcal{P} \). That is, there exists an \(N_0 = N_0(\mathcal{P}) \) such that if \(m \) is admissible and \(m > N_0 \), then \(m \) is the bend of a \((d - 1)\)-sphere in \(\mathcal{P} \).
A strong asymptotic local-global conjecture

Conjecture (A strong asymptotic local-global conjecture for certain Kleinian sphere packings)

Let \mathcal{P} be a primitive integral Kleinian $(d - 1)$-sphere packing in $\mathbb{R}^d \cup \{\infty\}$ with an orientation-preserving automorphism group Γ of Möbius transformations.

1. Suppose that there exists a $(d - 1)$-sphere $S_0 \in \mathcal{P}$ such that the stabilizer of S_0 in Γ contains (up to conjugacy) a congruence subgroup of $\text{PSL}_2(\mathcal{O}_K)$, where K is an imaginary quadratic field and \mathcal{O}_K is the ring of integers of K. This condition implies that $d \geq 3$.

2. Suppose that there is a $(d - 1)$-sphere $S_1 \in \mathcal{P}$ that is tangent to S_0.

Then every sufficiently large admissible integer is a bend of a $(d - 1)$-sphere in \mathcal{P}. That is, there exists an $N_0 = N_0(\mathcal{P})$ such that if m is admissible and $m > N_0$, then m is the bend of a $(d - 1)$-sphere in \mathcal{P}.
How does my version of the Kloosterman circle method come into play?

Using Möbius transformations on $\mathbb{R}^d \cup \{\infty\}$ and inversive coordinates of $(d-1)$-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables. Potentially, my version of the Kloosterman circle method could be then used to prove a result towards a strong asymptotic local-global conjecture for certain Kleinian sphere packings. The potential result would be the first to apply to multiple conformally inequivalent integral Kleinian sphere packings.
How does my version of the Kloosterman circle method come into play?

- Using Möbius transformations on $\mathbb{R}^d \cup \{\infty\}$ and inversive coordinates of $(d - 1)$-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.
How does my version of the Kloosterman circle method come into play?

- Using Möbius transformations on $\mathbb{R}^d \cup \{\infty\}$ and inversive coordinates of $(d - 1)$-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.
- Potentially, my version of the Kloosterman circle method could be then used to prove a result towards a strong asymptotic local-global conjecture for certain Kleinian sphere packings.
How does my version of the Kloosterman circle method come into play?

- Using Möbius transformations on $\mathbb{R}^d \cup \{\infty\}$ and inversive coordinates of $(d - 1)$-spheres, one can obtain a family of integral quadratic polynomials in 4 variables with a coprimality condition on the variables.

- Potentially, my version of the Kloosterman circle method could be then used to prove a result towards a strong asymptotic local-global conjecture for certain Kleinian sphere packings.

- The potential result would be the first to apply to multiple conformally inequivalent integral Kleinian sphere packings.
Besides the illustrations previously credited, the illustrations for this talk came from the following paper:

Thank you for listening!
The singular series and the real factor

Singular series:

$$ \mathcal{G}_F(n) = \sum_{q=1}^{\infty} \frac{1}{q^s} \sum_{d \in (\mathbb{Z}/q\mathbb{Z})^s} \sum_{h \in (\mathbb{Z}/q\mathbb{Z})^s} e\left(\frac{d}{q} (F(h) - n) \right) $$

Real factor:

$$ \sigma_{F,\psi,\infty}(n, X) = \lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{\left| F(m) - \frac{n}{X^2} \right| < \varepsilon} \psi(m) \, dm. $$
Kloosterman sums and Salié sums

\[\kappa_{s,q}(a, b) = \sum_{d \mod q} \left(\frac{d}{q} \right)^s e \left(\frac{ad + bd^*}{q} \right) \] (1)

is either a Kloosterman sum (if \(s \) is even) or a Salié sum (if \(s \) is odd).

Lemma (Weil bound for Kloosterman sums)

If \(s \) is even, \(a \) and \(b \) are integers, and \(q \) is a positive integer, then

\[|\kappa_{s,q}(a, b)| \leq \tau(q)(\gcd(a, b, q))^{1/2} q^{1/2}, \]

where the divisor function \(\tau(q) \) is the number of positive divisors of \(q \).
Theorem (Principle of nonstationary phase in 1 variable, J., 2022+)

Let \(\psi \in C_c^\infty(\mathbb{R}) \) and let \(M \geq 0 \). Let \(f \in C^\infty(\mathbb{R}) \) be such that
\[
|f'(x)| \geq B > 0 \quad \text{and} \quad |f^{(j)}(x)| \leq |f'(x)| \quad \text{for all} \quad x \in \text{supp}(\psi) \quad \text{and for each integer} \quad j \quad \text{satisfying} \quad 2 \leq j \leq \lceil M \rceil.
\]

Then
\[
\int_{\mathbb{R}} e(f(x)) \psi(x) \, dx \ll \psi, M B^{-M}.
\]
Definition (Kleinian sphere packing)

An \((d - 1)\)-sphere packing \(\mathcal{P}\) is **Kleinian** if its limit set is that of a geometrically finite group \(\Gamma \subset \text{Isom}(\mathbb{H}^{d+1})\).

Figure: Apollonian circle packing as the limit set of \(\Gamma\). Image by Alex Kontorovich.
Definition (Kleinian sphere packing)

An \((n - 1)\)-sphere packing \(\mathcal{P}\) is **Kleinian** if its limit set is that of a geometrically finite group \(\Gamma < \text{Isom}(\mathbb{H}^{n+1})\).

- Action of \(\text{Isom}(\mathbb{H}^{d+1})\) extends continuously to \(\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\}\), the boundary of \(\mathbb{H}^{d+1}\).
An \((n-1)\)-sphere packing \(\mathcal{P}\) is **Kleinian** if its limit set is that of a geometrically finite group \(\Gamma < \text{Isom}(\mathbb{H}^{n+1})\).

- Action of \(\text{Isom}(\mathbb{H}^{d+1})\) extends continuously to \(\widehat{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\}\), the boundary of \(\mathbb{H}^{d+1}\).
- \(\Gamma\) stabilizes \(\mathcal{P}\) (i.e., \(\Gamma\) maps \(\mathcal{P}\) to itself).
Kleinian sphere packings

Definition (Kleinian sphere packing)
An \((n-1)\)-sphere packing \(P\) is **Kleinian** if its limit set is that of a geometrically finite group \(\Gamma < \text{Isom}(\mathbb{H}^{n+1})\).

- Action of \(\text{Isom}(\mathbb{H}^{d+1})\) extends continuously to \(\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\}\), the boundary of \(\mathbb{H}^{d+1}\).
- \(\Gamma\) stabilizes \(P\) (i.e., \(\Gamma\) maps \(P\) to itself).
- \(\Gamma\) is a thin group.